Bart Blanpain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5078250/publications.pdf

Version: 2024-02-01

304 12,219
papers citations

47006
47
98
h-index
g-index

322 322 all docs citations

322 times ranked 8715 citing authors

#	Article	IF	CITATIONS
1	Recycling of rare earths: a critical review. Journal of Cleaner Production, 2013, 51, 1-22.	9.3	1,704
2	An introduction to phase-field modeling of microstructure evolution. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2008, 32, 268-294.	1.6	717
3	Towards zero-waste valorisation of rare-earth-containing industrial process residues: a critical review. Journal of Cleaner Production, 2015, 99, 17-38.	9.3	463
4	Cold rolling behaviour of an austenitic Fe–30Mn–3Al–3Si TWIP-steel: the importance of deformation twinning. Acta Materialia, 2004, 52, 2005-2012.	7.9	398
5	Surface oxidation of NiTi shape memory alloy. Biomaterials, 2002, 23, 4863-4871.	11.4	342
6	Enhanced Landfill Mining in view of multiple resource recovery: a critical review. Journal of Cleaner Production, 2013, 55, 45-55.	9.3	282
7	Recovery of Rare Earths and Other Valuable Metals From Bauxite Residue (Red Mud): A Review. Journal of Sustainable Metallurgy, 2016, 2, 365-386.	2.3	231
8	Lattice Boltzmann modeling of microchannel flow in slip flow regime. Journal of Computational Physics, 2009, 228, 147-157.	3.8	177
9	From NdFeB magnets towards the rare-earth oxides: a recycling process consuming only oxalic acid. RSC Advances, 2014, 4, 64099-64111.	3.6	149
10	Effect of mechanical activation on the hydraulic properties of stainless steel slags. Cement and Concrete Research, 2012, 42, 778-788.	11.0	145
11	Selective recovery of rare earths from bauxite residue by combination of sulfation, roasting and leaching. Minerals Engineering, 2016, 92, 151-159.	4.3	140
12	Stabilization of basic oxygen furnace slag by hot-stage carbonation treatment. Chemical Engineering Journal, 2012, 203, 239-250.	12.7	136
13	Calibration procedures for frictional measurements with a lateral force microscope. Wear, 1996, 192, 141-150.	3.1	127
14	Smelting of Bauxite Residue (Red Mud) in View of Iron and Selective Rare Earths Recovery. Journal of Sustainable Metallurgy, 2016, 2, 28-37.	2.3	126
15	Effect of accelerated carbonation on AOD stainless steel slag for its valorisation as a CO2-sequestering construction material. Chemical Engineering Journal, 2014, 246, 39-52.	12.7	121
16	Plasma-enhanced chemical vapour deposition growth of Si nanowires with low melting point metal catalysts: an effective alternative to Au-mediated growth. Nanotechnology, 2007, 18, 505307.	2.6	120
17	Space- and Time-Resolved Visualization of Acid Catalysis in ZSM-5 Crystals by Fluorescence Microscopy. Angewandte Chemie - International Edition, 2007, 46, 1706-1709.	13.8	119
18	Degradation mechanisms and use of refractory linings in copper production processes: A critical review. Journal of the European Ceramic Society, 2014, 34, 849-876.	5.7	118

#	Article	IF	Citations
19	Phase field simulations of grain growth in two-dimensional systems containing finely dispersed second-phase particles. Acta Materialia, 2006, 54, 1175-1184.	7.9	114
20	Pinning effect of second-phase particles on grain growth in polycrystalline films studied by 3-D phase field simulations. Acta Materialia, 2007, 55, 2173-2182.	7.9	114
21	In situ observation of the direct and indirect dissolution of MgO particles in CaO–Al2O3–SiO2-based slags. Journal of the European Ceramic Society, 2007, 27, 1961-1972.	5.7	111
22	A phase field model for the simulation of grain growth in materials containing finely dispersed incoherent second-phase particles. Acta Materialia, 2005, 53, 1771-1781.	7.9	107
23	Recycling of NdFeB Magnets Using Sulfation, Selective Roasting, and Water Leaching. Journal of Sustainable Metallurgy, 2015, 1, 199-215.	2.3	104
24	Oxidational wear of TiN coatings on tool steel and nitrided tool steel in unlubricated fretting. Wear, 1995, 188, 130-137.	3.1	100
25	Hot stage processing of metallurgical slags. Resources, Conservation and Recycling, 2008, 52, 1121-1131.	10.8	99
26	R.f. plasma-assisted chemical vapour deposition of diamond-like carbon: physical and mechanical properties. Thin Solid Films, 1992, 217, 56-61.	1.8	96
27	The influence of humidity on the fretting behaviour of PVD TiN coatings. Wear, 1995, 180, 43-52.	3.1	94
28	Comparison of electric arc furnace dust treatment technologies using exergy efficiency. Journal of Cleaner Production, 2014, 65, 152-167.	9.3	87
29	Slags with a high Al and Fe content as precursors for inorganic polymers. Applied Clay Science, 2013, 73, 93-102.	5.2	85
30	Comparative study between macrotribology and nanotribology. Journal of Applied Physics, 1998, 84, 4859-4865.	2.5	82
31	A model of threading dislocation density in strain-relaxed Ge and GaAs epitaxial films on Si (100). Applied Physics Letters, 2009, 94, .	3.3	81
32	Formation and Evolution of Al–Ti Oxide Inclusions during Secondary Steel Refining. ISIJ International, 2009, 49, 1133-1140.	1.4	81
33	Ladle metallurgy stainless steel slag as a raw material in Ordinary Portland Cement production: a possibility for industrial symbiosis. Journal of Cleaner Production, 2016, 112, 872-881.	9.3	81
34	Pinning effect of spheroid second-phase particles on grain growth studied by three-dimensional phase-field simulations. Computational Materials Science, 2010, 49, 340-350.	3.0	80
35	Chemical corrosion mechanisms of magnesia–chromite and chrome-free refractory bricks by copper metal and anode slag. Journal of the European Ceramic Society, 2007, 27, 2433-2444.	5.7	78
36	Modes of occurrences of scandium in Greek bauxite and bauxite residue. Minerals Engineering, 2018, 123, 35-48.	4.3	75

#	Article	IF	Citations
37	Non-metallic inclusions in aluminium killed steels. Ironmaking and Steelmaking, 2002, 29, 437-444.	2.1	74
38	Influence of mechanical and chemical activation on the hydraulic properties of gamma dicalcium silicate. Cement and Concrete Research, 2014, 55, 59-68.	11.0	72
39	Cementitious binders from activated stainless steel refining slag and the effect of alkali solutions. Journal of Hazardous Materials, 2015, 286, 211-219.	12.4	71
40	Hydrometallurgical recycling of NdFeB magnets: Complete leaching, iron removal and electrolysis. Journal of Rare Earths, 2017, 35, 574-584.	4.8	69
41	On the Amorphous and Crystalline State of Electrodeposited Nickelâ€Phosphorus Coatings. Journal of the Electrochemical Society, 1994, 141, 294-299.	2.9	67
42	Strong static magnetic field processing of metallic materials: A review. Current Opinion in Solid State and Materials Science, 2012, 16, 254-267.	11.5	65
43	Recovery of Rare Earths and Major Metals from Bauxite Residue (Red Mud) by Alkali Roasting, Smelting, and Leaching. Journal of Sustainable Metallurgy, 2017, 3, 393-404.	2.3	65
44	Material Evaluation to Prevent Nozzle Clogging during Continuous Casting of Al Killed Steels ISIJ International, 2002, 42, 1234-1240.	1.4	64
45	Recycling of NdFeB magnets using nitration, calcination and water leaching for REE recovery. Hydrometallurgy, 2017, 167, 115-123.	4.3	61
46	Theoretical Prediction and Synthesis of (Cr _{2/3} Zr _{1/3}) ₂ AlC <i>i</i> -MAX Phase. Inorganic Chemistry, 2018, 57, 6237-6244.	4.0	59
47	Rare Earth Element Phases in Bauxite Residue. Minerals (Basel, Switzerland), 2018, 8, 77.	2.0	58
48	A Proposal for a 100Â% Use of Bauxite Residue Towards Inorganic Polymer Mortar. Journal of Sustainable Metallurgy, 2016, 2, 394-404.	2.3	52
49	Early Age Microstructural Transformations of an Inorganic Polymer Made of Fayalite Slag. Journal of the American Ceramic Society, 2015, 98, 2269-2277.	3.8	48
50	Evolution of Non-Metallic Inclusions in Secondary Steelmaking: Learning from Inclusion Size Distributions. ISIJ International, 2013, 53, 1974-1982.	1.4	47
51	Bounding box algorithm for three-dimensional phase-field simulations of microstructural evolution in polycrystalline materials. Physical Review E, 2007, 76, 056702.	2.1	46
52	Continuous Fuming of Zinc-Bearing Residues: Part II. The Submerged-Plasma Zinc-Fuming Process. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2007, 38, 21-33.	2.1	46
53	Effect of High Cooling Rates on the Mineralogy and Hydraulic Properties of Stainless Steel Slags. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2013, 44, 1173-1184.	2.1	46
54	Alkali-activation of CaO-FeOx-SiO2 slag: Formation mechanism from in-situ X-ray total scattering. Cement and Concrete Research, 2019, 122, 179-188.	11.0	46

#	Article	IF	Citations
55	Interfacial Reaction between Refractory Materials and Metallurgical Slags containing Fluoride. Steel Research International, 2010, 81, 860-868.	1.8	45
56	Effect of curing temperatures on the alkali activation of crystalline continuous casting stainless steel slag. Construction and Building Materials, 2014, 71, 308-316.	7.2	45
57	Identification of magnesia–chromite refractory degradation mechanisms of secondary copper smelter linings. Journal of the European Ceramic Society, 2016, 36, 2119-2132.	5.7	45
58	A comparative study of the fretting wear of hard carbon coatings. Thin Solid Films, 1993, 223, 65-71.	1.8	44
59	Borate Distribution in Stabilized Stainless-Steel Slag. Journal of the American Ceramic Society, 2008, 91, 548-554.	3.8	44
60	Formation and Morphology of Al2O3 Inclusions at the Onset of Liquid Fe Deoxidation by Al Addition. ISIJ International, 2011, 51, 27-34.	1.4	44
61	Comparative measurement of residual stress in diamond coatings by low-incident-beam-angle-diffraction and micro-Raman spectroscopy. Journal of Materials Research, 1996, 11, 1776-1782.	2.6	42
62	The tribochemical behaviour of TiN-coatings during fretting wear. Wear, 1998, 217, 215-224.	3.1	42
63	Effect of the CaO-Al2O3-Based Top Slag on the Cleanliness of Stainless Steel During Secondary Metallurgy. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2013, 44, 1105-1119.	2.1	42
64	A phase field model for isothermal crystallization of oxide melts. Acta Materialia, 2011, 59, 2156-2165.	7.9	41
65	Degradation mechanisms of alumina-chromia refractories for secondary copper smelter linings. Corrosion Science, 2018, 136, 409-417.	6.6	41
66	Tribological behaviour of different diamond-like carbon materials. Surface and Coatings Technology, 1998, 106, 72-80.	4.8	40
67	Observation of Inclusions in Manganese-Silicon Killed Steels at Steel-Gas and Steel-Slag Interfaces. ISIJ International, 2004, 44, 1-10.	1.4	40
68	Influence of humidity on the friction of diamond and diamond-like carbon materials. Tribology International, 2007, 40, 216-219.	5.9	40
69	Interaction of Al2O3-rich slag with MgO–C refractories during VOD refining—MgO and spinel layer formation at the slag/refractory interface. Journal of the European Ceramic Society, 2009, 29, 1053-1060.	5.7	40
70	Low temperature synthesis of forsterite from hydromagnesite and fumed silica mixture. Ceramics International, 2015, 41, 2234-2239.	4.8	40
71	Molecular structure of CaO–FeO _x –SiO ₂ glassy slags and resultant inorganic polymer binders. Journal of the American Ceramic Society, 2018, 101, 5846-5857.	3.8	40
72	Dissolution and diffusion behavior of Al2O3 in a CaO–Al2O3–SiO2 liquid: An experimental-numerical approach. Applied Physics Letters, 2007, 91, .	3.3	39

#	Article	IF	Citations
73	Slag Solidification Modeling Using the Scheil?Gulliver Assumptions. Journal of the American Ceramic Society, 2007, 90, 1177-1185.	3.8	39
74	Strong Magnetic Field Effect on Surface Tension Associated with an Interfacial Magnetic Pressure. Journal of Physical Chemistry C, 2012, 116, 17676-17681.	3.1	39
75	Mix-design Parameters and Real-life Considerations in the Pursuit of Lower Environmental Impact Inorganic Polymers. Waste and Biomass Valorization, 2018, 9, 879-889.	3.4	39
76	<i>In Situ</i> Observation of the Dissolution of Spherical Alumina Particles in CaO–Al ₂ O ₃ –SiO ₂ Melts. Journal of the American Ceramic Society, 2007, 90, 3818-3824.	3.8	38
77	The influence of ZnO in fayalite slag on the degradation of magnesia-chromite refractories during secondary Cu smelting. Journal of the European Ceramic Society, 2015, 35, 2641-2650.	5.7	38
78	Short wavelength compositionally modulated Ni/Ni–P films prepared by electrodeposition. Journal of Applied Physics, 1986, 60, 1374-1376.	2.5	37
79	Desulphurisation of Stainless Steel by Using CaO^ ^ndash;Al2O3 Based Slags during Secondary Metallurgy. ISIJ International, 2013, 53, 459-467.	1.4	37
80	Inorganic Polymer Cement from Fe-Silicate Glasses: Varying the Activating Solution to Glass Ratio. Waste and Biomass Valorization, 2014, 5, 411-428.	3.4	37
81	Low amplitude oscillating sliding wear on chemically vapour deposited diamond coatings. Diamond and Related Materials, 1993, 2, 879-884.	3.9	36
82	A Morphological Comparison between Inclusions in Aluminium Killed Steels and Deposits in Submerged Entry Nozzle. Steel Research International, 2003, 74, 351-355.	1.8	36
83	Tribo-oxidation of a TiN coating sliding against corundum. Journal of Materials Research, 1994, 9, 992-998.	2.6	35
84	Continuous Fuming of Zinc-Bearing Residues: Part I. Model Development. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2007, 38, 13-20.	2.1	35
85	Degradation mechanisms of magnesia-chromite refractories by high-alumina stainless steel slags under vacuum conditions. Journal of the European Ceramic Society, 2006, 26, 3831-3843.	5.7	34
86	Degradation mechanisms of magnesia-carbon refractories by high-alumina stainless steel slags under vacuum. Ceramics International, 2007, 33, 1007-1018.	4.8	34
87	The effect of phase formation during use on the chemical corrosion of magnesia–chromite refractories in contact with a non-ferrous PbO–SiO2 based slag. Journal of the European Ceramic Society, 2014, 34, 1599-1610.	5.7	34
88	Effect of Alumina Morphology on the Clustering of Alumina Inclusions in Molten Iron. ISIJ International, 2016, 56, 926-935.	1.4	34
89	Valorization of BOF Steel Slag by Reduction and Phase Modification: Metal Recovery and Slag Valorization. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2017, 48, 1602-1612.	2.1	34
90	Degradation of MgO–C refractories by MnO-rich stainless steel slags. Ceramics International, 2009, 35, 2203-2212.	4.8	33

#	Article	IF	Citations
91	Behaviour of magnesia–carbon refractories in vacuum–oxygen decarburisation ladle linings. Ironmaking and Steelmaking, 2003, 30, 293-300.	2.1	32
92	On the Microstructure of a Freeze Lining of an Industrial Nonferrous Slag. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2007, 38, 841-851.	2.1	32
93	Ferroalloy quality and steel cleanliness. Ironmaking and Steelmaking, 2010, 37, 502-511.	2.1	32
94	Effect of ZnO level in secondary copper smelting slags on slag/magnesia-chromite refractory interactions. Journal of the European Ceramic Society, 2016, 36, 1821-1828.	5.7	32
95	Inorganic Polymers From CaO-FeOx-SiO2 Slag: The Start of Oxidation of Fe and the Formation of a Mixed Valence Binder. Frontiers in Materials, 2019, 6, .	2.4	32
96	Experimental and numerical study of buoyancy-driven single bubble dynamics in a vertical Hele-Shaw cell. Physics of Fluids, 2014, 26, .	4.0	31
97	Effect of Surfactant Te on the Formation of MnS Inclusions in Steel. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2017, 48, 2447-2458.	2.1	31
98	Study of the wear behaviour of diamond-like coatings at elevated temperatures. Surface and Coatings Technology, 1998, 98, 1047-1052.	4.8	30
99	Formation of the ZnFe2O4 phase in an electric arc furnace off-gas treatment system. Journal of Hazardous Materials, 2015, 287, 180-187.	12.4	30
100	Origin and sedimentation of Cu-droplets sticking to spinel solids in pyrometallurgical slags. Materials Science and Technology, 2016, 32, 1911-1924.	1.6	30
101	Solid-state amorphization in Al-Pt multilayers by low-temperature annealing. Physical Review B, 1989, 39, 13067-13071.	3.2	29
102	Using confocal scanning laser microscopy for the in situ study of high-temperature behaviour of complex ceramic materials. Journal of the European Ceramic Society, 2007, 27, 3497-3507.	5.7	29
103	Morphology and growth of alumina inclusions in Fe–Al alloys at low oxygen partial pressure. Ironmaking and Steelmaking, 2009, 36, 201-208.	2.1	28
104	Viscosity of Heterogeneous Silicate Melts: A Review. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2018, 49, 2469-2486.	2.1	28
105	Hydrodynamics study of bubbly flow in a top-submerged lance vessel. Chemical Engineering Science, 2018, 192, 1091-1104.	3.8	27
106	Volume-of-fluid simulations of bubble dynamics in a vertical Hele-Shaw cell. Physics of Fluids, 2016, 28, 053304.	4.0	26
107	Comparison of the chemical corrosion resistance of magnesia-based refractories by stainless steelmaking slags under vacuum conditions. Ceramics International, 2016, 42, 743-751.	4.8	26
108	Selective Roasting of Nd–Fe‒B Permanent Magnets as a Pretreatment Step for Intensified Leaching with an Ionic Liquid. Journal of Sustainable Metallurgy, 2020, 6, 91-102.	2.3	26

#	Article	IF	Citations
109	The Importance of Slag Engineering in Freeze-Lining Applications. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2009, 40, 643-655.	2.1	25
110	Utilization of Stainless-steel Furnace Dust as an Admixture for Synthesis of Cement-based Electromagnetic Interference Shielding Composites. Scientific Reports, 2017, 7, 15368.	3.3	25
111	A study of slag-infiltrated magnesia-chromite refractories using hybrid microwave heating. Journal of the European Ceramic Society, 2002, 22, 903-916.	5.7	24
112	Water-cooled probe technique for the study of freeze lining formation. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2006, 37, 929-940.	2.1	24
113	Transforming Enhanced Landfill Mining Derived Gasification/Vitrification Glass into Low-Carbon Inorganic Polymer Binders and Building Products. Journal of Sustainable Metallurgy, 2017, 3, 405-415.	2.3	24
114	Determination of Steel Cleanliness in Ultra Low Carbon Steel by Pulse Discrimination Analysis-Optical Emission Spectroscopy Technique. ISIJ International, 2011, 51, 1778-1787.	1.4	23
115	Quantitative mineralogical analysis of hydraulic limes by X-ray diffraction. Cement and Concrete Research, 2007, 37, 1524-1530.	11.0	22
116	Influence of ferroalloy impurities and ferroalloy addition sequence on ultra low carbon (ULC) steel cleanliness after RH treatment. Ironmaking and Steelmaking, 2012, 39, 519-529.	2.1	22
117	<i>In Situ</i> Observation on Lime Dissolution in Molten Metallurgical Slags – Kinetic Aspects. Industrial & Engineering Chemistry Research, 2014, 53, 6325-6333.	3.7	22
118	Tribological behaviour and internal stress of diamond coating deposited with a stationary d.c. plasma jet. Surface and Coatings Technology, 1996, 80, 264-270.	4.8	21
119	Degradation mechanisms of magnesia-chromite refractories in vacumm-oxygen decarburisation ladles during production of stainless steel. Ironmaking and Steelmaking, 2000, 27, 228-237.	2.1	21
120	Microstructural Evolution and Crystallographic Texture Formation of Cold Rolled Austenitic Feâ€30Mnâ€3Alâ€3Si TWIP‧teel. Steel Research International, 2003, 74, 370-375.	1.8	21
121	Speciation of Cu in MSWI bottom ash and its relation to Cu leaching. Applied Geochemistry, 2008, 23, 3642-3650.	3.0	21
122	Fabrication of high quality Ge virtual substrates by selective epitaxial growth in shallow trench isolated Si (001) trenches. Thin Solid Films, 2010, 518, 2538-2541.	1.8	21
123	Alignment of weakly magnetic metals during solidification in a strong magnetic field. Journal of Alloys and Compounds, 2013, 551, 568-577.	5.5	21
124	Quantitative Study on Dissolution Behavior of Nd ₂ O ₃ in Fluoride Melts. Industrial & Study on Dissolution Behavior of Nd ₂ O ₃ in Fluoride Melts.	3.7	21
125	On the Mass Transport and the Crystal Growth in a Freeze Lining of an Industrial Nonferrous Slag. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2008, 39, 408-417.	2.1	20
126	Freeze-Lining Formation of a Synthetic Lead Slag: Part II. Thermal History. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2009, 40, 632-642.	2.1	20

#	Article	IF	Citations
127	Bounding box framework for efficient phase field simulation of grain growth in anisotropic systems. Computational Materials Science, 2011, 50, 2221-2231.	3.0	20
128	Analysis of the isothermal crystallization of CaSiO3 in a CaO–Al2O3–SiO2 melt through in situ observations. Journal of the European Ceramic Society, 2011, 31, 1873-1879.	5.7	20
129	Inclusion Formation and Interfacial Reactions between FeTi Alloys and Liquid Steel at an Early Stage. ISIJ International, 2013, 53, 629-638.	1.4	20
130	Interaction between Steel and Distinct Gunning Materials in the Tundish. ISIJ International, 2014, 54, 2551-2558.	1.4	20
131	Influence of FeO/SiO ₂ and CaO/SiO ₂ Ratios in Iron aturated ZnOâ€Rich Fayalite Slags on the Corrosion of MgO. Journal of the American Ceramic Society, 2016, 99, 3754-3760.	3.8	20
132	Investigation of High-Temperature Slag/Copper/Spinel Interactions. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016, 47, 3421-3434.	2.1	20
133	Solid-state amorphization in Al–Pt thin films. Journal of Materials Research, 1988, 3, 884-889.	2.6	19
134	Electrochemical deposition: a method for the production of artificially structured materials. Materials Science & Deposition: a method for the production of artificially structured materials. Microstructure and Processing, 1993, 168, 137-140.	5.6	19
135	Clogging in submerged entry nozzles. Steel Research = Archiv Für Das Eisenhüttenwesen, 2000, 71, 391-395.	0.3	19
136	Steel Reoxidation by Gunning Mass and Tundish Slag. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2015, 46, 1242-1251.	2.1	19
137	The influence of slag compositional changes on the chemical degradation of magnesia-chromite refractories exposed to PbO-based non-ferrous slag saturated in spinel. Journal of the European Ceramic Society, 2015, 35, 347-355.	5.7	19
138	Numerical Modeling of Liquid–Liquid Mass Transfer and the Influence of Mixing in Gas-Stirred Ladles. Jom, 2018, 70, 2109-2118.	1.9	19
139	The influence of air and temperature on the reaction mechanism and molecular structure of Fe-silicate inorganic polymers. Journal of Non-Crystalline Solids, 2019, 526, 119675.	3.1	19
140	Modifications of basic-oxygen-furnace slag microstructure and their effect on the rheology and the strength of alkali-activated binders. Cement and Concrete Composites, 2019, 97, 143-153.	10.7	19
141	Raman spectroscopy on defective wear debris generated by contact vibrations. Journal of Materials Science Letters, 1995, 14, 279-281.	0.5	18
142	Air-Cooling of Metallurgical Slags Containing Multivalent Oxides. Journal of the American Ceramic Society, 2008, 91, 3342-3348.	3.8	18
143	Freeze-Lining Formation of a Synthetic Lead Slag: Part I. Microstructure Formation. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2009, 40, 619-631.	2.1	18
144	Processing of non-ferromagnetic materials in strong static magnetic field. Current Opinion in Solid State and Materials Science, 2013, 17, 193-201.	11.5	18

#	Article	IF	CITATIONS
145	Wetting behaviour of Cu based alloys on spinel substrates in pyrometallurgical context. Materials Science and Technology, 2015, 31, 1925-1933.	1.6	18
146	Comparative Analysis of Processes for Recovery of Rare Earths from Bauxite Residue. Jom, 2016, 68, 2958-2962.	1.9	18
147	Modelling of gas injection into a viscous liquid through a top-submerged lance. Chemical Engineering Science, 2020, 212, 115359.	3.8	18
148	Interaction of Cu with CoSi2with and without TiNxbarrier layers. Applied Physics Letters, 1990, 57, 1307-1309.	3.3	17
149	EAF Stainless Steel Refining - Part II: Microstructural Slag Evolution and its Implications for Slag Foaming and Chromium Recovery. Steel Research International, 2007, 78, 125-135.	1.8	17
150	Desulphurisation and Inclusion Behaviour of Stainless Steel Refining by Using CaO–Al2O3 Based Slag at Low Sulphur Levels. ISIJ International, 2014, 54, 72-81.	1.4	17
151	Alkali Activation of AOD Stainless Steel Slag Under Steam Curing Conditions. Journal of the American Ceramic Society, 2015, 98, 3062-3074.	3.8	17
152	Effect of Al2O3 Addition on Mineralogical Modification and Crystallization Kinetics of a High Basicity BOF Steel Slag. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2019, 50, 271-281.	2.1	17
153	EAF Stainless Steel Refining - Part I: Observational Study on Chromium Recovery in an Eccentric Bottom Tapping Furnace and a Spout Tapping Furnace. Steel Research International, 2007, 78, 117-124.	1.8	16
154	NUMERICAL CALCULATIONS ON INCLUSION REMOVAL FROM LIQUID METALS UNDER STRONG MAGNETIC FIELDS. Progress in Electromagnetics Research, 2009, 98, 359-373.	4.4	16
155	Stabilisation and Microstructural Modification of Stainless Steel Converter Slag by Addition of an Alumina Rich By-Product. Waste and Biomass Valorization, 2014, 5, 343-353.	3.4	16
156	Non-Newtonian behavior of solid-bearing silicate melts: An experimental study. Journal of Non-Crystalline Solids, 2018, 493, 65-72.	3.1	16
157	Effect of Crystallization on the Abrupt Viscosity Increase during the Slag Cooling Process. ISIJ International, 2018, 58, 1972-1978.	1.4	16
158	Frictional Behaviour of Diamond-like carbon and diamond coatings in oscillating sliding. Surface and Coatings Technology, 1993, 62, 583-588.	4.8	15
159	Exergy-Based Efficiency Analysis of Pyrometallurgical Processes. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2010, 41, 1205-1219.	2.1	15
160	Stabilization of Free Lime in BOF Slag by Melting and Solidification in Air. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016, 47, 3237-3240.	2.1	15
161	Phase Relations of the CaO-SiO2-Nd2O3 System and the Implication for Rare Earths Recycling. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016, 47, 1736-1744.	2.1	15
162	Study of the Effect of Spinel Composition on Metallic Copper Losses in Slags. Journal of Sustainable Metallurgy, 2017, 3, 416-427.	2.3	15

#	Article	IF	CITATIONS
163	Densification mechanism of porous alumina plugs by molten steel with different oxygen levels. Journal of the European Ceramic Society, 2018, 38, 2662-2670.	5.7	15
164	On a new hydraulic binder from stainless steel converter slag. Advances in Cement Research, 2013, 25, 21-31.	1.6	14
165	Extraction of neodymium by direct reduction of NdOCl in molten calcium chloride. Electrochimica Acta, 2017, 257, 465-472.	5. 2	14
166	Viscosity of Heterogeneous Silicate Melts: Assessment of the Measured Data and Modeling. ISIJ International, 2017, 57, 1895-1901.	1.4	14
167	Fretting friction and wear of polycrystalline diamond coatings. Diamond and Related Materials, 1996, 5, 649-653.	3.9	13
168	Reoxidation during ladle treatment. Ironmaking and Steelmaking, 2003, 30, 101-105.	2.1	13
169	Three-dimensional computational-cell modeling of the micromechanics of the martensitic transformation in transformation-induced-plasticity-assisted multiphase steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 99-107.	2.2	13
170	Manganese and Chromium Distribution between CaO–SiO2–MgOsat.–CrO1.5–MnO Slags and Fe–Cr–Mn Stainless Steel. ISIJ International, 2008, 48, 1331-1338.	1.4	13
171	MAGNETIC INTERACTION BETWEEN TWO NON-MAGNETIC PARTICLES MIGRATING IN A CONDUCTIVE FLUID INDUCED BY A STRONG MAGNETIC FIELD-AN ANALYTICAL APPROACH. Progress in Electromagnetics Research, 2010, 103, 1-16.	4.4	13
172	Hydraulic Behavior of Mechanically and Chemically Activated Synthetic Merwinite. Journal of the American Ceramic Society, 2014, 97, 3973-3981.	3.8	13
173	Degradation mechanisms of alumina–silica runner refractories by carbon steel during ingot casting process. Ceramics International, 2016, 42, 10209-10214.	4.8	13
174	Sessile drop evaluation of high temperature copper/spinel and slag/spinel interactions. Transactions of Nonferrous Metals Society of China, 2016, 26, 2770-2783.	4.2	13
175	Interfacial Reactions between Oxygen Containing Fe and Al at the Onset of Liquid Fe Deoxidation by Al Addition. ISIJ International, 2010, 50, 1552-1559.	1.4	13
176	Kinetic description of the transition from a oneâ€phase to a twoâ€phase growth regime in Al/Pd lateral diffusion couples. Journal of Applied Physics, 1990, 68, 3259-3267.	2.5	12
177	Interfacial Reactions During Titanium Dissolution in Liquid Iron: A Combined Experimental and Modeling Approach. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2009, 40, 676-684.	2.1	12
178	Laboratory study on the formation of Al2O3 inclusions at the on-set of deoxidation and during reoxidation. Frontiers of Materials Science, 2011, 5, 69-76.	2.2	12
179	Strong magnetic field effects on solid–liquid and particle–particle interactions during the processing of a conducting liquid containing non-conducting particles. Journal of Colloid and Interface Science, 2012, 375, 203-212.	9.4	12
180	Phase evolution and nature of oxide dissolution in metallurgical slags. AICHE Journal, 2013, 59, 2907-2916.	3.6	12

#	Article	IF	CITATIONS
181	In Situ Observation of the Formation and Interaction Behavior of the Oxide/Oxysulfide Inclusions on a Liquid Iron Surface. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2014, 45, 903-913.	2.1	12
182	Effect of Interfacial Properties on the Characteristics and Clustering of Alumina Inclusions in Molten Iron. ISIJ International, 2015, 55, 1891-1900.	1.4	12
183	The effect of a temperature gradient on the phase formation inside a magnesia–chromite refractory in contact with a non-ferrous PbO–SiO2–MgO slag. Journal of the European Ceramic Society, 2015, 35, 2933-2942.	5.7	12
184	Comparative oxidation behavior of Nd-Fe-B magnets for potential recycling methods: Effect of hydrogenation pre-treatment and magnet composition. Journal of Alloys and Compounds, 2017, 728, 727-738.	5.5	12
185	Optimization of Mineralogy and Microstructure of Solidified Basic Oxygen Furnace Slag Through SiO2 Addition or Atmosphere Control During Hot-Stage Slag Treatment. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2019, 50, 210-218.	2.1	12
186	Evaluating the material resource efficiency of secondary aluminium production: A Monte Carlo-based decision-support tool. Journal of Cleaner Production, 2019, 215, 488-496.	9.3	12
187	Correlating the amorphous phase structure of vitrified bauxite residue (red mud) to the initial reactivity in binder systems. Cement and Concrete Composites, 2022, 127, 104410.	10.7	12
188	Thermal stability of coevaporated Alâ€Pt thin films on GaAs substrates. Applied Physics Letters, 1990, 57, 392-394.	3.3	11
189	R.f. plasma-assisted chemical vapour deposition of diamond-like carbon films on complex geometries. Diamond and Related Materials, 1993, 2, 272-277.	3.9	11
190	Phase field modeling of the crystallization of FeOx–SiO2 melts in contact with an oxygen-containing atmosphere. Chemical Geology, 2011, 290, 156-162.	3.3	11
191	Quantification of the Fe3+ concentration in lead silicate glasses using X-band CW-EPR. Journal of Non-Crystalline Solids, 2020, 536, 120002.	3.1	11
192	A Thermodynamic Model of the EAF Process for Stainless Steel. Steel Research International, 2006, 77, 317-323.	1.8	10
193	Experimental Determination of CaO–CrO–Cr ₂ O ₃ –MgO–SiO ₂ and Thermodynamic Modeling of the CrO–Cr ₂ O ₃ –MgO–SiO ₂ System. Journal of the American Ceramic Society, 2009, 92, 1831-1839.	3.8	10
194	Non-magnetic anisotropic-materials preparation by a strong magnetic field during the solidification of a hypereutectic Al-Cu alloy. Europhysics Letters, 2010, 89, 64002.	2.0	10
195	An optimized diffusion database for the disordered and ordered bcc phases in the binary Fe–Ti system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2011, 35, 518-522.	1.6	10
196	Phase-field analysis of a ternary two-phase diffusion couple with multiple analytical solutions. Acta Materialia, 2011, 59, 3946-3954.	7.9	10
197	Lead Recycling. , 2014, , 95-111.		10
198	Effect of surfactant Te on the behavior of alumina inclusions at advancing solid-liquid interfaces of liquid steel. Acta Materialia, 2016, 120, 443-452.	7.9	10

#	Article	IF	Citations
199	CSLM study on the interaction of Nd2O3 with CaCl2 and CaF2–LiF molten melts. Journal of Materials Science, 2017, 52, 1717-1726.	3.7	10
200	Investigation of Origin of Attached Cu-Ag Droplets to Solid Particles During High-Temperature Slag/Copper/Spinel Interactions. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2017, 48, 3058-3073.	2.1	10
201	An implicit conservative scheme for coupled heat and mass transfer problems with multiple moving interfaces. International Journal of Heat and Mass Transfer, 2011, 54, 1039-1045.	4.8	9
202	Characterization of landfilled stainless steel slags in view of metal recovery. Frontiers of Chemical Science and Engineering, 2017, 11, 353-362.	4.4	9
203	Dissolution Behavior and Phase Evolution During Aluminum Oxide Dissolution in BOF Slag. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2019, 50, 1782-1790.	2.1	9
204	Thermodynamic Analysis of Copper Smelting, Considering the Impact of Minor Elements Behavior on Slag Application Options and Cu Recovery. Journal of Sustainable Metallurgy, 2021, 7, 664-683.	2.3	9
205	Layered growth of the quasicrystalline decagonalAl3Pd phase in Al/Pd lateral diffusion couples. Physical Review Letters, 1990, 64, 2671-2674.	7.8	8
206	Simultaneous growth of a crystalline phase and a quasicrystalline phase in lateral Al–Pd diffusion couples. Philosophical Magazine Letters, 1990, 61, 21-27.	1.2	8
207	Effect of the strong magnetic field on the magnetic interaction between two non-magnetic particles migrating in a conductive fluid. Europhysics Letters, 2009, 85, 14002.	2.0	8
208	STRONG MAGNETIC FIELD INDUCED SEGREGATION AND SELF-ASSEMBLY OF MICROMETER SIZED NON-MAGNETIC PARTICLES. Progress in Electromagnetics Research B, 2010, 23, 199-214.	1.0	8
209	Fe3Nb3N precipitates of the Fe3W3C type in Nb stabilized ferritic stainless steel. Journal of Alloys and Compounds, 2011, 509, 9583-9588.	5.5	8
210	Strong magnetic field-induced segregation and alignment of nonmagnetic particles. Journal of Applied Physics, $2011,109,1$	2.5	8
211	Investigating the binding potential of continuous casting stainless steel slag by alkali activation. Advances in Cement Research, 2014, 26, 256-270.	1.6	8
212	Viscosity of Heterogeneous Silicate Melts: A Non-Newtonian Model. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2017, 48, 3027-3037.	2.1	8
213	Aluminum Deoxidation Equilibrium of Fe-Ni Alloy at 1773ÂK and 1873ÂK. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2018, 49, 2389-2399.	2.1	8
214	Experimental Study on the Viscosity of Stainless Steelmaking Slags. ISIJ International, 2019, 59, 404-411.	1.4	8
215	Hydrogen reduction of bauxite residue and selective metal recovery. Materials Today: Proceedings, 2022, 57, 705-710.	1.8	8
216	Experimental Evaluation of the Dissolution Rates of Ti and FeTi70 in Liquid Fe. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2013, 44, 561-570.	2.1	7

#	Article	IF	Citations
217	A Quantitative Model for Slag Yard Cooling. ISIJ International, 2013, 53, 1106-1111.	1.4	7
218	Sulphide Capacity and Mineralogy of BaO and B2O3 Modified CaO–Al2O3 Top Slag. ISIJ International, 2014, 54, 1570-1577.	1.4	7
219	In Situ Electrical Conductivity Measurement by Using Confocal Scanning Laser Microscopy. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2021, 52, 2563-2572.	2.1	7
220	Characterization of antimony-containing metallurgical residues for antimony recovery. Journal of Cleaner Production, 2021, 327, 129491.	9.3	7
221	Selective removal of arsenic from crude antimony trioxide by leaching with nitric acid. Separation and Purification Technology, 2022, 281, 119976.	7.9	7
222	Crystallization of solid-state amorphized Al-Pt thin films. Thin Solid Films, 1994, 248, 257-262.	1.8	6
223	Measurement of ladle slag oxygen activity using electrochemical sensor. Ironmaking and Steelmaking, 2003, 30, 217-222.	2.1	6
224	A Phase Field Model for grain Growth and Thermal Grooving in Thin Films with Orientation Dependent Surface Energy. Solid State Phenomena, 2007, 129, 89-94.	0.3	6
225	Determination of CaO–SiO2–MgO–Al2O3–CrOxLiquidus. Journal of the American Ceramic Society, 2008, 91, 1237-1243.	3.8	6
226	A XPS Study of Atmospheric Plasma Sprayed TiB ₂ Coatings. Key Engineering Materials, 0, 368-372, 1347-1350.	0.4	6
227	Theoretical evaluation of influence of convective heat transfer and original sample size on shell melting time during Ti dissolution in secondary steelmaking. Ironmaking and Steelmaking, 2010, 37, 516-521.	2.1	6
228	Morphology of Al ₂ O ₃ inclusions formed at Fe/Fe–Al interface. Ironmaking and Steelmaking, 2010, 37, 496-501.	2.1	6
229	Compatibility Issues of Yttriaâ€Stabilized Zirconia Solid Oxide Membrane in the Direct Electroâ€Deoxidation of Metal Oxides. Journal of the American Ceramic Society, 2015, 98, 972-981.	3.8	6
230	Thermodynamic assessment of the Nd2O3-CaO-SiO2 ternary system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2016, 55, 157-164.	1.6	6
231	Investigation of Reactive Origin for Attachment of Cu Droplets to Solid Particles. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2017, 48, 2459-2468.	2.1	6
232	Influence of Al2O3 Level in CaO-SiO2-MgO-Al2O3 Refining Slags on Slag/Magnesia-Doloma Refractory Interactions. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2019, 50, 1822-1829.	2.1	6
233	The Impact of Sample Homogeneity, Crucible Material, and Oxygen Partial Pressure on the Crystallization of Fe-Rich Oxidic Slag in CLSM Experiments. Journal of Sustainable Metallurgy, 2020, 6, 216-226.	2.3	6
234	Mathematical Methodology and Metallurgical Application of Turbulence Modelling: A Review. Metals, 2021, 11, 1297.	2.3	6

#	Article	IF	CITATIONS
235	Influence of Cr and Ni content in stainless steel on the degradation mechanisms in PbO–CaO–SiO2 slag. Corrosion Science, 2012, 57, 1-10.	6.6	5
236	Interfacial Reactions at Early Stages of Mn Addition to Liquid Fe. ISIJ International, 2014, 54, 1209-1217.	1.4	5
237	Interfacial Reaction and Inclusion Formation at Early Stages of FeMnSi Addition to Liquid Fe. ISIJ International, 2015, 55, 1661-1668.	1.4	5
238	Gas–Solid Reaction Kinetics of ZnFe ₂ O ₄ Formation from 907 to 1100 °C. Journal of Physical Chemistry A, 2015, 119, 4718-4722.	2.5	5
239	Effect of Al2O3 and SiO2 Addition on the Viscosity of BOF Slag. , 2016, , 439-446.		5
240	Spinel saturation of a PbO based slag as a method to mitigate the chemical degradation of magnesia-chromite bricks. Journal of the European Ceramic Society, 2016, 36, 4291-4299.	5.7	5
241	Crystal structure of apatite type Ca _{2.49} Nd _{7.51} (SiO ₄) ₆ O _{1.75} . Acta Crystallographica Section E: Crystallographic Communications, 2016, 72, 209-211.	0.5	5
242	Experimental Investigation on Metallic Droplet Behavior in Molten BOF Slag. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2019, 50, 2354-2361.	2.1	5
243	Inertial Force on Floating Inclusion Particles at the Interface of Liquid Steel and Inert Gas. ISIJ International, 2021, 61, 2400-2409.	1.4	5
244	Investigation of Bath/Freeze Lining Interface Temperature Based on the Rheology of the Slag. Jom, 2022, 74, 274-282.	1.9	5
245	Zn Fuming Kinetics in a Bubble-Stirred Molten Slag Bath. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2022, 53, 1308-1319.	2.1	5
246	Capillary Interaction Between Micron-Sized Ce2O3 Inclusions at the Ar Gas/Liquid Steel Interface. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2022, 53, 1775-1791.	2.1	5
247	Role of Interfacial Properties in the Evolution of Non-metallic Inclusions in Liquid Steel. ISIJ International, 2022, 62, 1573-1585.	1.4	5
248	Steel Cleanliness during Secondary Metallurgy of High-grade Quality Electric Steels. Steel Research International, 2005, 76, 475-480.	1.8	4
249	Lattice Boltzmann model for diffusion-controlled indirect dissolution. Computers and Mathematics With Applications, 2008, 55, 1377-1391.	2.7	4
250	Interfacial Reactions during the Dissolution of Titanium in Liquid Iron. Defect and Diffusion Forum, 2008, 273-276, 467-473.	0.4	4
251	Precipitation in Fe–15Cr–1Nb alloys after oxygenation. Acta Materialia, 2010, 58, 3832-3841.	7.9	4
252	<i>In-situ</i> Investigation on the Reduction of Magnesiochromite with Ferrosilicon between 1373–1573 K. ISIJ International, 2015, 55, 2289-2296.	1.4	4

#	Article	IF	Citations
253	Numerical simulation on magnetic assembled structures of iron-based metallic particles within MMCs by a homogeneous strong magnetic field. Journal Physics D: Applied Physics, 2015, 48, 365501.	2.8	4
254	Effect of Impurity Te on the Morphology of Alumina Particles in Molten Iron. ISIJ International, 2016, 56, 1529-1536.	1.4	4
255	Study of Phase Relations of ZnO-Containing Fayalite Slag Under Fe Saturation. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016, 47, 2820-2829.	2.1	4
256	Rheological Transitions of the Solid-Bearing Slag During Cooling Process. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2018, 49, 2649-2657.	2.1	4
257	Simulation of particle migration during viscosity measurement of solid-bearing slag using a spindle rotational type viscometer. Chemical Engineering Science, 2019, 207, 172-180.	3.8	4
258	Experimental and Mathematical Simulation Study on the Granulation of a Modified Basic Oxygen Furnace Steel Slag. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2019, 50, 1260-1268.	2.1	4
259	Determination of the Fe3+/\$\${varvec{Sigma}}\$\$Fe Ratio in Synthetic Lead Silicate Slags Using X-Band CW-EPR. Journal of Sustainable Metallurgy, 2021, 7, 519-536.	2.3	4
260	Investigations on Crystallization Processes of Three Oxidic Gasifier Slag Systems. Journal of Energy Resources Technology, Transactions of the ASME, 2020, 142, .	2.3	4
261	Understanding the relationship between slag crystallization behaviour and electrical conductivity under isothermal conditions for online slag solidification monitoring in slag recycling. Resources, Conservation and Recycling, 2022, 182, 106319.	10.8	4
262	Micro-Raman spectroscopy for the characterization of wear induced surface modifications on hard coatings. Tribology Series, 1993, 25, 623-630.	0.1	3
263	Electronic spectroscopic study of the tribochemical modifications of TiN–corundum pairs after fretting wear. Wear, 1999, 231, 220-227.	3.1	3
264	Micromechanical Modelling of TRIP Steels. Steel Research International, 2003, 74, 365-369.	1.8	3
265	Chlorine Addition to Existing Zinc Fuming Processes: A Thermodynamic Study. Journal of Sustainable Metallurgy, 2019, 5, 538-550.	2.3	3
266	Recovery of Rare Earths from Bauxite Residue (Red Mud). World Scientific Series in Current Energy Issues, 2019, , 343-356.	0.1	3
267	An integrated process for iron recovery and binder production from bauxite residue (red mud). Materials Letters, 2020, 264, 127273.	2.6	3
268	Experimental investigation of the phase relations in the SiO2-Dy2O3-CaO ternary system. Ceramics International, 2020, 46, 23534-23543.	4.8	3
269	Laser-induced breakdown spectroscopy analysis of the free surface of liquid secondary copper slag. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2020, 170, 105921.	2.9	3
270	Kinetic Aspects of Aluminum Oxide Dissolution in Molten BOF Slag. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2021, 52, 1614-1625.	2.1	3

#	Article	IF	CITATIONS
271	On the CO Desorption and Absorption in Liquid Low-carbon Steel. ISIJ International, 2021, 61, 1357-1362.	1.4	3
272	CO Desorption and Absorption in Molten Steel: A Review. ISIJ International, 2021, 61, 1337-1347.	1.4	3
273	Effect of Basicity on Basic Oxygen Furnace (BOF) Slag Solidification Microstructure and Mineralogy. , 2016, , 1185-1190.		3
274	VALORISATION OF STAINLESS STEEL SLAGS AS A HYDRAULIC BINDER. Acta Metallurgica Slovaca, 2013, 19, 176-183.	0.7	3
275	Mechanisms of Calcium Oxide Dissolution in CaO-Al2O3-SiO2-Based Slags. , 2013, , 101-107.		3
276	H2-Based Processes for Fe and Al Recovery from Bauxite Residue (Red Mud): Comparing the Options. Materials Proceedings, 2021, 5, .	0.2	3
277	XPS study of Au+ ion irradiated a-As2S3 layers. Vacuum, 1998, 51, 273-275.	3.5	2
278	Alternative Catalysts For Si-Technology Compatible Growth Of Si Nanowires. Materials Research Society Symposia Proceedings, 2007, 1017, 14.	0.1	2
279	Degradation behavior of stainless steel in PbO–CaO–SiO2 slag in the presence of sulphur. Corrosion Science, 2012, 54, 291-298.	6.6	2
280	Influence of As2O3 added to PbO–CaO–SiO2 slag on the degradation mechanisms of stainless steel. Corrosion Science, 2012, 65, 259-267.	6.6	2
281	Zn Loss into ZnFe2O4 in an Open Type Electric Arc Furnace: An In-Process Separation Performance Model. Journal of Sustainable Metallurgy, 2015, 1, 297-303.	2.3	2
282	Observing Nitrogen Bubbles in Liquid Zinc in a Vertical Hele-Shaw Cell. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2015, 46, 621-634.	2.1	2
283	Metal Recovery from BOF Steel Slag by Carbo-thermic Reduction. BHM-Zeitschrift Fuer Rohstoffe Geotechnik Metallurgie Werkstoffe Maschinen-Und Anlagentechnik, 2017, 162, 258-262.	1.0	2
284	Mixing Characteristics of Additives in Viscous Liquid BOF Slag. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2020, 51, 2147-2158.	2.1	2
285	Rheological Behavior of Fayalite Based Secondary Copper Smelter Slag in Iron Saturation. , 2016, , 1301-1308.		2
286	Effect of Reduction Parameters on the Size and Morphology of the Metallic Particles in Carbothermally Reduced Stainless Steel Dust. Journal of Sustainable Metallurgy, $0, 1$.	2.3	2
287	Growth mechanism of Al-Ti-O inclusions in steelmaking process. Metallurgical Research and Technology, 2022, 119, 209.	0.7	2
288	A Model for the Prediction of Reaction Diffusion Paths in Multicomponent Systems with Limited Solubility. Materials Transactions, 2001, 42, 2630-2636.	1.2	1

#	Article	IF	CITATIONS
289	Threeâ€dimensional phase field simulations of grain growth in materials containing finely dispersed secondâ€phase particles. Proceedings in Applied Mathematics and Mechanics, 2007, 7, 2020001-2020002.	0.2	1
290	Synthesis of Inorganic Polymers Using a CaO-Al ₂ O ₃ -FeO-SiO ₂ Slag. Advances in Science and Technology, 2014, 92, 32-37.	0.2	1
291	Assessment of Gas-Slag-Metal Interaction During a Converter Steelmaking Process. Minerals, Metals and Materials Series, 2018, , 353-364.	0.4	1
292	A First-Principles Tool to Discover New Pyrometallurgical Refining Options. Jom, 2021, 73, 2900-2910.	1.9	1
293	Integration of Traditional Methods for Elemental Recovery in a Zeroâ€waste Recycling Flow Sheet. RSC Green Chemistry, 2013, , 29-58.	0.1	1
294	Capillary Interaction Between Arbitrarily-Shaped Inclusions at the Gas/Steel Interface. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 0, , 1.	2.1	1
295	The effect of Cu on morphological instabilities in thin Al/Pt films. Journal of Materials Research, 1992, 7, 1093-1095.	2.6	0
296	Latticeâ€Boltzmann model for dissolution phenomena. Proceedings in Applied Mathematics and Mechanics, 2007, 7, 1140701-1140702.	0.2	0
297	Indium-assisted Growth of Si Nanowires: Perspectives on Controlled Growth for CMOS Applications. Materials Research Society Symposia Proceedings, 2008, 1080, 1.	0.1	O
298	Clean metal technology. Ironmaking and Steelmaking, 2010, 37, 473-474.	2.1	0
299	Sustainable high temperature metallurgical processes and engineering materials recycling techniques. Ironmaking and Steelmaking, 2012, 39, 491-492.	2.1	0
300	Quantification of uncertainty in thermodynamic predictions for vacuum refining of liquid Ag–Pb and Au–Pb binary alloys. Vacuum, 2018, 155, 398-402.	3.5	0
301	Viscosity of Partially Crystallized BOF Slag. , 2016, , 263-269.		0
302	Freeze-Lining Formation from Fayalite-Based Slags. , 2016, , 245-251.		0
303	The Chemical Stability and Electrochemical Behavior of Dy2O3 in Molten CaCl2. Minerals, Metals and Materials Series, 2017, , 23-30.	0.4	0
304	In-situ Observation of the Precipitation Behavior of a Dy2O3 Containing Slag System. Minerals, Metals and Materials Series, 2018, , 323-328.	0.4	0