Alexander A Korlyukov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5077118/publications.pdf

Version: 2024-02-01

344 papers 5,255 citations

35 h-index 48 g-index

366 all docs

366 docs citations

366 times ranked 3817 citing authors

#	Article	IF	CITATIONS
1	Estimation of Dissociation Energy in Donorâ^'Acceptor Complex AuCl·PPh ₃ via Topological Analysis of the Experimental Electron Density Distribution Function. Journal of Physical Chemistry A, 2008, 112, 11519-11522.	2.5	97
2	The influence of ionic liquid's nature on free radical polymerization of vinyl monomers and ionic conductivity of the obtained polymeric materials. Polymers for Advanced Technologies, 2007, 18, 50-63.	3.2	92
3	Estimation of the Barrier to Rotation of Benzene in the (Î-6-C6H6)2Cr Crystal via Topological Analysis of the Electron Density Distribution Function. Journal of Physical Chemistry A, 2006, 110, 6545-6551.	2.5	91
4	IR and X-ray Study of Polymorphism in 1-Alkyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)imides. Journal of Physical Chemistry B, 2009, 113, 9538-9546.	2.6	82
5	Experimental and Theoretical Study of the Transannular Intramolecular Interaction and Cage Effect in the Atrane Framework of Boratrane and 1-Methylsilatrane. Inorganic Chemistry, 2002, 41, 5043-5051.	4.0	81
6	Solvent-controlled synthesis of tetranuclear cage-like copper(<scp>ii</scp>) silsesquioxanes. Remarkable features of the cage structures and their high catalytic activity in oxidation with peroxides. Dalton Transactions, 2014, 43, 872-882.	3.3	69
7	A novel photoredox-active group for the generation of fluorinated radicals from difluorostyrenes. Chemical Science, 2020, $11,737-741$.	7.4	67
8	Cageâ€like Copper(II) Silsesquioxanes: Transmetalation Reactions and Structural, Quantum Chemical, and Catalytic Studies. Chemistry - A European Journal, 2015, 21, 8758-8770.	3.3	65
9	Carboranes: chemical concepts derived from the AIM study of the experimental and theoretical electron density distribution functions. Faraday Discussions, 2007, 135, 203-215.	3.2	61
10	Palladium-containing hypercrosslinked polystyrene as an easy to prepare catalyst for Suzuki reaction in water and organic solvents. Reactive and Functional Polymers, 2009, 69, 755-758.	4.1	57
11	Aerobic Co or Cu/NHPI-catalyzed oxidation of hydride siloxanes: synthesis of siloxanols. Green Chemistry, 2018, 20, 1467-1471.	9.0	56
12	Unusual Tri-, Hexa-, and Nonanuclear Cu(II) Cage Methylsilsesquioxanes: Synthesis, Structures, and Catalytic Activity in Oxidations with Peroxides. Inorganic Chemistry, 2017, 56, 4093-4103.	4.0	54
13	Binuclear Cageâ€Like Copper(II) Silsesquioxane ("Cooling Towerâ€) – Its High Catalytic Activity in the Oxidation of Benzene and Alcohols. European Journal of Inorganic Chemistry, 2013, 2013, 5240-5246.	2.0	53
14	A heterometallic (Fe ₆ Na ₈) cage-like silsesquioxane: synthesis, structure, spin glass behavior and high catalytic activity. RSC Advances, 2016, 6, 48165-48180.	3.6	53
15	Two Modifications Formed by "Sulflower―C ₁₆ S ₈ Molecules, Their Study by XRD and Optical Spectroscopy (Raman, IR, UVâ^'Vis) Methods. Journal of Physical Chemistry A, 2008, 112, 10949-10961.	2.5	51
16	Alkali-Metal-Directed Hydrolytic Condensation of Trifunctional Phenylalkoxysilanes. European Journal of Inorganic Chemistry, 2004, 2004, 1253-1261.	2.0	49
17	Fluorocyanation of Enamines. Journal of Organic Chemistry, 2010, 75, 5367-5370.	3.2	47
18	Geminal Silicon/Zinc Reagent as an Equivalent of Difluoromethylene Bis-carbanion. Organic Letters, 2014, 16, 1438-1441.	4.6	47

#	Article	IF	CITATIONS
19	The role of intermolecular H···H and C···H interactions in the ordering of [2.2]paracyclophane at 100 K: estimation of the sublimation energy from the experimental electron density function. Mendeleev Communications, 2005, 15, 90-92.	1.6	45
20	Unusual penta- and hexanuclear Ni(<scp>ii</scp>)-based silsesquioxane polynuclear complexes. Dalton Transactions, 2016, 45, 7320-7327.	3.3	44
21	Stereoelectronic Control in the Ozoneâ€Free Synthesis of Ozonides. Angewandte Chemie - International Edition, 2017, 56, 4955-4959.	13.8	44
22	Ozone-Free Synthesis of Ozonides: Assembling Bicyclic Structures from 1,5-Diketones and Hydrogen Peroxide. Journal of Organic Chemistry, 2018, 83, 4402-4426.	3.2	44
23	Theoretical QTAIM, ELI-D, and Hirshfeld Surface Analysis of the Cu–(H)B Interaction in [Cu ₂ (<i>bipy</i>) ₂ B ₁₀ H ₁₀]. Journal of Physical Chemistry A, 2013, 117, 13138-13150.	2.5	43
24	Fluorenyl-substituted silole molecules: geometric, electronic, optical, and device properties. Journal of Materials Chemistry, 2008, 18, 3157.	6.7	41
25	Trifluoromethylation of N-Benzoylhydrazones. Journal of Organic Chemistry, 2008, 73, 5643-5646.	3.2	40
26	High-Cluster (Cu ₉) Cage Silsesquioxanes: Synthesis, Structure, and Catalytic Activity. Inorganic Chemistry, 2018, 57, 11524-11529.	4.0	40
27	Synthesis and Temperature-Induced Structural Phase and Spin Transitions in Hexadecylboron-Capped Cobalt(II) Hexachloroclathrochelate and Its Diamagnetic Iron(II)-Encapsulating Analogue. Inorganic Chemistry, 2015, 54, 5827-5838.	4.0	39
28	First cage-like pentanuclear Co(<scp>ii</scp>)-silsesquioxane. Dalton Transactions, 2016, 45, 13663-13666.	3.3	39
29	Radical Silyldifluoromethylation of Electron-Deficient Alkenes. Organic Letters, 2017, 19, 3215-3218.	4.6	39
30	Nature of weak inter- and intramolecular contacts in crystals 2. Character of electron delocalization and the nature of $Xa\in Hamiltonian $	1.5	38
31	Pentacoordinate silicon complexes with dynamic motion resembling a pendulum on the SN2 reaction pathway. Dalton Transactions, 2013, 42, 10971.	3.3	38
32	Heterometallic Na ₆ Co ₃ Phenylsilsesquioxane Exhibiting Slow Dynamic Behavior in its Magnetization. Chemistry - A European Journal, 2015, 21, 18563-18565.	3.3	38
33	Coordination compounds of tetravalent silicon, germanium and tin: the structure, chemical bonding and intermolecular interactions in them. Russian Chemical Reviews, 2015, 84, 422-440.	6.5	38
34	High Catalytic Activity of Heterometallic (Fe6Na7 and Fe6Na6) Cage Silsesquioxanes in Oxidations with Peroxides. Catalysts, 2017, 7, 101.	3.5	37
35	Synthesis and X-ray Crystal Structure Determination of New Zwitterionic Complexes of Titanocene. Organometallics, 2001, 20, 4072-4079.	2.3	36
36	Cageâ€ike Fe,Naâ€Germsesquioxanes: Structure, Magnetism, and Catalytic Activity. Angewandte Chemie - International Edition, 2016, 55, 15360-15363.	13.8	36

#	Article	IF	CITATIONS
37	Family of Polynuclear Nickel Cagelike Phenylsilsesquioxanes; Features of Periodic Networks and Magnetic Properties. Inorganic Chemistry, 2017, 56, 12751-12763.	4.0	36
38	Si ₁₀ Cu ₆ N ₄ Cage Hexacoppersilsesquioxanes Containing N Ligands: Synthesis, Structure, and High Catalytic Activity in Peroxide Oxidations. Inorganic Chemistry, 2017, 56, 15026-15040.	4.0	36
39	Trapping of Difluorocarbene by Frustrated Lewis Pairs. Angewandte Chemie - International Edition, 2020, 59, 12428-12431.	13.8	36
40	Novel Highly EfficientP-Chiral Ferrocenylimino Diamidophosphite Ligands for Pd-Catalysed Asymmetric Allylation. European Journal of Organic Chemistry, 2005, 2005, 2097-2105.	2.4	35
41	Stabilization of 1T-MoS2 Sheets by Imidazolium Molecules in Self-Assembling Hetero-layered Nanocrystals. Langmuir, 2015, 31, 8953-8960.	3.5	34
42	Silicon and Germanium-Based Sesquioxanes as Versatile Building Blocks for Cage Metallacomplexes. A Review. Journal of Cluster Science, 2019, 30, 1283-1316.	3.3	34
43	The first carborane triflates: synthesis and reactivity of 1-trifluoromethanesulfonylmethyl- and 1,2-bis(trifluoromethanesulfonylmethyl)-o-carborane. Dalton Transactions, 2005, , 903.	3.3	33
44	lonic Complexes of Tetra―and Nonanuclear Cage Copper(II) Phenylsilsesquioxanes: Synthesis and High Activity in Oxidative Catalysis. ChemCatChem, 2017, 9, 4437-4447.	3.7	33
45	Novel Cage-Like Hexanuclear Nickel(II) Silsesquioxane. Synthesis, Structure, and Catalytic Activity in Oxidations with Peroxides. Molecules, 2016, 21, 665.	3.8	32
46	Tuning linkage isomerism and magnetic properties of bi- and tri-metallic cage silsesquioxanes by cation and solvent effects. Dalton Transactions, 2017, 46, 12935-12949.	3.3	32
47	Aerobic Co-/ <i>N</i> -Hydroxysuccinimide-Catalyzed Oxidation of <i>p-</i> -Carboxyphenylsiloxanes: Synthesis of Functionalized Siloxanes as Promising Building Blocks for Siloxane-Based Materials. Journal of the American Chemical Society, 2019, 141, 2143-2151.	13.7	32
48	Cyclotetrasiloxanetetrols with Methyl Groups at Silicon: Isomers <i>all-cis</i> - and <i>cis-trans-cis-</i> [MeSi(O)OH] ₄ . Inorganic Chemistry, 2010, 49, 572-577.	4.0	31
49	Novel Formal [3+3] Cycloaddition of Silyl Nitronates with Activated CycloÂpropanes and Its Application in the Synthesis of Pyrroline-N-oxides. Synlett, 2014, 25, 2275-2280.	1.8	31
50	Trifluoromethylation of Salicyl Aldiminesâ€. Journal of Organic Chemistry, 2007, 72, 8604-8607.	3.2	30
51	Black hybrid iodobismuthate containing linear anionic chains. New Journal of Chemistry, 2018, 42, 6354-6363.	2.8	30
52	P*,N-Bidentate Amino Phosphoramidites: New Highly Effective Ligands for Pd-Catalysed Asymmetric Allylic Substitution. European Journal of Inorganic Chemistry, 2004, 2004, 629-634.	2.0	29
53	Reactions of CF3-substituted boranes with α-diazocarbonyl compounds. Tetrahedron Letters, 2011, 52, 5259-5263.	1.4	29
54	Nature Chooses Rings: Synthesis of Silicon-Containing Macrocyclic Peroxides. Organometallics, 2014, 33, 2230-2246.	2.3	29

#	Article	IF	CITATIONS
55	Synthesis of <i>gem</i> -Difluorinated Nitroso Compounds. Journal of Organic Chemistry, 2014, 79, 11819-11823.	3.2	29
56	Experimental Charge Density Evidence for Pnicogen Bonding in a Crystal of Ammonium Chloride. ChemPhysChem, 2015, 16, 676-681.	2.1	29
57	Synthesis of Pentafluorophenylmethylamines via Silicon Mannich Reaction. Organic Letters, 2005, 7, 2913-2915.	4.6	28
58	(Amidomethyl)dimethylsilanol hydrohalides: Synthesis, NMR and IR studies. Characteristic features of the electronic structure from high-resolution X-ray study and quantum chemical calculation. Journal of Organometallic Chemistry, 2006, 691, 3962-3975.	1.8	28
59	Rietveld refinement and structure verification using `Morse' restraints. Journal of Applied Crystallography, 2012, 45, 1187-1197.	4.5	28
60	Synthesis, Structures, and Stereodynamic Behavior of Novel Pentacoordinate Fluorosilanes: Fluorosilyl Derivatives of Proline. Organometallics, 2012, 31, 4988-4997.	2.3	28
61	Coordination chemistry of mercury-containing anticrowns. Synthesis and structures of the complexes of cyclic trimeric perfluoro-o-phenylenemercury with ethanol, THF and bis-2,2 $\hat{\epsilon}$ -tetrahydrofuryl peroxide. Journal of Organometallic Chemistry, 2009, 694, 2604-2610.	1.8	27
62	Secondary interactions in decachloro-closo-decaborates R2[B10Cl10] (R = $Et3NH+$, $Ph4P+$, and) Tj $ETQq000g$	BT /Qverlo 2.4	ck 10 Tf 50 4
63	The nature of the intramolecular transannular Si···N interaction in crystalline 1-methylsilatrane, as found from X-ray diffraction data. Mendeleev Communications, 2000, 10, 88-90.	1.6	26
64	Si-Fluoro substituted quasisilatranes (Nâ†'Si) FYSi(OCH2CH2)2NR. Journal of Organometallic Chemistry, 2009, 694, 607-615.	1.8	26
65	Four independent structures of a pentacoordinate silicon species at different points on the Berry pseudorotation pathway. Chemical Communications, 2010, 46, 3274.	4.1	26
66	Structural studies of crystals of organic and organoelement compounds using modern quantum chemical calculations within the framework of the density functional theory. Russian Chemical Reviews, 2012, 81, 105-129.	6.5	26
67	Synthesis, structure and enantiomeric resolution of ferrocenylalkyl mercaptoazoles. Antitumor activity inÂvivo. Journal of Organometallic Chemistry, 2015, 783, 83-91.	1.8	26
68	Heptanuclear Cage Cu ^{II} â€6ilsesquioxanes: Synthesis, Structure and Catalytic Activity. European Journal of Inorganic Chemistry, 2018, 2018, 2505-2511.	2.0	26
69	Cu(II)-Silsesquioxanes as Secondary Building Units for Construction of Coordination Polymers: A Case Study of Cesium-Containing Compounds. Crystal Growth and Design, 2016, 16, 1968-1977.	3.0	24
70	Photoredox generation of the trifluoromethyl radical from borate complexes <i>via</i> single electron reduction. Chemical Communications, 2018, 54, 2236-2239.	4.1	24
71	Synthesis, structure and dynamic stereochemistry of (O→Si)-chelate N-(trifluorosilylmethyl)-[N-(S)-(1-phenylethyl)]acetamide and 1-(trifluorosilylmethyl)-2-oxoperhydroazepine: Retention of the O→Si coordination in the adduct with KF and 18-crown-6, Journal of Organometallic Chemistry, 2008, 693, 1309-1320.	1.8	23
72	An unexpected cluster opening upon the formation of electronically unsaturated Î-3-(cyclooctenyl)metallacarboranes of rhodium(III) and iridium(III) with sterically reduced [(PhCH2)2C2B9H9]2â ⁻² ligand. Journal of Organometallic Chemistry, 2009, 694, 1727-1735.	1.8	23

#	Article	IF	CITATIONS
73	Selective Oxidative Coupling of 3 <i>H</i> à€Pyrazolâ€3â€ones, Isoxazolâ€5(2 <i>H</i>)â€ones, Pyrazolidineâ€3,5â€diones, and Barbituric Acids with Malonyl Peroxides: An Effective Câ€O Functionalization. ChemistrySelect, 2017, 2, 3334-3341.	1.5	23
74	Family of penta- and hexanuclear metallasilsesquioxanes: Synthesis, structure and catalytic properties in oxidations. Journal of Organometallic Chemistry, 2018, 867, 133-141.	1.8	23
75	Local structure of the Ag(100) surface reacting with molecular iodine: Experimental and theoretical study. Physical Review B, 2009, 80, .	3.2	22
76	Synthesis and Hydrolysis–Condensation Study of Water-Soluble Self-Assembled Pentacoordinate Polysilylamides. Organometallics, 2013, 32, 1721-1731.	2.3	22
77	5-Amino-3,4-dinitropyrazole as a Promising Energetic Material. Propellants, Explosives, Pyrotechnics, 2016, 41, 999-1005.	1.6	22
78	Synthesis of unstrained Criegee intermediates: inverse α-effect and other protective stereoelectronic forces can stop Baeyer–Villiger rearrangement of γ-hydroperoxy-γ-peroxylactones. Chemical Science, 2020, 11, 5313-5322.	7.4	22
79	Coordination Affinity of Cu(II)-Based Silsesquioxanes toward N,N-Ligands and Associated Skeletal Rearrangements: Cage and Ionic Products Exhibiting a High Catalytic Activity in Oxidation Reactions. Inorganic Chemistry, 2020, 59, 4536-4545.	4.0	22
80	Tridecanuclear Cu ^{II} ₁₁ Na ₂ Cagelike Silsesquioxanes. Crystal Growth and Design, 2018, 18, 5377-5384.	3.0	21
81	Hexacoppergermsesquioxanes as complexes with N-ligands: Synthesis, structure and catalytic properties. Journal of Organometallic Chemistry, 2019, 884, 17-28.	1.8	21
82	Probing Weak Intermolecular Interactions by Using the Invariom Approach: A Comparative Study of <i>>s</i> ‶etrazine. Chemistry - A European Journal, 2014, 20, 6978-6984.	3.3	20
83	Diastereoselective solid-state crossed photocycloaddition of olefins in a 3D Zn(<scp>ii</scp>) coordination polymer. Chemical Communications, 2018, 54, 13861-13864.	4.1	20
84	How to Build Rigid Oxygen-Rich Tricyclic Heterocycles from Triketones and Hydrogen Peroxide: Control of Dynamic Covalent Chemistry with Inverse \hat{l}_{\pm} -Effect. Journal of the American Chemical Society, 2020, 142, 14588-14607.	13.7	20
85	Experimental and theoretical study of vibrational spectra and structure of dihalogermylene and dihalostannylene complexes with 1,4-dioxane and triphenylphosphine. Journal of Molecular Structure, 2005, 750, 116-122.	3.6	19
86	Comparative studies of the geometric and electronic properties of 1,1-disubstituted-2,3,4,5-tetraphenylsiloles and 1,1,2,2-tetramethyl-3,4,5,6-tetraphenyl-1,2-disila-3,5-cyclohexadiene. Journal of Materials Chemistry, 2006, 16, 3814-3822.	6.7	19
87	16. 3814-3822. Synthesis of 16-Electron (i-3-Cyclooctenyl)metallacarboranes of Rhodium(III) and Iridium(III) with the New Sterically Demanding [(4â€~-MeC6H4)2C2B9H9]2- Carborane Ligand. Molecular Structures of [3-{(1â°'3-i-3)-C8H13}-1,2-(4â€~-MeC6H4)2-3,1,2-pseudocloso-MC2B9H9] (M = Rh, Ir) and [(i-6-MeC6H4)Rh(C2B9H9C6H4Me)Rh(i-4-C8H12)]2, a Direction product Containing Distorted 13-Vertex	2.3	19
88	Complexation of tris(pentafluorophenyl)silanes with neutral Lewis bases. Journal of Organometallic Chemistry, 2008, 693, 1005-1019.	1.8	19
89	Scheme of hydrolysis of five-coordinate chlorosilanes by X-ray diffraction data. Russian Journal of General Chemistry, 2011, 81, 2428-2439.	0.8	19

The synthesis and deep purification of GaEt3. Reversible complexation of adducts MAlk3 (MÂ=ÂAl, Ga, In;) Tj ETQqQ 0 rgBT 19 verlock 2

#	Article	IF	CITATIONS
91	Highly Flexible Molecule "Chameleon― Reversible Thermochromism and Phase Transitions in Solid Copper(II) Diiminate Cu[CF3â€"C(NH)â€"CFâ•C(NH)â€"CF3]2. Inorganic Chemistry, 2012, 51, 10590-10602.	4.0	19
92	Rhodium-containing hypercross-linked polystyrene as a heterogeneous catalyst for the hydroformylation of olefins in supercritical carbon dioxide. Tetrahedron Letters, 2013, 54, 1116-1119.	1.4	19
93	Studies of Multicenter and Intermolecular Dihydrogen B-H···H-C Bonding in [4,8,8â \in 2-exo-{PPh3Cu}-4,8,8â \in 2-(μ-H)3-commo-3,3â \in 2-Co(1,2-C2B9H9)(1â \in 2,2â \in 2-C2B9H10)]. European Journ Chemistry, 2015, 2015, 5847-5855.	urn al of Ind	orgænic
94	Heteroligand nickel siloxane with 4-vinylbenzyl substituents. Mendeleev Communications, 2015, 25, 226-228.	1.6	19
95	Synthesis and structures of novel tetra- and pentanuclear copper sandwich-like metallasiloxanes with pyridine ligands. Mendeleev Communications, 2017, 27, 332-334.	1.6	19
96	<i>ortho</i> -Dialkylamino arylboranes as efficient reagents for difluorocarbene trapping. Chemical Communications, 2020, 56, 7140-7142.	4.1	19
97	O,O-Monochelate complexes of silicon and germanium halides: The derivatives of l-mandelic N,N-dimethylamide. Journal of Organometallic Chemistry, 2009, 694, 244-248.	1.8	18
98	Polymerization of the new doubleâ€charged monomer bisâ€1,3(<i>N</i> , <i>N</i> , <i>N</i> ,€trimethylammonium dicyanamide)â€2â€propylmethacrylate and ionic conductivity of the novel polyelectrolytes. Polymers for Advanced Technologies, 2011, 22, 448-457.	3.2	18
99	Activity of palladium nanoparticles on graphene oxide in the Suzuki—Miyaura reaction. Russian Chemical Bulletin, 2012, 61, 1825-1827.	1.5	18
100	Synthesis and structure of new polyhedral Ni, Na- and Cu, Na-metallasiloxanes with tolyl substituent at the silicon atom. RSC Advances, 2016, 6, 22052-22060.	3.6	18
101	A new "bicycle helmet―like copper(<scp>ii</scp>),sodiumphenylsilsesquioxane. Synthesis, structure and catalytic activity. Dalton Transactions, 2018, 47, 15666-15669.	3.3	18
102	New all-cis-tetra(p-tolyl)cyclotetrasiloxanetetraol and its functionalization. Mendeleev Communications, 2018, 28, 418-420.	1.6	18
103	Hydrogen Bond-Driven Self-Assembly between Single-Layer MoS ₂ and Alkyldiamine Molecules. Crystal Growth and Design, 2018, 18, 5116-5123.	3.0	18
104	Marriage of Peroxides and Nitrogen Heterocycles: Selective Three-Component Assembly, Peroxide-Preserving Rearrangement, and Stereoelectronic Source of Unusual Stability of Bridged Azaozonides. Journal of the American Chemical Society, 2021, 143, 6634-6648.	13.7	18
105	Chemical bonding in the crystal structure of 1-hydrosilatrane. Russian Chemical Bulletin, 2009, 58, 25-30.	1.5	17
106	Pentacoordinated chlorosilanes with C,O-chelate ligands derived from N-methyl-N'-organosulfonyl-prolinamides*. Chemistry of Heterocyclic Compounds, 2012, 47, 1565-1583.	1.2	17
107	Selective Derivatization and Characterization of Bifunctional "Janus-Type―Cyclotetrasiloxanes. Organometallics, 2013, 32, 1732-1742.	2.3	17
108	Electronic Structure of Cesium Butyratouranylate(VI) as Derived from DFT-assisted Powder X-ray Diffraction Data. Journal of Physical Chemistry A, 2014, 118, 9745-9752.	2.5	17

#	Article	IF	CITATIONS
109	Ridges and valleys on charged 1T-MoS ₂ sheets guiding the packing of organic cations. RSC Advances, 2015, 5, 19206-19212.	3.6	17
110	Fourâ€Membered Cycle Formation Challenge: GaCl ₃ â€Promoted Formal [2+2] ycloaddition of Donorâ€"Acceptor Cyclopropanes to Bicyclobutylidene. European Journal of Organic Chemistry, 2019, 2019, 4207-4214.	2.4	17
111	Novel Polymorph of Favipiravir—An Antiviral Medication. Pharmaceutics, 2021, 13, 139.	4.5	17
112	Inverse α-Effect as the Ariadne's Thread on the Way to Tricyclic Aminoperoxides: Avoiding Thermodynamic Traps in the Labyrinth of Possibilities. Journal of the American Chemical Society, 2022, 144, 7264-7282.	13.7	17
113	Title is missing!. Russian Chemical Bulletin, 2002, 51, 1423-1432.	1.5	16
114	Cage-like manganesephenylsiloxane with an unusual structure. Russian Chemical Bulletin, 2011, 60, 1762-1765.	1.5	16
115	Synthesis and properties of 5-ferrocenyl-1H-pyrazole-3-carbaldehydes. Journal of Organometallic Chemistry, 2011, 696, 2108-2115.	1.8	16
116	Metallosiloxanes containing period 5 transition metals: synthesis and X-ray studies of three cadmium siloxanes. Mendeleev Communications, 2016, 26, 344-346.	1.6	16
117	Imidazol-5-one as an Acceptor in Donor–Acceptor Cyclopropanes: Cycloaddition with Aldehydes. Organic Letters, 2020, 22, 2740-2745.	4.6	16
118	New cage-like metallasiloxane containing Felll ions in different coordination spheres. Russian Chemical Bulletin, 2007, 56, 543-545.	1.5	15
119	The structural peculiarities and chemical bonding in three organogermanes Cl3GeCH2OC(O)R with rigid coordination centre. Journal of Molecular Structure, 2008, 875, 135-142.	3.6	15
120	Cationic complexes of silicon and germanium with (O,S)-chelate ligands. Dalton Transactions, 2012, 41, 12681.	3.3	15
121	Stereoselective Amine Addition to Six-Membered Cyclic Nitronates Promoted by Silyl Triflate. European Journal of Organic Chemistry, 2013, 2013, 5670-5677.	2.4	15
122	Extremely Long Cu···O Contact as a Possible Pathway for Magnetic Interactions in Na ₂ Cu(CO ₃) ₂ . Inorganic Chemistry, 2013, 52, 14355-14363.	4.0	15
123	New Cu4Na4- and Cu5-Based Phenylsilsesquioxanes. Synthesis via Complexation with 1,10-Phenanthroline, Structures and High Catalytic Activity in Alkane Oxidations with Peroxides in Acetonitrile. Catalysts, 2019, 9, 701.	3. 5	15
124	Peroxycarbenium lons as the "Gatekeepers―in Reaction Design: Assistance from Inverse Alphaâ€Effect in Threeâ€Component βâ€Alkoxyâ€Î²â€peroxylactones Synthesis. Chemistry - A European Journal, 2019, 25, 14460-14468.	3.3	15
125	All-carbon phosphoranes <i>via</i> difluorocarbene trapping. Chemical Communications, 2021, 57, 4823-4826.	4.1	15
126	Tris(pentafluorophenyl)silyl Triflate: Synthesis and Silylation of Carbonyl Compounds. European Journal of Organic Chemistry, 2004, 2004, 5141-5148.	2.4	14

#	ARTICLE	IF	Citations
127	isolation and characterization of the chelate exo-nido-ruthenacarborane intermediates formed in the thermal exo-nido-to-closo conversion of [exo-nido-5,6,10-{Cl(Ph3P)2Ru}-5,6,10-(μ-H)3-10-H-7,8-R2-7,8-C2B9H6] (R=H or Me) upon the triphenylphosphine ligand displacement and control of the chelater and control of the control of the chelater and c	1.8	14
128	Donor-Stabilized Silyl Cations. 11. Bis-Zwitterionic Penta- and Hexacoordinate Silicon Dichelate Complexes Derived from (ClCH2)2SiCl2 through Double Internal Displacement of Chloride1. Organometallics, 2006, 25, 5416-5423.	2.3	14
129	3-Halomethylated cyclic nitronates: synthesis and nucleophilic substitution. Tetrahedron, 2011, 67, 4584-4594.	1.9	14
130	Chemical bonding in 1-(chlorodimethylstannylmethyl)-2-piperidone and its Si and Ge analogues. General trends and Oâ†'M (M=Si, Ge, Sn) coordination bond energy. Journal of Molecular Structure, 2013, 1051, 49-55.	3.6	14
131	Probing systematic errors in experimental charge density by multipole and invariom modeling: a twinned crystal of 1,10-phenanthroline hydrate. Mendeleev Communications, 2014, 24, 286-289.	1.6	14
132	Experimental X-ray Diffraction Study of Stacking Interaction in Crystals of Two Furazan[3,4- <i>b</i>)pyrazines. Crystal Growth and Design, 2014, 14, 5418-5427.	3.0	14
133	Electrostatic Origin of Stabilization in MoS ₂ –Organic Nanocrystals. Journal of Physical Chemistry Letters, 2016, 7, 5162-5167.	4.6	14
134	The First Series of Heterometallic Ln ^{III} â€V ^{IV} Complexes Based on Substituted Malonic Acid Anions: Synthesis, Structure and Magnetic Properties. European Journal of Inorganic Chemistry, 2018, 2018, 5075-5090.	2.0	14
135	Synthesis and properties of new dibenzoylmethanatoboron difluoride dyads connected by flexible siloxane linkers. Tetrahedron Letters, 2020, 61, 152176.	1.4	14
136	Exploitation of knowledge databases in the synthesis of zinc(II) malonates with photo-sensitive and photo-insensitive <i>N</i> , <i>N</i> ,°i>N)′-containing linkers. IUCrJ, 2018, 5, 293-303.	2.2	14
137	Tris(pentafluorophenyl)silyl enol ethers: synthesis and aldol reactions. Tetrahedron Letters, 2004, 45, 3741-3744.	1.4	13
138	Imino- and Oxazolino-Functionalised Pyrrolylphosphanes and Pyrrolylphosphinites: An Unexploited Class of ChiralP,N-Bidentate Ligands with Unusual Electronic Properties. European Journal of Inorganic Chemistry, 2005, 2005, 3311-3319.	2.0	13
139	Synthesis, structure, and acylation of dihydroquinopimaric acid hydroxy derivatives. Russian Journal of Organic Chemistry, 2008, 44, 1598-1605.	0.8	13
140	Synthesis, crystal structure, and IR spectral study of Na[(UO2)(C3H7COO)3] · 0.25H2O and K[(UO2)(C3H7COO)3]. Russian Journal of Inorganic Chemistry, 2012, 57, 939-944.	1.3	13
141	1-Organosulfonyl-2-sila-5-piperazinones: Synthesis, molecular and crystal structure, and chemical transformations into 2-aminoacid derivatives. Journal of Organometallic Chemistry, 2013, 741-742, 114-121.	1.8	13
142	Invariom approach as a new tool in electron density studies of ionic liquids: a model case of 1-butyl-2,3-dimethylimidazolium chloride BDMIM[Cl]. RSC Advances, 2015, 5, 75360-75373.	3.6	13
143	Influence of parameters of molecular mobility on formation of structure in ferroelectric vinylidene fluoride copolymers. Journal of Applied Physics, 2015, 117, .	2.5	13
144	Sodium cis-tetratolylcyclotetrasiloxanolate and cis-tritolylcyclotrisiloxanolate: Synthesis, structure and their mutual transformations. Journal of Organometallic Chemistry, 2016, 823, 103-111.	1.8	13

#	Article	IF	Citations
145	Turn-on exciplex fluorescence induced by complexation of nonfluorescent pentafluorinated dibenzoylmethanatoboron difluoride with benzene and its derivatives. New Journal of Chemistry, 2019, 43, 13725-13734.	2.8	13
146	Molecular Structures Polymorphism the Role of F…F Interactions in Crystal Packing of Fluorinated Tosylates. Crystals, 2019, 9, 242.	2.2	13
147	Synthesis of the Cationic Gallium Phthalocyanines and Their Catalytic Application in Gallium(III)-Activated Processes for Donor–Acceptor Substrates. Organometallics, 2020, 39, 2580-2593.	2.3	13
148	Donor-Stabilized Silyl Cations. 10. Pentacoordinate Siliconium-Ion Salts with a Triphenylphosphinimino-NLigand Group:Â Two-Bond Pâ^'Nâ^'Si Coupling as a Measure for Coordination Strength1. Organometallics, 2006, 25, 3665-3669.	2.3	12
149	Synthesis, structure and muscarinic agonist activity of substituted <i>N</i> â€(silatranâ€1â€ylmethyl)acetamides. Applied Organometallic Chemistry, 2010, 24, 162-168.	3.5	12
150	Bis($\hat{l}\frac{1}{4}$ ² -2-(dimethylamino)ethoxo- <i>N</i> , <i>O</i> , <i>O</i>)-di(phenolato- <i>O</i>)ditin(II): a high-resolution single-crystal X-ray diffraction and quantum chemical study. Acta Crystallographica Section B: Structural Science, 2011, 67, 315-323.	1.8	12
151	Synthesis, crystal structure and optical properties of a new meso-acrylate BODIPY dye. Mendeleev Communications, 2016, 26, 196-198.	1.6	12
152	Polyfunctional carboranyl substituted octasilsesquioxane: Synthesis and characterization. Journal of Organometallic Chemistry, 2016, 822, 1-4.	1.8	12
153	Surface topography and crystal and domain structures of films of ferroelectric copolymer of vinylidene difluoride and trifluoroethylene. Crystallography Reports, 2017, 62, 324-335.	0.6	12
154	New Ni ₄ Na ₂ -phenylgermsesquioxane architecture: synthesis, structure and slow dynamic behaviour. Dalton Transactions, 2018, 47, 6893-6897.	3.3	12
155	Intermolecular Interactions in Crystal Structures of Imatinib-Containing Compounds. International Journal of Molecular Sciences, 2020, 21, 8970.	4.1	12
156	Synthesis and structural characterization of carbon-centered tris(pentafluorophenyl)silyl derivatives. Journal of Organometallic Chemistry, 2005, 690, 3680-3689.	1.8	11
157	Molecular structure of 1,1-difluoroquasisilatrane (Nâ†'Si) F2Si(OCH2CH2)2NH. Doklady Chemistry, 2008, 418, 27-29.	0.9	11
158	Composite materials for medical purposes based on polyvinylpyrrolidone modified with ketoprofen and silver nanoparticles. Russian Journal of Physical Chemistry A, 2011, 85, 1190-1195.	0.6	11
159	Germatranes and their quasi and hypo analogs with highly electronegative substituent at the Ge atom. Russian Chemical Bulletin, 2012, 61, 992-998.	1.5	11
160	Synthesis and study of the structure of cage-like metallosiloxanes with pair combinations of 3d transition and alkaline earth metals. Russian Chemical Bulletin, 2013, 62, 1999-2006.	1.5	11
161	N,N-Bis-(dimethylfluorosilylmethyl)amides of N-organosulfonylproline and sarcosine: synthesis, structure, stereodynamic behaviour and in silico studies. RSC Advances, 2016, 6, 75315-75327.	3.6	11
162	Enhancement of 1Tâ€MoS ₂ Superambient Temperature Stability and Hydrogen Evolution Performance by Intercalating a Phenanthroline Monolayer. ChemNanoMat, 2021, 7, 447-456.	2.8	11

#	ARTICLE ART	IF	CITATIONS
163	[Ź-B ₁₀ Cl ₉ SR ₂] ^{â⁻ⁱ} (R =) Tj ETQq1 1 0.784314 rgBT /Overlock	10 Tf 50 7 4.0	52 Td (<i)1< th=""></i)1<>
164	Exploring Cagelike Silsesquioxane Building Blocks for the Design of Heterometallic Cu ₄ /M ₄ Architectures. Crystal Growth and Design, 2022, 22, 2146-2157.	3.0	11
165	Electrophilic Substitution in the Dihydroquercitin System. Aminomethylation. Russian Journal of Organic Chemistry, 2004, 40, 1190-1193.	0.8	10
166	Cationic methyl complexes of rhodium(III): synthesis, structure, and some reactions. Journal of Organometallic Chemistry, 2004, 689, 1930-1943.	1.8	10
167	Rearrangement of the siloxane skeleton in Cu–Na-containing phenylsiloxanes. Mendeleev Communications, 2005, 15, 245-246.	1.6	10
168	Hydroxyl-directed trifluoromethylation of hydrazones. Mendeleev Communications, 2009, 19, 141-143.	1.6	10
169	Interaction of ethyltrichlorostannane with <i>N</i> , <i>N</i> â€dimethylamides of <i>O</i> ― trimethylsilylâ€Î±â€hydroxyacids. Applied Organometallic Chemistry, 2010, 24, 888-896.	3.5	10
170	Synthesis and crystal structure of [UO2CrO4(C5NH5COO)2(H2O)]·2H2O. Crystallography Reports, 2011, 56, 233-237.	0.6	10
171	Synthesis of difluorosubstituted six-membered nitronates via an addition/substitution cascade. Tetrahedron Letters, 2016, 57, 3639-3642.	1.4	10
172	Transferable Aspherical Atom Modeling of Electron Density in Highly Symmetric Crystals: A Case Study of Alkali-Metal Nitrates. Inorganic Chemistry, 2017, 56, 4688-4696.	4.0	10
173	Mono-C,O-chelated bromo- and triflatosilanes with an amino acid moiety: salts or covalently bonded complexes?. Russian Chemical Bulletin, 2019, 68, 137-148.	1.5	10
174	Composite Nafion-based membranes with nanosized tungsten oxides prepared in supercritical carbon dioxide. Journal of Membrane Science, 2020, 609, 118244.	8.2	10
175	Charge density view on bicalutamide molecular interactions in the monoclinic polymorph and androgen receptor binding pocket. IUCrJ, 2020, 7, 71-82.	2.2	10
176	Ionic Cyclopropenium-Derived Triplatinum Cluster Complex [(Ph ₃ (MeCN) ₄] ²⁺ (BF <sub 2021,="" 3876-3885.<="" 40,="" a="" and="" as="" catalyst="" for="" hydrosilylation="" organometallics,="" perspectives="" reactions.="" structure,="" synthesis,="" td="" use=""><td>>4</td></sub>	>4	^{–<!--</td-->}
177	The structure and antimycotic activity of condensation products of some aminoalcohols with salicylaldehyde and its derivatives. Journal of Molecular Structure, 2003, 647, 269-274.	3.6	9
178	Structures of cationic metallacarborane complexes $[(\hat{l}-9-Me2S-7,8-C2B9H10)]+$ and $[Cp^*Ru(Me2S-C2B9H10)RuCp^*]+$. Russian Chemical Bulletin, 2004, 53, 1958-1962.	1.5	9
179	Synthesis and structure of [Ni(dien)2]3[W4S4(CN)2]·20H2O and [Cu(dien)(Hdien)]2[W4S4(CN)12]·8H2O. Journal of Structural Chemistry, 2005, 46, 137-146.	1.0	9
180	Synthesis of bis(glycosylamino)alkanes and bis(glycosylamino)arenes. Russian Chemical Bulletin, 2005, 54, 2890-2898.	1.5	9

#	Article	IF	CITATIONS
181	Synthesis and reactions of 3-halomethyl-substituted oxazine N-oxides. Tetrahedron Letters, 2010, 51, 1038-1040.	1.4	9
182	Donor-stabilized five-coordinate cationic chelate silicon compounds with two (Oâ†'Si)-coordinating ligands. Russian Journal of General Chemistry, 2011, 81, 2412-2427.	0.8	9
183	Unusual crystal and molecular structure of tris(2-hydroxyethyl)ammonium fluoride. Journal of Structural Chemistry, 2013, 54, 192-195.	1.0	9
184	Disproportionation reactions within the series of coordinated monoorganostannanes. Journal of Organometallic Chemistry, 2013, 747, 241-248.	1.8	9
185	High-precision X-ray diffraction data, experimental and theoretical study of 2H-MoS2. Russian Chemical Bulletin, 2013, 62, 1852-1857.	1.5	9
186	Intra- and intermolecular coordination reactions in solution involving pentacoordinated fluorosilanes based on proline. Russian Chemical Bulletin, 2013, 62, 1892-1899.	1.5	9
187	A new type of supramolecular organization in the cage-like metallasiloxanes. Russian Chemical Bulletin, 2013, 62, 1941-1943.	1.5	9
188	Unexpected hydrolytic transformation of new type hybrid bromobismuthates with methylpyrazinium dications. Dalton Transactions, 2019, 48, 7602-7611.	3.3	9
189	Tetrahedral Silicon entered Dibenzoylmethanatoboron Difluorides: Synthesis, Crystal Structure, and Photophysical Behavior in Solution and the Solid State. ChemPlusChem, 2020, 85, 1111-1119.	2.8	9
190	Hexacoordinate germanium mixed bischelates with the GeCO3Cl2 ligand environment. Arkivoc, 2008, 2008, 80-89.	0.5	9
191	The crystal and molecular structures of three germatrane derivatives. Journal of Molecular Structure, 2003, 655, 215-220.	3.6	8
192	Cymantrene-based iminodiamidophosphites: the first phosphite-type ligands with planar chirality. Tetrahedron: Asymmetry, 2005, 16, 3224-3231.	1.8	8
193	Pentafluorophenylation of \hat{I}^2 -aminoacrylates. Mendeleev Communications, 2007, 17, 105-107.	1.6	8
194	Donor-stabilized germylium cations. Bis{[bis((Oâ†'Ge)chelato)bis(N,N-dimethylcarbamoylmethyloxy)]-chloromethylgermylium} hexachlorodimercurate, the first bis-chelate cationic complex of pentacoordinate germanium with 2-hydroxycarboxamides. Russian Chemical Bulletin, 2007, 56, 1932-1933.	1.5	8
195	Synthesis and specific features of the structure of the mixed anionic six-coordinate silicon complexes with the (O,O)-dianionic and (C,O)-monoanionic chelate ligands. Russian Chemical Bulletin, 2008, 57, 2093-2100.	1.5	8
196	420, 120-122.	0.9	8
197	Co-crystals in the series of 4,5-dihydroxy- 4,5-diphenylimidazolidine-2-thiones. Mendeleev Communications, 2009, 19, 211-213.	1.6	8
198	The nature of chemical bonding in nitramide. Russian Chemical Bulletin, 2011, 60, 2161-2174.	1.5	8

#	Article	IF	Citations
199	Synthesis of bimetallic cage-like metalloorganosiloxanes from polymeric metallosiloxanes. Russian Chemical Bulletin, 2011, 60, 1647-1650.	1.5	8
200	Synthesis and structure of fluorophenyl derivatives of the 10-vertex monocarbaborane anions [1-CB9H10]â" and [2-CB9H10]â". Journal of Fluorine Chemistry, 2012, 142, 14-18.	1.7	8
201	Synthesis of fluorinated pyrimidinones. Journal of Fluorine Chemistry, 2013, 154, 73-79.	1.7	8
202	ButMe2SiOTf-promoted cyanosilylation of six-membered cyclic nitronates with trialkylsilyl cyanides or tert-butyl isocyanide1. Mendeleev Communications, 2014, 24, 374-376.	1.6	8
203	Synthesis and crystal structure of a meso -decene-BODIPY dye as a functional bright fluorophore for silicone matrices. Mendeleev Communications, 2017, 27, 363-365.	1.6	8
204	Synthesis, structures and stereodynamic behavior of pentacoordinate (Oâ†'Si)-Chelate Difluoro(methyl)silylmethyl derivatives of amides and imides. Journal of Organometallic Chemistry, 2018, 872, 31-39.	1.8	8
205	Mapping Magnetic Properties and Relaxation in Vanadium(IV) Complexes with Lanthanides by Electron Paramagnetic Resonance. Molecules, 2019, 24, 4582.	3.8	8
206	Probing Hydrogen-Bonding Properties of a Negatively Charged MoS ₂ Monolayer by Powder X-ray Diffraction and Density Functional Theory Calculations. ACS Omega, 2020, 5, 4603-4610.	3.5	8
207	Chirality-directed self-assembling of long-chain dialkyl 3,7-diazabicyclo[3.3.1]nonane-2,6-dione-1,5-dicarboxylates. Mendeleev Communications, 2000, 10, 106-107.	1.6	7
208	Molecular structure of 1,3-dihydroxydecamethylcyclohexasilane. Mendeleev Communications, 2001, 11, 195-196.	1.6	7
209	lonic structure of the bischelate dichlorosilane stabilized by Oâ†'Si coordination, the product of reaction of N-methyl-N-trimethylsilylacetamide with (ClCH2)2SiCl2. Russian Chemical Bulletin, 2004, 53, 1135-1136.	1.5	7
210	Synthesis, molecular and crystal structures, and characteristic features of electronic structures of salicylamide-based B,Si-containing chelates. Russian Chemical Bulletin, 2004, 53, 1924-1931.	1.5	7
211	New heterometallic organosiloxanes. Russian Chemical Bulletin, 2006, 55, 943-945.	1.5	7
212	Chloridobis[(2-oxoazocan-1-yl)methyl]germanium(IV) trifluoromethanesulfonate. Acta Crystallographica Section C: Crystal Structure Communications, 2007, 63, m144-m146.	0.4	7
213	Molecular structure of 1-methyl-1-fluoroquasisilatrane (2-methyl-2-fluoro-1,3-dioxa-6-aza-2-silacyclooctane). Journal of Structural Chemistry, 2008, 49, 732-736.	1.0	7
214	Special features of intermolecular bonding $\langle i \rangle A \langle i \rangle \langle i \rangle D \langle i \rangle (\langle i \rangle A \langle i \rangle = Si$, Ge and $\langle i \rangle D \langle i \rangle =)$ Tj ETQq0 0 0 rgBT 448-455.	Overlock 1.8	10 Tf 50 147 7
215	lon exchange in bimetallic cage copper organosiloxanes and the synthesis of polynuclear metal complexes containing Li and Cull atoms. Russian Chemical Bulletin, 2009, 58, 2258-2265.	1.5	7
216	Molecular and crystal structure of two phases of 1-fluorosilatrane. Specific features of the electron density distribution. Journal of Structural Chemistry, 2009, 50, 873-879.	1.0	7

#	Article	IF	CITATIONS
217	Synthesis of (3RS)- and (3SR)-acetyl-5-methoxy-1,2,3,3a,4,8b-hexahydrocyclopenta[b]indoles. Russian Journal of Organic Chemistry, 2009, 45, 394-398.	0.8	7
218	Three-component reactions of CF3-substituted boranes, ethyl diazoacetate and imines. Tetrahedron Letters, 2012, 53, 6216-6218.	1.4	7
219	Alkali metal organocyclotrisiloxanolates [RSi(O)OM]3 with vinyl and alkyl substituents at the silicon center. Journal of Organometallic Chemistry, 2013, 729, 86-94.	1.8	7
220	The truth is out there: the metal-Ï€ interactions in crystal of Cr(CO) ₃ (pcp) as revealed by the study of vibrational smearing of electron density. Zeitschrift Fur Kristallographie - Crystalline Materials, 2018, 233, 317-336.	0.8	7
221	A Novel Ziegler–Natta-Type Catalytic System—TiCl4/2,2′-Dimethoxy-1,1′-Binaphthalene/Et3Al2Cl3/Bu2M for Production of Ultrahigh Molecular Weight Polyethylene Nascent Reactor Powders, Suitable for Solvent-Free Processing. Polymers, 2018, 10, 1281.	lg 4.5	7
222	Nitro-imidazoles in ferrocenyl alkylation reaction. Synthesis, enantiomeric resolution and inÂvitro and inÂvivo bioeffects. Journal of Organometallic Chemistry, 2018, 871, 10-20.	1.8	7
223	Peculiarities of Brâ ⁻ Br bonding in crystal structures of polybromides and bromine solvates. CrystEngComm, 2020, 22, 7361-7370.	2.6	7
224	On the interaction of silyl triflates with enamines: iminium ion formation versus silylation. Tetrahedron Letters, 2005, 46, 3729-3732.	1.4	6
225	Complexes of hypercoordinate germanium with novel five-membered monoanionic (0,0)-chelating ligands based on 2-hydroxycarboxamides. Russian Chemical Bulletin, 2005, 54, 2233-2234.	1.5	6
226	Dinuclear cage-like metalloorganosiloxane containing CrIII ions. Russian Chemical Bulletin, 2008, 57, 2204-2206.	1.5	6
227	lon exchange in bimetallic cage organosiloxanes incorporating copper and alkali metal atoms. Mendeleev Communications, 2008, 18, 76-77.	1.6	6
228	Synthesis and molecular structure of 1-(2-pyridyloxy)silatrane. Russian Journal of General Chemistry, 2008, 78, 2333-2338.	0.8	6
229	Tribromogermyl monochelates — derivatives of N,N-disubstituted 2-hydroxycarboxylic amides. Russian Chemical Bulletin, 2010, 59, 761-770.	1.5	6
230	Stereospecific epoxidation of an olean-18(19)-ene-type triterpenoid. Chemistry of Natural Compounds, 2011, 46, 900-901.	0.8	6
231	Trichloro- and methyldichlorogermyl monochelates and dibromo- and dichlorogermyl bischelates derived from N,N-disubstituted amides of 2-hydroxycarboxylic acids. Russian Chemical Bulletin, 2012, 61, 642-651.	1.5	6
232	Three-step assembly of 4-aminotetrahydropyran-2-ones from isoxazoline-2-oxides. RSC Advances, 2014, 4, 12467.	3.6	6
233	Understanding the structure of salicyl hydrazone metallocomplexes: crystal structure, AIM and Hirshfeld surface analysis of trichloro-(N-salicylidenebenzoylhydrazinato-N,O,Oâ \in 2)-tin(IV). Structural Chemistry, 2016, 27, 25-36.	2.0	6
234	Enantiomeric-Enriched Ferrocenes: Synthesis, Chiral Resolution, and Mathematic Evaluation of CD-chiral Selector Energies with Ferrocene-Conjugates. Molecules, 2017, 22, 1410.	3.8	6

#	Article	IF	CITATIONS
235	The effect of crystal polymorphism of ferroelectric copolymer vinylidene fluorideâ€hexafluoropropylene on its highâ€voltage polarization. Journal of Applied Polymer Science, 2020, 137, 49235.	2.6	6
236	Charge density analysis of abiraterone acetate. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2020, 76, 1018-1026.	1.1	6
237	Title is missing!. Doklady Chemistry, 2001, 379, 222-225.	0.9	5
238	Diastereoselective cycloalkylation of diphenylphosphorylacetonitrile by \hat{l}_{\pm} , \hat{r} -dibromoalkanes. Mendeleev Communications, 2002, 12, 133-135.	1.6	5
239	Bifunctional decamethylcyclohexasilanes X2Si6Me10 (X = Cl, H, or OH): molecular and crystal structures and mesomorphic properties. Russian Chemical Bulletin, 2005, 54, 1612-1622.	1.5	5
240	Rh(I) carbonyl carboxylato complexes: Spectral and structural characteristics. Some reactions of coordinated formate group. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2005, 31, 121-131.	1.0	5
241	Two germatranes with bulky substituents. Acta Crystallographica Section C: Crystal Structure Communications, 2006, 62, m303-m305.	0.4	5
242	Synthesis and structures of tris(pentafluorophenyl)silylamines. Russian Chemical Bulletin, 2007, 56, 1394-1401.	1.5	5
243	Synthesis and structural characterization of the anionic chelates of hypercoordinate silicon, the derivatives of glycolic and tartaric acids. Mendeleev Communications, 2010, 20, 273-274.	1.6	5
244	Molecular Structure of 1-Germatrahol and its Complex With Chloroform. Journal of Structural Chemistry, 2010, 51, 719-724.	1.0	5
245	Molecular and electronic structures of germylene and stannylene complexes (CO)5MECl2·nTHF (M =) Tj ETQq1 in the chemistry. Russian Chemical Bulletin, 2010, 59, 348-360.	l 0.78431 1.5	
246	Cryostructuring of polymer systems. XXX. Poly(vinyl alcohol)â€based composite cryogels filled with small disperse oil droplets: A gel system capable of mechanically induced releasing of the lipophilic constituents. Journal of Applied Polymer Science, 2010, 117, 1332-1349.	2.6	5
247	Synthesis and structure of N-(2-silatranylethyl)imidazoles. Russian Journal of General Chemistry, 2011, 81, 2468-2477.	0.8	5
248	Synthesis, structure, and stereochemical non-rigidity of bis[(2,2-dimethyl-4-oxo-2H-benzo[e][1,3]oxazin-3(4H)-yl)methyl] dichlorosilane and -germane. Russian Chemical Bulletin, 2015, 64, 1808-1813.	1.5	5
249	Regioselective chelation in the reaction of N-trimethylsilyl-N-acetylglycine N',N'-dimethylamide with chloro(chloromethyl)dimethylsilane. Mendeleev Communications, 2015, 25, 114-116.	1.6	5
250	Donor-stabilized germylium cations. To the scheme of formation of bis(chelate) germylium ions using the complexes with lactamomethyl (Đ¡,Đž)-chelate ligand (enantolactam derivatives) as an example. Russian Chemical Bulletin, 2016, 65, 2583-2593.	1.5	5
251	Atomic structure and bonding interaction in a layered molybdenum disulfide compound with trimethylphenylammonium cations. Russian Journal of Inorganic Chemistry, 2017, 62, 729-735.	1.3	5
252	Barium(II)–Chromium(III) Coordination Polymers Based on Dimethylmalonate Anions: Synthesis, Crystal Structure, Magnetic Properties, and EPR Spectra. European Journal of Inorganic Chemistry, 2020, 2020, 4116-4126.	2.0	5

#	Article	IF	Citations
253	Stereoregular cyclicÂp-tolyl-containing siloxanes as promising reagents for synthesizing functionalized organosiloxanes. Journal of Organometallic Chemistry, 2020, 914, 121223.	1.8	5
254	Synthesis, Structure and Electrochemical Properties of Acetamide- and Caprolactam-Containing Silicon Catecholates. Molecules, 2021, 26, 3548.	3.8	5
255	Synthesis and structure of (trichlorogermyl)methyl adamantane-1-carboxylate. Russian Chemical Bulletin, 2005, 54, 1623-1626.	1.5	4
256	Synthesis of 1-halo-N,N-bis(silyloxy)enamines. Mendeleev Communications, 2007, 17, 108-109.	1.6	4
257	Molecular structure of 1-phenyl-1-fluoro-5-methylquasisilatrane (2-phenyl-2-fluoro-1,3-dioxa-6-aza-6-methyl-2-silacyclooctane). Journal of Structural Chemistry, 2008, 49, 378-381.	1.0	4
258	Reaction of the framework 3d-organometallosiloxanes with acetylacetone. Russian Chemical Bulletin, 2010, 59, 1369-1375.	1.5	4
259	The relative strength and role in crystal packing of I ^{â^'} â<Ï€ and CHâ <i<sup>â^'interactions in iminium salts. CrystEngComm, 2010, 12, 186-191.</i<sup>	2.6	4
260	Synthesis and some physicochemical properties of the carbazine acid silyl esters. Russian Journal of General Chemistry, 2011, 81, 2252-2256.	0.8	4
261	Unusual behavior nitrogen-containing compounds in the synthesis of O-silylurethanes and trimethylsilylureas. Russian Journal of General Chemistry, 2014, 84, 1115-1120.	0.8	4
262	Physicochemical, Terminological, and Ethical Aspects of the Patenting of Substances and Medicinal Formulations of Abacavir Sulfate. Pharmaceutical Chemistry Journal, 2015, 49, 65-72.	0.8	4
263	Issues Related to Patent Protecton of Darunavir and its Analogs. Pharmaceutical Chemistry Journal, 2016, 50, 413-418.	0.8	4
264	Synthesis of bis-ferrocenylpyrazoles via ferrocenylalkylation reaction. Monatshefte FÃ $^1\!\!/4$ r Chemie, 2017, 148, 925-932.	1.8	4
265	Curie point and a space charge relaxation in ferroelectric poly(vinylidene fluorideâ€trifluoroethylene) copolymers with different thermal history. Journal of Applied Polymer Science, 2018, 135, 46186.	2.6	4
266	Thermal decomposition of manganese carbonyl in supercritical CO2 as a simple and effective approach to obtain manganese oxide aerogels. Journal of Sol-Gel Science and Technology, 2019, 92, 116-123.	2.4	4
267	Synthesis and structure of new anionic five-coordinate silicon complexes derived from \hat{i} ±-hydroxy acids and 1-methylpiperazine-2,5-dione. Russian Chemical Bulletin, 2019, 68, 1575-1579.	1.5	4
268	Peculiarities of structure and dielectric relaxation in ferroelectric vinylidene fluoride-tetrafluoroethylene copolymer at different crystallization conditions. Colloid and Polymer Science, 2020, 298, 1169-1178.	2.1	4
269	Heteroleptic Lanthanide Complexes Coordinated by Tripodal Tetradentate Ligand: Synthesis, Structure, and Magnetic and Photoluminescent Properties. Crystal Growth and Design, 2020, 20, 5184-5192.	3.0	4
270	Iridium nanoparticles deposited on hypercrosslinked polystyrene: synthesis and application in the hydrogenation of aromatic compounds. Journal of the Iranian Chemical Society, 2020, 17, 1283-1287.	2.2	4

#	Article	IF	Citations
271	Stereoregular cyclic $\langle i \rangle p \langle j \rangle$ -tolyl-siloxanes with alkyl, O- and N-containing groups as promising reagents for the synthesis of functionalized organosiloxanes. New Journal of Chemistry, 2021, 45, 9805-9810.	2.8	4
272	Synthesis and first-principles study of structural, electronic and optical properties of tetragonal hybrid halobismuthathes [Py ₂ (XK)] ₂ [Bi ₂ Br _{10â^²<i>x</i>} I _{<i>x</i>}]. New Journal of Chemistry, 2021, 45, 18349-18357.	2.8	4
273	Influence of noncovalent intramolecular and host–guest interactions on imatinib binding to MoS ₂ sheets: a PXRD/DFT study. CrystEngComm, 2022, 24, 639-646.	2.6	4
274	Synthesis and the structure of tribromo(7-bromobicyclo[4.1.0]hept-7-yl)germane. Russian Chemical Bulletin, 2001, 50, 2203-2205.	1.5	3
275	Title is missing!. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2001, 27, 221-258.	1.0	3
276	Molecular and crystal structure of 1,6-dihydroxydodecamethylhexasilane. Mendeleev Communications, 2002, 12, 236-237.	1.6	3
277	Cascade cycloaddition reactions involving dimethylhydrazones of \hat{l}_{\pm} -substituted acroleins. Russian Chemical Bulletin, 2002, 51, 326-331.	1.5	3
278	Synthesis and Structure of Bis(3,3′-diamino-N-methyldipropylamine)-dichlorodi(μ-chloro)dinickel. Russian Journal of General Chemistry, 2005, 75, 1870-1873.	0.8	3
279	Specificity of the Reaction of Tetranitromethane with Alkenes in Nitromethane. Russian Journal of Organic Chemistry, 2005, 41, 1265-1270.	0.8	3
280	3,3′-bi(6,8-dialkyl-2,4-dioxa-7-thia-6,8-diazabicyclo[3.3.0]-octane-7,7-dioxides): Structure and synthesis. Russian Journal of Organic Chemistry, 2009, 45, 248-255.	0.8	3
281	Synthesis and structure of N-(2-silatranylethyl)pyrazoles. Russian Journal of General Chemistry, 2011, 81, 2478-2486.	0.8	3
282	The Atropomer Composition of Iopromide as an Indicator for Assessment of the Quality of its Substance and Medincal Formulations. Pharmaceutical Chemistry Journal, 2014, 48, 186-195.	0.8	3
283	Crystal and molecular structure of iodoprotatrane: Tris(2-hydroxyethyl)ammonium iodide. Journal of Structural Chemistry, 2014, 55, 120-124.	1.0	3
284	Ferrocenylalkylation of 2-mercaptobenzoxazoles. Russian Chemical Bulletin, 2016, 65, 2868-2872.	1.5	3
285	Synthesis and structural features of new pentacoordinated monofluorosilanes containing C,O-chelate ligands based on 2-amino acid N-methylamides. Russian Chemical Bulletin, 2018, 67, 1299-1306.	1.5	3
286	Solid-State Photoinitiated Cycloaddition Reaction of 4,4′-(Ethene-1,2-diyl)bis(pyridinium) Dinitrate: Charge-Density Perspective on Initial Stage of the Reaction. Crystals, 2019, 9, 613.	2.2	3
287	Construction of siloxane structures with P-Tolyl substituents at the silicon atom. Journal of Organometallic Chemistry, 2020, 926, 121497.	1.8	3
288	Organoelement Compounds Crystallized In Situ: Weak Intermolecular Interactions and Lattice Energies. Crystals, 2020, 10, 15.	2.2	3

#	Article	IF	Citations
289	Synthesis, molecular and crystal structure, and stereochemical non-rigidity of (Oâ†'Ge)-Bischelate bis[1-(2-oxoperhydroazepinyl)methyl]bromogermanium iodide and triflate. Journal of Organometallic Chemistry, 2020, 916, 121244.	1.8	3
290	Structure and Conjugation Study of Organometallic [4]Radialenes of Group 4 Metallocenes. Synthesis of Zirconium [4]Radialene. Organometallics, 2021, 40, 1344-1350.	2.3	3
291	Effect of the Alkaline Metal Ion on the Crystal Structure and Magnetic Properties of Heterometallic GdIII-VIV Complexes Based on Cyclobutane-1,1-Dicarboxylate Anions. Magnetochemistry, 2021, 7, 82.	2.4	3
292	Inhibition by Water during Heterogeneous Brønsted Acid Catalysis by Three-Dimensional Crystalline Organic Salts. Crystal Growth and Design, 2021, 21, 6364-6372.	3.0	3
293	Synthesis, structure of 5,7-dimethyl-3-ferrocenyl-2,3-dihydro-1H-pyrazolo- [1,2-a]-pyrazol-4-ium tetrafluoroborate. DFTB calculations of interaction with DNA. Journal of Molecular Structure, 2022, 1251, 132070.	3.6	3
294	Title is missing!. Doklady Chemistry, 2002, 382, 21-24.	0.9	2
295	X-ray diffraction and quantum-chemical study of 3-(1,3-dioxolan-2-yl)-4,6-dinitrobenzo[d]isoxazole. Russian Chemical Bulletin, 2003, 52, 2095-2099.	1.5	2
296	Synthesis and Molecular Structure of (Trichlorogermyl)methyl N-Cyclohexylcarbamate. Doklady Chemistry, 2004, 397, 161-164.	0.9	2
297	A New Allotropic Form of Carbon [C[sub 28]][sub n] Based on Fullerene C[sub 20] and Cubic Cluster C[sub 8] and Si and Ge Analogs of This Form: Computer Simulation. Physics of the Solid State, 2005, 47, 191.	0.6	2
298	Crystals [C20]nIntercalated with Metals. Fullerenes Nanotubes and Carbon Nanostructures, 2006, 14, 519-525.	2.1	2
299	P,N-Bidentate Phosphites with a Chiral Ketimine Fragment, Their AppliÂcation in Enantioselective Allylic Substitution and Comparison with PhosphineÂ-Analogues. Synthesis, 2007, 2007, 1717-1723.	2.3	2
300	Unusual molecular structure of (C=O→Siâ†O′=C′) bis(2-methyl-4-pyrone-3-oxy)difluoro(λ6)siliconium. Journal of Structural Chemistry, 2009, 50, 1204-1207.	1.0	2
301	Chelation-assisted pentafluorophenylation of oximes. Mendeleev Communications, 2010, 20, 220-222.	1.6	2
302	Molecular Structure of N-Methylbis (2-Hydroxyethyl)Ammonium hexafluorosilicate at 100 and 298 K. Journal of Structural Chemistry, 2010, 51, 534-539.	1.0	2
303	Synthesis of new monofunctional organosilicon molecules – Prospective efficient stoppers for the design of new siloxane polymersÂof unusual architecture. Journal of Organometallic Chemistry, 2014, 772-773, 79-83.	1.8	2
304	Complexation of SnCl4 with benzaldehyde 2-R-benzoyl-(R-HBb) and 3-R-2-naphthoylhydrazones (R = H,) Tj ETQq0 1068-1073.	0 0 0 rgBT / 1.3	/Overlock 10 2
305	Structure of hypercoordinated monoorganodihalostannanes in solutions and in the solid state: the halogen effect. Inorganica Chimica Acta, 2015, 432, 142-148.	2.4	2
306	Complexation of SnCl4 with salicylic aldehyde benzoyl hydrazone (H2Bs) and isonicotinoyl hydrazone		

#	Article	IF	CITATIONS
307	Synthesis and structure of the first representative of pentacoordinate C,O-chelates with a dipeptide fragment, the fluorosilane Ts—Gly—(S)-Pro—N(Me)CH2SiMe2F. Russian Chemical Bulletin, 2017, 66, 571-573.	1.5	2
308	Crystal structure and conformational diversity of fluorinated alkyl tosylates. Mendeleev Communications, 2020, 30, 103-105.	1.6	2
309	Hybrid iodobismuthates code: adapting the geometry of Bi polyhedra to weak interactions. Mendeleev Communications, 2021, 31, 166-169.	1.6	2
310	Iron(<scp>iv</scp>) complexes with tetraazaadamantane-based ligands: synthesis, structure, applications in dioxygen activation and labeling of biomolecules. Dalton Transactions, 2022, 51, 4284-4296.	3.3	2
311	Au–Au Chemical Bonding in Nitronyl Nitroxide Gold(I) Derivatives. Organometallics, 2022, 41, 1710-1720.	2.3	2
312	Synthesis of bifunctional tetrakis(trimethylsilyl)silane derivatives. Russian Chemical Bulletin, 2006, 55, 477-483.	1.5	1
313	Synthesis of C6F5-Substituted Aminoethanols via Acetate Ion Mediated C6F5-Group Transfer Reaction. Synthesis, 2006, 2006, 489-495.	2.3	1
314	Molecular and crystal structure of 23,24,25,26,27,29,30-heptamethyl-19,28-oxahexacyclo[15.13.18.017,18.013,14.08,9.05,10]tetracos-3-yl acetate Journal of Structural Chemistry, 2009, 50, 387-389.	e1.0	1
315	Facile One-Pot Synthesis and X-ray Characterization of N-(Thio)phosphoryl-2-oxo-1,2-azaphospholanes: First Example of Cyclic O,O- and O,S-Bidentate Ligands with the P-N-P Backbone. Synthesis, 2010, 2010, 613-618.	2.3	1
316	Synthesis and X-ray diffraction study of [UO2(NO3)2(H2O)2] \hat{A} · 2C12H18O. Crystallography Reports, 2012, 57, 252-257.	0.6	1
317	Crystal and molecular structure of 1,1-quasigermatranediol-1,1-dihydroxy-2,8-dioxa-5-azagermocane. Journal of Structural Chemistry, 2013, 54, 361-367.	1.0	1
318	Crystal and molecular structure of 4-chloro \tilde{A} —(benzoyloxymethyl)trifluorosilane at 120 K. Journal of Structural Chemistry, 2013, 54, 274-276.	1.0	1
319	Stereospecific effects in the radical polymerization of 3-methylidene phthalide. Russian Chemical Bulletin, 2014, 63, 2509-2514.	1.5	1
320	The structure and phase transitions of crystalline polydimethylsilane [Me2Si] n revisited. Russian Chemical Bulletin, 2014, 63, 2515-2526.	1.5	1
321	Synthesis and properties of N-ferrocenylalkylated pyrroles. Russian Chemical Bulletin, 2014, 63, 2281-2284.	1.5	1
322	Cageâ€like Fe,Naâ€Germsesquioxanes: Structure, Magnetism, and Catalytic Activity. Angewandte Chemie, 2016, 128, 15586-15589.	2.0	1
323	Structures and thermophysical properties of ultradispersed polytetrafluoroethylene and its fractions obtained in supercritical carbon dioxide. Polymer Science - Series A, 2016, 58, 42-49.	1.0	1
324	New disiloxane based on N-acetylvaline: synthesis and structure. Russian Chemical Bulletin, 2018, 67, 1504-1507.	1.5	1

#	Article	IF	CITATIONS
325	Morphology study of metal oxide nanoparticles and aerogels produced via thermal decomposition of metal carbonyls in supercritical carbon dioxide. Journal of Nanoparticle Research, 2021, 23, 1.	1.9	1
326	Reaction of (bromodifluoromethyl)trimethylsilane with HMPA: Structural studies. Journal of Fluorine Chemistry, 2021, 250, 109881.	1.7	1
327	Crystal structure of (tert-butyldimethylsilyl)triphenylgermane, Ph3Ge-SiMe2(t-Bu). Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, o1015-o1016.	0.5	1
328	Diastereoselective Cycloalkylation of Diphenylphosphorylacetonitrile by \hat{l}_{\pm} , \hat{l}_{\pm} -Dibromoalkanes Chemlnform, 2003, 34, no.	0.0	0
329	Preparative Synthesis and Structure of 2,2-Bis(hydroxymethyl)propyl and 2,2-Bis(hydroxy-methyl)butyl Phosphites. Russian Journal of Organic Chemistry, 2004, 40, 474-478.	0.8	0
330	Tris(pentafluorophenyl)silyl Enol Ethers: Synthesis and Aldol Reactions ChemInform, 2004, 35, no.	0.0	0
331	Interaction of Silyl Triflates with Enamines: Iminium Ion Formation versus Silylation ChemInform, 2005, 36, no.	0.0	O
332	Synthesis of Pentafluorophenylmethylamines via Silicon Mannich Reaction ChemInform, 2005, 36, no.	0.0	0
333	Dodecahedral Clusters and Novel Cubic Allotropic Forms of Carbon, Silicon, and Germanium: Computer Simulation. Fullerenes Nanotubes and Carbon Nanostructures, 2006, 14, 527-531.	2.1	O
334	Crystal and molecular structure of polyunsaturated macrobicyclic carbosilane C24H38Si6. Journal of Structural Chemistry, 2007, 48, 719-722.	1.0	0
335	Dissolution, fractionating and functionalization of ultradispersed polytetrafluorethylene in supercritical carbon dioxide. , 2014, , .		O
336	Supramolecular organization of complexes of aryl hydrazones with SnCl3and SnCl4. Acta Crystallographica Section A: Foundations and Advances, 2014, 70, C657-C657.	0.1	0
337	Constructing new porous materials based on polymeric cage metallosiloxanes. Acta Crystallographica Section A: Foundations and Advances, 2015, 71, s354-s354.	0.1	О
338	Structural studies of MoS2intercalation compounds with aromatic molecules. Acta Crystallographica Section A: Foundations and Advances, 2015, 71, s382-s382.	0.1	0
339	Frontispiece: Cage-like Copper(II) Silsesquioxanes: Transmetalation Reactions and Structural, Quantum Chemical, and Catalytic Studies. Chemistry - A European Journal, 2015, 21, n/a-n/a.	3.3	0
340	Synthesis and molecular properties of formic hydrazides. Mendeleev Communications, 2015, 25, 395-396.	1.6	0
341	Tin tetrachloride chelates with 4-dimethylaminobenzaldehyde pyridinoylhydrazones. Molecular and crystal structures of [SnCl4(γ-ldb · H)] · CH3CN and [SnCl4(γ-ldb · H)] · DMF. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2015, 41, 503-509.	1.0	0
342	Dinuclear macrocycles and helicates based on organosilicon bis-dibenzoylmethane ligand. Journal of Organometallic Chemistry, 2020, 929, 121578.	1.8	0

#	‡	Article	IF	CITATIONS
3	343	Molecular structures of Ugi's amine ferrocene-conjugates with R,R-tartaric acid and DFT calculations versus experimental resolution of their diastereomers. Journal of Molecular Structure, 2020, 1208, 127871.	3.6	o
3	344	Halogen exchange in complexes of hexacoordinate tin (LnCH2)2SnX2 and (LnCH2)2SnY2 containing lactamomethyl n-membered C,O-chelate ligands LnCH2 (n = 5–7; X, Y = Cl, Br, I). Journal of Organometallic Chemistry, 2021, 959, 122163.	1.8	0