
## Guy Van Camp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/50768/publications.pdf Version: 2024-02-01



CUV VAN CAMP

| #  | Article                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A wide range of protective and predisposing variants in aggrecan influence the susceptibility for otosclerosis. Human Genetics, 2022, 141, 951-963.                                                                                                                              | 1.8 | 6         |
| 2  | Genetics of otosclerosis: finally catching up with other complex traits?. Human Genetics, 2022, 141, 939-950.                                                                                                                                                                    | 1.8 | 6         |
| 3  | Longitudinal Copy-Number Alteration Analysis in Plasma Cell-Free DNA of Neuroendocrine Neoplasms<br>is a Novel Specific Biomarker for Diagnosis, Prognosis, and Follow-up. Clinical Cancer Research, 2022,<br>28, 338-349.                                                       | 3.2 | 16        |
| 4  | Genomeâ€wide DNA methylation profiling and identification of potential panâ€cancer and tumorâ€specific<br>biomarkers. Molecular Oncology, 2022, 16, 2432-2447.                                                                                                                   | 2.1 | 9         |
| 5  | <scp><i>GSDME</i></scp> and its role in cancer: From behind the scenes to the front of the stage.<br>International Journal of Cancer, 2021, 148, 2872-2883.                                                                                                                      | 2.3 | 54        |
| 6  | Copy number alterations in plasma cell-free DNA from metastatic gastroenteropancreatic neuroendocrine neoplasms Journal of Clinical Oncology, 2021, 39, 372-372.                                                                                                                 | 0.8 | 0         |
| 7  | Predictive Sensitivity and Concordance of Machine-learning Tools for Diagnosing DFNA9 in a Large<br>Series of p.Pro51Ser Variant Carriers in the COCH-gene. Otology and Neurotology, 2021, Publish Ahead<br>of Print, 671-677.                                                   | 0.7 | 0         |
| 8  | On the pathophysiology of DFNA9: Effect of pathogenic variants in the COCH gene on inner ear functioning in human and transgenic mice. Hearing Research, 2021, 401, 108162.                                                                                                      | 0.9 | 17        |
| 9  | Resequencing of candidate genes for Keratoconus reveals a role for Ehlers–Danlos Syndrome genes.<br>European Journal of Human Genetics, 2021, 29, 1745-1755.                                                                                                                     | 1.4 | 8         |
| 10 | Echinacea purpurea (L.) Moench treatment of monocytes promotes tonic interferon signaling,<br>increased innate immunity gene expression and DNA repeat hypermethylated silencing of endogenous<br>retroviral sequences. BMC Complementary Medicine and Therapies, 2021, 21, 141. | 1.2 | 7         |
| 11 | Punching Holes in Cellular Membranes: Biology and Evolution of Gasdermins. Trends in Cell Biology, 2021, 31, 500-513.                                                                                                                                                            | 3.6 | 78        |
| 12 | Disease-specific ACMG/AMP guidelines improve sequence variant interpretation for hearing loss.<br>Genetics in Medicine, 2021, 23, 2208-2212.                                                                                                                                     | 1.1 | 18        |
| 13 | Hearing Function: Identification of New Candidate Genes Further Explaining the Complexity of This<br>Sensory Ability. Genes, 2021, 12, 1228.                                                                                                                                     | 1.0 | 1         |
| 14 | Genotype-phenotype Correlation Study in a Large Series of Patients Carrying the p.Pro51Ser (p.P51S)<br>Variant in COCH (DFNA9): Part l—A Cross-sectional Study of Hearing Function in 111 Carriers. Ear and<br>Hearing, 2021, 42, 1508-1524.                                     | 1.0 | 10        |
| 15 | Genotype-Phenotype Correlation Study in a Large Series of Patients Carrying the p.Pro51Ser (p.P51S)<br>Variant in COCH (DFNA9) Part II: A Prospective Cross-Sectional Study of the Vestibular Phenotype in 111<br>Carriers. Ear and Hearing, 2021, 42, 1525-1543.                | 1.0 | 12        |
| 16 | Transduction Efficiency and Immunogenicity of Viral Vectors for Cochlear Gene Therapy: A Systematic Review of Preclinical Animal Studies. Frontiers in Cellular Neuroscience, 2021, 15, 728610.                                                                                  | 1.8 | 5         |
| 17 | DNA Methylation as a Diagnostic Biomarker for Malignant Mesothelioma: A Systematic Review and<br>Meta-Analysis. Journal of Thoracic Oncology, 2021, 16, 1461-1478.                                                                                                               | 0.5 | 8         |
| 18 | Characteristic ERK1/2 signaling dynamics distinguishes necroptosis from apoptosis. IScience, 2021, 24, 103074.                                                                                                                                                                   | 1.9 | 9         |

| #  | Article                                                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Marine Seagrass Extract of Thalassia testudinum Suppresses Colorectal Tumor Growth, Motility and<br>Angiogenesis by Autophagic Stress and Immunogenic Cell Death Pathways. Marine Drugs, 2021, 19, 52.                                                                                                     | 2.2 | 13        |
| 20 | Cochlin Deficiency Protects Aged Mice from Noise-Induced Hearing Loss. International Journal of<br>Molecular Sciences, 2021, 22, 11549.                                                                                                                                                                    | 1.8 | 5         |
| 21 | Attitudes of Potential Participants Towards Potential Gene Therapy Trials in Autosomal Dominant<br>Progressive Sensorineural Hearing Loss. Otology and Neurotology, 2021, 42, 384-389.                                                                                                                     | 0.7 | 3         |
| 22 | Antiproliferative, Antiangiogenic, and Antimetastatic Therapy Response by Mangiferin in a Syngeneic<br>Immunocompetent Colorectal Cancer Mouse Model Involves Changes in Mitochondrial Energy<br>Metabolism. Frontiers in Pharmacology, 2021, 12, 670167.                                                  | 1.6 | 9         |
| 23 | Etiological Work-up in Referrals From Neonatal Hearing Screening: 20 Years of Experience. Otology and Neurotology, 2020, 41, 1240-1248.                                                                                                                                                                    | 0.7 | 8         |
| 24 | 468P PANIB 20139173: Randomized, multicentre phase II trial comparing fluorouracil, leucovorin and oxaliplatin (FOLFOX) plus panitumumab versus FOLFOX plus bevacizumab in patients with previously untreated, RAS wild-type (WT) metastatic colorectal cancer (mCRC). Annals of Oncology, 2020, 31, S440. | 0.6 | 1         |
| 25 | PDX1 DNA Methylation Distinguishes Two Subtypes of Pancreatic Neuroendocrine Neoplasms with a Different Prognosis. Cancers, 2020, 12, 1461.                                                                                                                                                                | 1.7 | 19        |
| 26 | Autosomal Dominantly Inherited GREB1L Variants in Individuals with Profound Sensorineural Hearing<br>Impairment. Genes, 2020, 11, 687.                                                                                                                                                                     | 1.0 | 23        |
| 27 | Aging of Preleukemic Thymocytes Drives CpG Island Hypermethylation in T-cell Acute Lymphoblastic<br>Leukemia. Blood Cancer Discovery, 2020, 1, 274-289.                                                                                                                                                    | 2.6 | 21        |
| 28 | Hotspot DAXX, PTCH2 and CYFIP2 mutations in pancreatic neuroendocrine neoplasms.<br>Endocrine-Related Cancer, 2019, 26, 1-12.                                                                                                                                                                              | 1.6 | 24        |
| 29 | Clinical applications of (epi)genetics in gastroenteropancreatic neuroendocrine neoplasms: Moving towards liquid biopsies. Reviews in Endocrine and Metabolic Disorders, 2019, 20, 333-351.                                                                                                                | 2.6 | 10        |
| 30 | Genome-wide association meta-analysis identifies five novel loci for age-related hearing impairment.<br>Scientific Reports, 2019, 9, 15192.                                                                                                                                                                | 1.6 | 32        |
| 31 | Determination of the Potential Tumor-Suppressive Effects of Gsdme in a Chemically Induced and in a Genetically Modified Intestinal Cancer Mouse Model. Cancers, 2019, 11, 1214.                                                                                                                            | 1.7 | 32        |
| 32 | Methylation analysis of <i>Gasdermin E</i> shows great promise as a biomarker for colorectal cancer. Cancer Medicine, 2019, 8, 2133-2145.                                                                                                                                                                  | 1.3 | 58        |
| 33 | ClinGen expert clinical validity curation of 164 hearing loss gene–disease pairs. Genetics in Medicine, 2019, 21, 2239-2247.                                                                                                                                                                               | 1.1 | 67        |
| 34 | A systematic review of hearing and vestibular function in carriers of the Pro51Ser mutation in the COCH gene. European Archives of Oto-Rhino-Laryngology, 2019, 276, 1251-1262.                                                                                                                            | 0.8 | 18        |
| 35 | Insufficient evidence for a role of SERPINF1 in otosclerosis. Molecular Genetics and Genomics, 2019, 294, 1001-1006.                                                                                                                                                                                       | 1.0 | 11        |
| 36 | The Gasdermin E gene Potential as a Pan-Cancer Biomarker, While Discriminating between Different<br>Tumor Types. Cancers, 2019, 11, 1810.                                                                                                                                                                  | 1.7 | 24        |

| #  | Article                                                                                                                                                                                                                                                                                         | lF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Variants affecting diverse domains of MEPE are associated with two distinct bone disorders, a craniofacial bone defect and otosclerosis. Genetics in Medicine, 2019, 21, 1199-1208.                                                                                                             | 1.1 | 17        |
| 38 | Resistance to targeted treatment of gastroenteropancreatic neuroendocrine tumors.<br>Endocrine-Related Cancer, 2019, 26, R109-R130.                                                                                                                                                             | 1.6 | 24        |
| 39 | Bi-allelic inactivating variants in the COCH gene cause autosomal recessive prelingual hearing impairment. European Journal of Human Genetics, 2018, 26, 587-591.                                                                                                                               | 1.4 | 22        |
| 40 | Mutation and Methylation Analysis of Circulating Tumor DNA Can Be Used for Follow-up of Metastatic Colorectal Cancer Patients. Clinical Colorectal Cancer, 2018, 17, e369-e379.                                                                                                                 | 1.0 | 39        |
| 41 | Large-scale analysis of DFNA5 methylation reveals its potential as biomarker for breast cancer.<br>Clinical Epigenetics, 2018, 10, 51.                                                                                                                                                          | 1.8 | 86        |
| 42 | GLI2 promoter hypermethylation in saliva of children with a respiratory allergy. Clinical Epigenetics, 2018, 10, 50.                                                                                                                                                                            | 1.8 | 19        |
| 43 | Effect of Primary Tumor Location on Second- or Later-line Treatment Outcomes in Patients With RAS<br>Wild-type Metastatic Colorectal Cancer and All Treatment Lines in Patients With RAS Mutations in<br>Four Randomized Panitumumab Studies. Clinical Colorectal Cancer, 2018, 17, 170-178.e3. | 1.0 | 41        |
| 44 | A new perspective on the genetics of keratoconus: why have we not been more successful?.<br>Ophthalmic Genetics, 2018, 39, 158-174.                                                                                                                                                             | 0.5 | 33        |
| 45 | The predictive value of primary tumor location in patients with metastatic colorectal cancer: A systematic review. Critical Reviews in Oncology/Hematology, 2018, 121, 1-10.                                                                                                                    | 2.0 | 45        |
| 46 | The prognostic value of KRAS, NRAS, BRAF and DNA mismatch repair (MMR) status in left- and<br>right-sided metastatic colorectal cancer (mCRC): A Belgian population-based study. Annals of<br>Oncology, 2018, 29, viii196.                                                                      | 0.6 | 0         |
| 47 | Detection of mutations and copy number alterations in circulating DNA from pancreatic neuroendocrine tumor patients. Annals of Oncology, 2018, 29, viii477.                                                                                                                                     | 0.6 | 0         |
| 48 | Cell-Free DNA From Metastatic Pancreatic Neuroendocrine Tumor Patients Contains Tumor-Specific Mutations and Copy Number Variations. Frontiers in Oncology, 2018, 8, 467.                                                                                                                       | 1.3 | 25        |
| 49 | Comparing survival in left-sided and right-sided colorectal carcinoma: A Belgian population-based study. Annals of Oncology, 2018, 29, v98.                                                                                                                                                     | 0.6 | 1         |
| 50 | Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. Journal of Clinical Investigation, 2018, 128, 3341-3355.                                                                                                                                             | 3.9 | 406       |
| 51 | Molecular analysis of an asbestos-exposed Belgian family with a high prevalence of mesothelioma.<br>Familial Cancer, 2018, 17, 569-576.                                                                                                                                                         | 0.9 | 3         |
| 52 | Tumor-specific genetic variants can be detected in circulating cell-free DNA of malignant pleural mesothelioma patients. Lung Cancer, 2018, 124, 19-22.                                                                                                                                         | 0.9 | 9         |
| 53 | Cx26 partial loss causes accelerated presbycusis by redox imbalance and dysregulation of Nfr2 pathway. Redox Biology, 2018, 19, 301-317.                                                                                                                                                        | 3.9 | 50        |
| 54 | Role of Targeted Next Generation Sequencing in the Etiological Work-Up of Congenitally Deaf<br>Children. Otology and Neurotology, 2018, 39, 732-738.                                                                                                                                            | 0.7 | 10        |

| #  | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Congenital hearing loss. Nature Reviews Disease Primers, 2017, 3, 16094.                                                                                                                                                            | 18.1 | 328       |
| 56 | Deep sequencing of the <i>TP53</i> gene reveals a potential risk allele for non–small cell lung cancer<br>and supports the negative prognostic value of <i>TP53</i> variants. Tumor Biology, 2017, 39,<br>101042831769432.          | 0.8  | 22        |
| 57 | Ca <sup>2+</sup> -binding protein 2 inhibits Ca <sup>2+</sup> -channel inactivation in mouse inner<br>hair cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114,<br>E1717-E1726.       | 3.3  | 42        |
| 58 | Interaction between prenatal pesticide exposure and a common polymorphism in the PON1 gene on DNA<br>methylation in genes associated with cardio-metabolic disease risk—an exploratoryÂstudy. Clinical<br>Epigenetics, 2017, 9, 35. | 1.8  | 29        |
| 59 | Primary tumor sidedness has an impact on prognosis and treatment outcome in metastatic colorectal cancer: results from two randomized first-line panitumumab studies. Annals of Oncology, 2017, 28, 1862-1868.                      | 0.6  | 174       |
| 60 | Molecular diagnostics for hereditary hearing loss in children. Expert Review of Molecular<br>Diagnostics, 2017, 17, 751-760.                                                                                                        | 1.5  | 21        |
| 61 | The FASâ€670 AA genotype is associated with high proviral load in peruvian HAM/TSP patients. Journal of<br>Medical Virology, 2017, 89, 726-731.                                                                                     | 2.5  | 7         |
| 62 | pyAmpli: an amplicon-based variant filter pipeline for targeted resequencing data. BMC Bioinformatics, 2017, 18, 554.                                                                                                               | 1.2  | 7         |
| 63 | A Pilot Genome-Wide Association Study Identifies Potential Metabolic Pathways Involved in Tinnitus.<br>Frontiers in Neuroscience, 2017, 11, 71.                                                                                     | 1.4  | 35        |
| 64 | MDM2 SNP309 and SNP285 Act as Negative Prognostic Markers for Non-small Cell Lung Cancer Adenocarcinoma Patients. Journal of Cancer, 2017, 8, 2154-2162.                                                                            | 1.2  | 4         |
| 65 | Unique autosomal recessive variant of palmoplantar keratoderma associated with hearing loss not caused by known mutations. Anais Brasileiros De Dermatologia, 2017, 92, 154-158.                                                    | 0.5  | 1         |
| 66 | Mutations in Splicing Factor Genes Are a Major Cause of Autosomal Dominant Retinitis Pigmentosa in<br>Belgian Families. PLoS ONE, 2017, 12, e0170038.                                                                               | 1.1  | 47        |
| 67 | <i>DFNA5</i> promoter methylation a marker for breast tumorigenesis. Oncotarget, 2017, 8, 31948-31958.                                                                                                                              | 0.8  | 37        |
| 68 | Large-scale copy number analysis reveals variations in genes not previously associated with malignant pleural mesothelioma. Oncotarget, 2017, 8, 113673-113686.                                                                     | 0.8  | 21        |
| 69 | A novel missense mutation in the C2C domain of otoferlin causes profound hearing impairment in an<br>Omani family with auditory neuropathy. Journal of King Abdulaziz University, Islamic Economics, 2016,<br>37, 1068-1075.        | 0.5  | 11        |
| 70 | Whole-Genome Saliva and Blood DNA Methylation Profiling in Individuals with a Respiratory Allergy.<br>PLoS ONE, 2016, 11, e0151109.                                                                                                 | 1.1  | 44        |
| 71 | Large scale DFNA5 methylation and expression analysis in primary breast adenocarcinoma using data from the Cancer Genome Atlas. Annals of Oncology, 2016, 27, vi31.                                                                 | 0.6  | 0         |
| 72 | Heterozygous Loss-of-Function SEC61A1 Mutations Cause Autosomal-Dominant Tubulo-Interstitial and<br>Glomerulocystic Kidney Disease with Anemia. American Journal of Human Genetics, 2016, 99, 174-187.                              | 2.6  | 124       |

| #  | Article                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | DNA Diagnostics of Hereditary Hearing Loss: A Targeted Resequencing Approach Combined with a<br>Mutation Classification System. Human Mutation, 2016, 37, 812-819.                                                                                                        | 1.1 | 76        |
| 74 | Loss of function of Ywhah in mice induces deafness and cochlear outer hair cell's degeneration. Cell<br>Death and Disease, 2016, 7, e2187-e2187.                                                                                                                          | 2.7 | 4         |
| 75 | Loss of function of Ywhah in mice induces deafness and cochlear outer hair cells' degeneration. Cell<br>Death Discovery, 2016, 2, 16017.                                                                                                                                  | 2.0 | 8         |
| 76 | Primary tumor sidedness impacts on prognosis and treatment outcome: results from three randomized studies of panitumumab plus chemotherapy versus chemotherapy or chemotherapy plus bevacizumab in 1st and 2nd line RAS/BRAF WT mCRC. Annals of Oncology, 2016, 27, vi27. | 0.6 | 8         |
| 77 | Withaferin A induces heme oxygenase (HO-1) expression in endothelial cells via activation of the<br>Keap1/Nrf2 pathway. Biochemical Pharmacology, 2016, 109, 48-61.                                                                                                       | 2.0 | 55        |
| 78 | The Genetic Landscape of Malignant Pleural Mesothelioma: Results from Massively Parallel<br>Sequencing. Journal of Thoracic Oncology, 2016, 11, 1615-1626.                                                                                                                | 0.5 | 74        |
| 79 | Long-term acquired everolimus resistance in pancreatic neuroendocrine tumours can be overcome with novel PI3K-AKT-mTOR inhibitors. British Journal of Cancer, 2016, 114, 650-658.                                                                                         | 2.9 | 69        |
| 80 | Novel and recurrent CIB2 variants, associated with nonsyndromic deafness, do not affect calcium buffering and localization in hair cells. European Journal of Human Genetics, 2016, 24, 542-549.                                                                          | 1.4 | 28        |
| 81 | A comprehensive catalogue of the coding and non-coding transcripts of the human inner ear. Hearing Research, 2016, 333, 266-274.                                                                                                                                          | 0.9 | 51        |
| 82 | Role of DFNA5 in hearing loss and cancer – a comment on Rakusic et al. OncoTargets and Therapy, 2015, 8, 2613.                                                                                                                                                            | 1.0 | 2         |
| 83 | The deafness gene DFNA5 induces programmed cell death through mitochondria and MAPK-related pathways. Frontiers in Cellular Neuroscience, 2015, 9, 231.                                                                                                                   | 1.8 | 47        |
| 84 | A Frame-Shift Mutation in CAV1 Is Associated with a Severe Neonatal Progeroid and Lipodystrophy<br>Syndrome. PLoS ONE, 2015, 10, e0131797.                                                                                                                                | 1.1 | 46        |
| 85 | Whole-exome characterization of pancreatic neuroendocrine tumor cell lines BON-1 and QGP-1.<br>Journal of Molecular Endocrinology, 2015, 54, 137-147.                                                                                                                     | 1.1 | 83        |
| 86 | Genome-wide association analysis demonstrates the highly polygenic character of age-related hearing impairment. European Journal of Human Genetics, 2015, 23, 110-115.                                                                                                    | 1.4 | 84        |
| 87 | Heimler Syndrome Is Caused by Hypomorphic Mutations in the Peroxisome-Biogenesis Genes PEX1 and PEX6. American Journal of Human Genetics, 2015, 97, 535-545.                                                                                                              | 2.6 | 103       |
| 88 | Prognostic and Predictive Value of RAS Gene Mutations in Colorectal Cancer: Moving Beyond KRAS<br>Exon 2. Drugs, 2015, 75, 1739-1756.                                                                                                                                     | 4.9 | 6         |
| 89 | Next generation exome sequencing of pancreatic neuroendocrine tumor cell lines BON-1 and QGP-1 reveals different lineages. Cancer Genetics, 2015, 208, 523.                                                                                                               | 0.2 | 14        |
| 90 | Potentiometric detection in UPLC as an easy alternative to determine cocaine in biological samples.<br>Biomedical Chromatography, 2015, 29, 1124-1129.                                                                                                                    | 0.8 | 8         |

| #   | Article                                                                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Abstract P4-01-14: Whole exome sequencing of circulating and disseminated tumour cells in patients with metastatic breast cancer. , 2015, , .                                                                                                                                                                |      | 0         |
| 92  | Establishment and characterization of cetuximab resistant head and neck squamous cell carcinoma cell lines: focus on the contribution of the AP-1 transcription factor. American Journal of Cancer Research, 2015, 5, 1921-38.                                                                               | 1.4  | 19        |
| 93  | Pharmacological Levels of Withaferin A (Withania somnifera) Trigger Clinically Relevant Anticancer<br>Effects Specific to Triple Negative Breast Cancer Cells. PLoS ONE, 2014, 9, e87850.                                                                                                                    | 1.1  | 70        |
| 94  | Anti-EGFR Resistance in Colorectal Cancer: Current Knowledge and Future Perspectives. Current<br>Colorectal Cancer Reports, 2014, 10, 380-394.                                                                                                                                                               | 1.0  | 1         |
| 95  | Rare Variants in BMP2 and BMP4 Found in Otosclerosis Patients Reduce Smad Signaling. Otology and Neurotology, 2014, 35, 395-400.                                                                                                                                                                             | 0.7  | 10        |
| 96  | Potentiometric sensors doped with biomolecules as a new approach to small molecule/biomolecule binding kinetics analysis. Biosensors and Bioelectronics, 2014, 54, 515-520.                                                                                                                                  | 5.3  | 13        |
| 97  | A Dominant-Negative <i>GFI1B</i> Mutation in the Gray Platelet Syndrome. New England Journal of Medicine, 2014, 370, 245-253.                                                                                                                                                                                | 13.9 | 152       |
| 98  | Broadening the phenotype of <scp>LRP2</scp> mutations: a new mutation in <scp>LRP2</scp> causes a predominantly ocular phenotype suggestive of Stickler syndrome. Clinical Genetics, 2014, 86, 282-286.                                                                                                      | 1.0  | 37        |
| 99  | Concentration-Related Response Potentiometric Titrations To Study the Interaction of Small<br>Molecules with Large Biomolecules. Analytical Chemistry, 2014, 86, 12243-12249.                                                                                                                                | 3.2  | 11        |
| 100 | Overcoming cetuximab resistance in HNSCC: The role of AURKB and DUSP proteins. Cancer Letters, 2014, 354, 365-377.                                                                                                                                                                                           | 3.2  | 53        |
| 101 | Genetic Association Analysis in a Clinically and Histologically Confirmed Otosclerosis Population<br>Confirms Association With the TGFB1 Gene but Suggests an Association of the RELN Gene With a<br>Clinically Indistinguishable Otosclerosis-Like Phenotype. Otology and Neurotology, 2014, 35, 1058-1064. | 0.7  | 17        |
| 102 | Focal Sclerosis of Semicircular Canals With Severe DFNA9 Hearing Impairment Caused by a P51S COCH-Mutation. Otology and Neurotology, 2014, 35, 1077-1086.                                                                                                                                                    | 0.7  | 19        |
| 103 | Ectopic MicroRNA-150-5p Transcription Sensitizes Glucocorticoid Therapy Response in MM1S Multiple<br>Myeloma Cells but Fails to Overcome Hormone Therapy Resistance in MM1R Cells. PLoS ONE, 2014, 9,<br>e113842.                                                                                            | 1.1  | 38        |
| 104 | Expression profiling of migrated and invaded breast cancer cells predicts early metastatic relapse and<br>reveals Krüppel-like factor 9 as a potential suppressor of invasive growth in breast cancer.<br>Oncoscience, 2014, 1, 69-81.                                                                       | 0.9  | 24        |
| 105 | Population distribution and ancestry of the cancer protective MDM2 SNP285 (rs117039649).<br>Oncotarget, 2014, 5, 8223-8234.                                                                                                                                                                                  | 0.8  | 22        |
| 106 | Thoracic Aortic Aneurysm in Infancy in Aneurysms– <scp>O</scp> steoarthritis Syndrome Due to a<br>Novel <scp><i>SMAD</i></scp> <i>3</i> Mutation: Further Delineation of the Phenotype. American<br>Journal of Medical Genetics, Part A, 2013, 161, 1028-1035.                                               | 0.7  | 58        |
| 107 | Genetic and clinical diagnosis in non-syndromic hearing loss. Hearing, Balance and Communication, 2013, 11, 138-145.                                                                                                                                                                                         | 0.1  | 5         |
| 108 | Animal models of organic heart valve disease. International Journal of Cardiology, 2013, 165, 398-409.                                                                                                                                                                                                       | 0.8  | 14        |

| #   | Article                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Genome-wide analysis reveals a novel autosomal-recessive hearing loss locus DFNB80 on chromosome<br>2p16.1-p21. Journal of Human Genetics, 2013, 58, 98-101.                                                                                                       | 1.1 | 3         |
| 110 | A sensitive and specific diagnostic test for hearing loss using a microdroplet PCRâ€based approach and next generation sequencing. American Journal of Medical Genetics, Part A, 2013, 161, 145-152.                                                               | 0.7 | 61        |
| 111 | Echocardiographic Integrated Backscatter for Assessing Reduction of Aortic Valve Calcifications by<br>R-568 in a Rat Model of Chronic Kidney Disease. Ultrasound in Medicine and Biology, 2013, 39, 2075-2083.                                                     | 0.7 | 4         |
| 112 | Use of potentiometric detection in (ultra) high performance liquid chromatography and modelling with adsorption/desorption binding kinetics. Analytica Chimica Acta, 2013, 777, 25-31.                                                                             | 2.6 | 8         |
| 113 | Familial Aggregation of Pure Tone Hearing Thresholds in an Aging European Population. Otology and<br>Neurotology, 2013, 34, 838-844.                                                                                                                               | 0.7 | 15        |
| 114 | Abstract 5628: Overcoming cetuximab resistance in HNSCC: the role of AURKB and DUSP6 , 2013, , .                                                                                                                                                                   |     | 0         |
| 115 | A Dominant-Negative GFI1B Mutation in Gray Platelet Syndrome. Blood, 2013, 122, LBA-3-LBA-3.                                                                                                                                                                       | 0.6 | 1         |
| 116 | The splicing mutant of the human tumor suppressor protein DFNA5 induces programmed cell death when expressed in the yeast Saccharomyces cerevisiae. Frontiers in Oncology, 2012, 2, 77.                                                                            | 1.3 | 35        |
| 117 | DFNA5, a Gene Involved in Hearing Loss and Cancer: A Review. Annals of Otology, Rhinology and Laryngology, 2012, 121, 197-207.                                                                                                                                     | 0.6 | 58        |
| 118 | Hearing Disability Measured by the Speech, Spatial, and Qualities of Hearing Scale in Clinically<br>Normal-Hearing and Hearing-Impaired Middle-Aged Persons, and Disability Screening by Means of a<br>Reduced SSQ (the SSQ5). Ear and Hearing, 2012, 33, 615-616. | 1.0 | 85        |
| 119 | Use of Potentiometric Sensors To Study (Bio)molecular Interactions. Analytical Chemistry, 2012, 84,<br>4921-4927.                                                                                                                                                  | 3.2 | 17        |
| 120 | Molecular diagnostics for congenital hearing loss including 15 deafness genes using a next generation sequencing platform. BMC Medical Genomics, 2012, 5, 17.                                                                                                      | 0.7 | 49        |
| 121 | Analysis of inner ear potassium recycling genes as potential factors associated with tinnitus.<br>International Journal of Occupational Medicine and Environmental Health, 2012, 25, 356-64.                                                                       | 0.6 | 24        |
| 122 | A Mutation in CABP2 , Expressed in Cochlear Hair Cells, Causes Autosomal-Recessive Hearing<br>Impairment. American Journal of Human Genetics, 2012, 91, 636-645.                                                                                                   | 2.6 | 96        |
| 123 | Genome wide analysis in a family with sensorineural hearing loss, autism and mental retardation.<br>Gene, 2012, 510, 102-106.                                                                                                                                      | 1.0 | 5         |
| 124 | <i>COL1A1</i> association and otosclerosis: A metaâ€analysis. American Journal of Medical Genetics,<br>Part A, 2012, 158A, 1066-1070.                                                                                                                              | 0.7 | 20        |
| 125 | Occurrence of cardiovascular calcifications in normal, aging rats. Experimental Gerontology, 2012,<br>47, 614-619.                                                                                                                                                 | 1.2 | 12        |
| 126 | Possible implication of <i>NFKB1A</i> and <i>NKG2D</i> genes in susceptibility to HTLVâ€1â€associated<br>myelopathy/tropical spastic paraparesis in Peruvian patients infected with HTLVâ€1. Journal of Medical<br>Virology, 2012, 84, 319-326.                    | 2.5 | 10        |

| #   | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Inherited mitochondrial variants are not a major cause of age-related hearing impairment in the<br>European population. Mitochondrion, 2011, 11, 729-734.                                                                       | 1.6 | 13        |
| 128 | Large scale mtDNA sequencing reveals sequence and functional conservation as major determinants of homoplasmic mtDNA variant distribution. Mitochondrion, 2011, 11, 964-972.                                                    | 1.6 | 8         |
| 129 | Apoptosis in acquired and genetic hearing impairment: The programmed death of the hair cell. Hearing Research, 2011, 281, 18-27.                                                                                                | 0.9 | 128       |
| 130 | Commentary on "Otosclerosis: Thirty-Year Follow-Up After Surgery― Annals of Otology, Rhinology<br>and Laryngology, 2011, 120, 615-616.                                                                                          | 0.6 | 0         |
| 131 | A new locus for otosclerosis, OTSC10, maps to chromosome 1q41-44. Clinical Genetics, 2011, 79, 495-497.                                                                                                                         | 1.0 | 20        |
| 132 | DFNB93, a novel locus for autosomal recessive moderate-to-severe hearing impairment. Clinical Genetics, 2011, 79, 594-598.                                                                                                      | 1.0 | 24        |
| 133 | Association of COL1A1 and TGFB1 Polymorphisms with Otosclerosis in a Tunisian Population. Annals of Human Genetics, 2011, 75, 598-604.                                                                                          | 0.3 | 24        |
| 134 | A genome-wide analysis of population structure in the Finnish Saami with implications for genetic association studies. European Journal of Human Genetics, 2011, 19, 347-352.                                                   | 1.4 | 19        |
| 135 | The DFNA5 gene, responsible for hearing loss and involved in cancer, encodes a novel apoptosis-inducing protein. European Journal of Human Genetics, 2011, 19, 965-973.                                                         | 1.4 | 99        |
| 136 | Functional Null Mutations of MSRB3 Encoding Methionine Sulfoxide Reductase Are Associated with<br>Human Deafness DFNB74. American Journal of Human Genetics, 2011, 88, 19-29.                                                   | 2.6 | 107       |
| 137 | Phenotype of the first otosclerosis family linked to <i>OTSC10</i> . Laryngoscope, 2011, 121, 838-845.                                                                                                                          | 1.1 | 7         |
| 138 | Two Iranian families with a novel mutation in <i>GJB2</i> causing autosomal dominant nonsyndromic hearing loss. American Journal of Medical Genetics, Part A, 2011, 155, 1202-1211.                                             | 0.7 | 9         |
| 139 | A 1 bp deletion in the dual reading frame deafness gene <i>LRTOMT</i> causes a frameshift from the first into the second reading frame. American Journal of Medical Genetics, Part A, 2011, 155, 2021-2023.                     | 0.7 | 9         |
| 140 | DFNA8/12 caused by TECTA mutations is the most identified subtype of nonsyndromic autosomal dominant hearing loss. Human Mutation, 2011, 32, 825-834.                                                                           | 1.1 | 73        |
| 141 | Autosomal Recessive Stickler Syndrome in Two Families Is Caused by Mutations in the <i>COL9A1</i> Gene., 2011, 52, 4774.                                                                                                        |     | 40        |
| 142 | Genetic variants in the RELN gene are associated with otosclerosis in multiple European populations.<br>Human Genetics, 2010, 127, 155-162.                                                                                     | 1.8 | 28        |
| 143 | Multiple enhancers located in a 1-Mb region upstream of POU3F4 promote expression during inner ear development and may be required for hearing. Human Genetics, 2010, 128, 411-419.                                             | 1.8 | 35        |
| 144 | Evaluation of host genetic and viral factors as surrogate markers for HTLVâ€1â€essociated<br>myelopathy/tropical spastic paraparesis in Peruvian HTLVâ€1â€infected patients. Journal of Medical<br>Virology, 2010, 82, 460-466. | 2.5 | 16        |

| #   | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | The etiology of otosclerosis: A combination of genes and environment. Laryngoscope, 2010, 120, 1195-1202.                                                                                                                                                  | 1.1 | 75        |
| 146 | Genetic variants in <i>RELN</i> are associated with otosclerosis in a nonâ€European population from Tunisia. Annals of Human Genetics, 2010, 74, 399-405.                                                                                                  | 0.3 | 18        |
| 147 | A genome-wide association study for age-related hearing impairment in the Saami. European Journal of<br>Human Genetics, 2010, 18, 685-693.                                                                                                                 | 1.4 | 88        |
| 148 | Involvement of T-cell receptor-β alterations in the development of otosclerosis linked to OTSC2. Genes and Immunity, 2010, 11, 246-253.                                                                                                                    | 2.2 | 14        |
| 149 | A novel DFNB1 deletion allele supports the existence of a distant <i>cis</i> â€regulatory region that controls <i>GJB2</i> and <i>GJB6</i> expression. Clinical Genetics, 2010, 78, 267-274.                                                               | 1.0 | 75        |
| 150 | Genotype-Phenotype Correlation for DFNA22: Characterization of Non-Syndromic, Autosomal<br>Dominant, Progressive Sensorineural Hearing Loss due to <i>MYO6</i> Mutations.<br>Audiology and Neuro-Otology, 2010, 15, 211-220.                               | 0.6 | 16        |
| 151 | High Frequency of the p.R34X Mutation in the <i>TMC1</i> Gene Associated with Nonsyndromic<br>Hearing Loss Is Due to Founder Effects. Genetic Testing and Molecular Biomarkers, 2010, 14, 307-311.                                                         | 0.3 | 41        |
| 152 | Heritability of audiometric shape parameters and familial aggregation of presbycusis in an elderly<br>Flemish population. Hearing Research, 2010, 265, 1-10.                                                                                               | 0.9 | 18        |
| 153 | Role of killer cell immunoglobulin-like receptor gene content and human leukocyte antigen–C group<br>in susceptibility to human T-lymphotropic virus 1–associated myelopathy/tropical spastic paraparesis<br>in Peru. Human Immunology, 2010, 71, 804-808. | 1.2 | 4         |
| 154 | Genome-wide SNP analysis reveals no gain in power for association studies of common variants in the<br>Finnish Saami. European Journal of Human Genetics, 2010, 18, 569-574.                                                                               | 1.4 | 3         |
| 155 | A large deletion in GPR98 causes type IIC Usher syndrome in male and female members of an Iranian family. Journal of Medical Genetics, 2009, 46, 272-276.                                                                                                  | 1.5 | 36        |
| 156 | Amino acid 572 in TMC1: hot spot or critical functional residue for dominant mutations causing hearing impairment. Journal of Human Genetics, 2009, 54, 188-190.                                                                                           | 1.1 | 15        |
| 157 | Cyproheptadine prevents pergolide-induced valvulopathy in rats: an echocardiographic and<br>histopathological study. American Journal of Physiology - Heart and Circulatory Physiology, 2009,<br>296, H1940-H1948.                                         | 1.5 | 32        |
| 158 | GRM7 variants confer susceptibility to age-related hearing impairment. Human Molecular Genetics, 2009, 18, 785-796.                                                                                                                                        | 1.4 | 174       |
| 159 | Audiometric shape and presbycusis. International Journal of Audiology, 2009, 48, 222-232.                                                                                                                                                                  | 0.9 | 67        |
| 160 | Mutation in the <i>COCH</i> gene is associated with superior semicircular canal dehiscence.<br>American Journal of Medical Genetics, Part A, 2009, 149A, 280-285.                                                                                          | 0.7 | 47        |
| 161 | Dose Dependency and Reversibility of Serotonin-Induced Valvular Heart Disease in Rats.<br>Cardiovascular Toxicology, 2009, 9, 134-141.                                                                                                                     | 1.1 | 26        |
| 162 | Variations in HSP70 genes associated with noise-induced hearing loss in two independent populations.<br>European Journal of Human Genetics, 2009, 17, 329-335.                                                                                             | 1.4 | 78        |

| #   | Article                                                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Phenotypic variability of patients homozygous for the GJB2 mutation 35delG cannot be explained by the influence of one major modifier gene. European Journal of Human Genetics, 2009, 17, 517-524.                                                                                                   | 1.4 | 46        |
| 164 | Echocardiographic and Histological Assessment of Age-Related Valvular Changes in Normal Rats.<br>Ultrasound in Medicine and Biology, 2009, 35, 558-565.                                                                                                                                              | 0.7 | 12        |
| 165 | Candidate Gene Association Study for Noiseâ€induced Hearing Loss in Two Independent Noiseâ€exposed<br>Populations. Annals of Human Genetics, 2009, 73, 215-224.                                                                                                                                      | 0.3 | 67        |
| 166 | Detection of Rare Nonsynonymous Variants in <i>TGFB1</i> in Otosclerosis Patients. Annals of Human<br>Genetics, 2009, 73, 171-175.                                                                                                                                                                   | 0.3 | 31        |
| 167 | Analysis of Gene Polymorphisms Associated with K <sup>+</sup> Ion Circulation in the Inner Ear of<br>Patients Susceptible and Resistant to Noiseâ€induced Hearing Loss. Annals of Human Genetics, 2009, 73,<br>411-421.                                                                              | 0.3 | 67        |
| 168 | A Genome-wide Analysis Identifies Genetic Variants in the RELN Gene Associated with Otosclerosis.<br>American Journal of Human Genetics, 2009, 84, 328-338.                                                                                                                                          | 2.6 | 66        |
| 169 | Genetics of microtia and associated syndromes. Journal of Medical Genetics, 2009, 46, 361-369.                                                                                                                                                                                                       | 1.5 | 119       |
| 170 | Are MYO1C and MYO1F associated with hearing loss?. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2009, 1792, 27-32.                                                                                                                                                                    | 1.8 | 28        |
| 171 | Characterization of the murine Dfna5 promoter and regulatory regions. Gene, 2009, 432, 82-90.                                                                                                                                                                                                        | 1.0 | 7         |
| 172 | Forty-six genes causing nonsyndromic hearing impairment: Which ones should be analyzed in DNA<br>diagnostics?. Mutation Research - Reviews in Mutation Research, 2009, 681, 189-196.                                                                                                                 | 2.4 | 386       |
| 173 | No Evidence for Association Between the Renin-Angiotensin-Aldosterone System and Otosclerosis in a<br>Large Belgian-Dutch Population. Otology and Neurotology, 2009, 30, 1079-1083.                                                                                                                  | 0.7 | 26        |
| 174 | Genetic Studies on Noise-Induced Hearing Loss: A Review. Ear and Hearing, 2009, 30, 151-159.                                                                                                                                                                                                         | 1.0 | 114       |
| 175 | Function and Expression Pattern of Nonsyndromic Deafness Genes. Current Molecular Medicine, 2009,<br>9, 546-564.                                                                                                                                                                                     | 0.6 | 151       |
| 176 | Genetics of Otosclerosis. Otology and Neurotology, 2009, 30, 1021-1032.                                                                                                                                                                                                                              | 0.7 | 41        |
| 177 | Deafness. , 2009, , 123-131.                                                                                                                                                                                                                                                                         |     | 0         |
| 178 | Association of Bone Morphogenetic Proteins With Otosclerosis. Journal of Bone and Mineral<br>Research, 2008, 23, 507-516.                                                                                                                                                                            | 3.1 | 58        |
| 179 | Occupational Noise, Smoking, and a High Body Mass Index are Risk Factors for Age-related Hearing<br>Impairment and Moderate Alcohol Consumption is Protective: A European Population-based<br>Multicenter Study. JARO - Journal of the Association for Research in Otolaryngology, 2008, 9, 264-276. | 0.9 | 214       |
| 180 | A new locus for otosclerosis, OTSC8, maps to the pericentromeric region of chromosome 9. Human<br>Genetics, 2008, 123, 267-272.                                                                                                                                                                      | 1.8 | 54        |

| #   | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Human hereditary hearing impairment: mouse models can help to solve the puzzle. Human Genetics, 2008, 124, 325-348.                                                                                                          | 1.8 | 19        |
| 182 | Branchio-oto-renal syndrome (BOR): novel mutations in the <i>EYA1</i> gene, and a review of the mutation, 2008, 29, 537-544.                                                                                                 | 1.1 | 79        |
| 183 | Strong linkage disequilibrium for the frequent <i>GJB2</i> 35delG mutation in the Greek population.<br>American Journal of Medical Genetics, Part A, 2008, 146A, 2879-2884.                                                  | 0.7 | 22        |
| 184 | A Mutation in HOXA2 Is Responsible for Autosomal-Recessive Microtia in an Iranian Family. American<br>Journal of Human Genetics, 2008, 82, 982-991.                                                                          | 2.6 | 84        |
| 185 | Genome-wide SNP-Based Linkage Scan Identifies a Locus on 8q24 for an Age-Related Hearing Impairment<br>Trait. American Journal of Human Genetics, 2008, 83, 401-407.                                                         | 2.6 | 54        |
| 186 | A Mutation in HOXA2 Is Responsible for Autosomal-Recessive Microtia in an Iranian Family. American<br>Journal of Human Genetics, 2008, 83, 424.                                                                              | 2.6 | 1         |
| 187 | Impact of Anesthesia on Valvular Function in Normal Rats During Echocardiography. Ultrasound in<br>Medicine and Biology, 2008, 34, 1564-1572.                                                                                | 0.7 | 20        |
| 188 | A splice-site mutation and overexpression of MYO6 cause a similar phenotype in two families with autosomal dominant hearing loss. European Journal of Human Genetics, 2008, 16, 593-602.                                     | 1.4 | 38        |
| 189 | Mutation analysis of <i>TMC1 </i> identifies four new mutations and suggests an additional deafness gene at loci DFNA36 and DFNB7/11. Clinical Genetics, 2008, 74, 223-232.                                                  | 1.0 | 58        |
| 190 | Mutation analysis of mitochondrial DNA 12SrRNA and tRNASer(UCN) genes in non-syndromic hearing<br>loss patients. Mitochondrion, 2008, 8, 377-382.                                                                            | 1.6 | 31        |
| 191 | A novel TECTA mutation confirms the recognizable phenotype among autosomal recessive hearing impairment families. International Journal of Pediatric Otorhinolaryngology, 2008, 72, 249-255.                                 | 0.4 | 43        |
| 192 | The grainyhead like 2 gene (GRHL2), alias TFCP2L3, is associated with age-related hearing impairment.<br>Human Molecular Genetics, 2008, 17, 159-169.                                                                        | 1.4 | 121       |
| 193 | Contribution of the N-acetyltransferase 2 polymorphism NAT2*6A to age-related hearing impairment.<br>Journal of Medical Genetics, 2007, 44, 570-578.                                                                         | 1.5 | 69        |
| 194 | In vivo model of drug-induced valvular heart disease in rats: pergolide-induced valvular heart disease<br>demonstrated with echocardiography and correlation with pathology. European Heart Journal, 2007,<br>28, 2156-2162. | 1.0 | 65        |
| 195 | Phenotype-Genotype Correlations in Otosclerosis: Clinical Features of OTSC2. , 2007, 65, 114-118.                                                                                                                            |     | 1         |
| 196 | The coding polymorphism T263I in TGF-β1 is associated with otosclerosis in two independent populations. Human Molecular Genetics, 2007, 16, 2021-2030.                                                                       | 1.4 | 75        |
| 197 | Association between variations in CAT and noise-induced hearing loss in two independent noise-exposed populations. Human Molecular Genetics, 2007, 16, 1872-1883.                                                            | 1.4 | 85        |
| 198 | A New, Easy, and Rapid High-Throughput Detection Method for the Common <i>GJB2</i> ( <i>CX26</i> ),<br>35delG Mutation. Genetic Testing and Molecular Biomarkers, 2007, 11, 231-234.                                         | 1.7 | 3         |

| #   | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | The Complexity of Age-Related Hearing Impairment: Contributing Environmental and Genetic Factors.<br>Audiology and Neuro-Otology, 2007, 12, 345-358.                                                                      | 0.6 | 244       |
| 200 | Identification of three novelTECTA mutations in Iranian families with autosomal recessive<br>nonsyndromic hearing impairment at the DFNB21 locus. American Journal of Medical Genetics, Part A,<br>2007, 143A, 1623-1629. | 0.7 | 43        |
| 201 | Clinical and genetic analysis of two Tunisian otosclerosis families. American Journal of Medical<br>Genetics, Part A, 2007, 143A, 1653-1660.                                                                              | 0.7 | 7         |
| 202 | Phenotype description of a Dutch otosclerosis family with suggestive linkage toOTSC7. American<br>Journal of Medical Genetics, Part A, 2007, 143A, 1613-1622.                                                             | 0.7 | 4         |
| 203 | A seventh locus for otosclerosis, OTSC7, maps to chromosome 6q13–16.1. European Journal of Human<br>Genetics, 2007, 15, 362-368.                                                                                          | 1.4 | 53        |
| 204 | Single-nucleotide polymorphisms in the COL1A1 regulatory regions are associated with otosclerosis.<br>Clinical Genetics, 2007, 71, 406-414.                                                                               | 1.0 | 53        |
| 205 | A novel DFNA5 mutation does not cause hearing loss in an Iranian family. Journal of Human Genetics, 2007, 52, 549-552.                                                                                                    | 1.1 | 26        |
| 206 | The contribution of GJB2 (Connexin 26) 35delG to age-related hearing impairment and noise-induced hearing loss. Otology and Neurotology, 2007, 28, 970-5.                                                                 | 0.7 | 37        |
| 207 | Deafness. , 2007, , 125-133.                                                                                                                                                                                              |     | 0         |
| 208 | A New Autosomal Recessive Form of Stickler Syndrome Is Caused by a Mutation in the COL9A1 Gene.<br>American Journal of Human Genetics, 2006, 79, 449-457.                                                                 | 2.6 | 145       |
| 209 | Monogenic nonsyndromic otosclerosis: Audiological and linkage analysis in a large Greek pedigree.<br>International Journal of Pediatric Otorhinolaryngology, 2006, 70, 631-637.                                           | 0.4 | 10        |
| 210 | The Phenotype of the First Otosclerosis Family Linked to OTSC5. Otology and Neurotology, 2006, 27, 308-315.                                                                                                               | 0.7 | 5         |
| 211 | Audiometric Analyses Confirm a Cochlear Component, Disproportional to Age, in Stapedial<br>Otosclerosis. Otology and Neurotology, 2006, 27, 781-787.                                                                      | 0.7 | 29        |
| 212 | Mutations in the gene encoding pejvakin, a newly identified protein of the afferent auditory pathway, cause DFNB59 auditory neuropathy. Nature Genetics, 2006, 38, 770-778.                                               | 9.4 | 262       |
| 213 | Ozzy, a Jag1 vestibular mouse mutant, displays characteristics of Alagille syndrome. Neurobiology of<br>Disease, 2006, 24, 28-40.                                                                                         | 2.1 | 23        |
| 214 | The contribution of genes involved in potassium-recycling in the inner ear to noise-induced hearing loss. Human Mutation, 2006, 27, 786-795.                                                                              | 1.1 | 109       |
| 215 | KCNQ4: a gene for age-related hearing impairment?. Human Mutation, 2006, 27, 1007-1016.                                                                                                                                   | 1.1 | 101       |
| 216 | Doppler myocardial imaging in adult male rats: Reference values and reproducibility of velocity and deformation parameters. European Journal of Echocardiography, 2006, 7, 411-417.                                       | 2.3 | 29        |

| #   | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | A deafness mutation isolates a second role for the tectorial membrane in hearing. Nature<br>Neuroscience, 2005, 8, 1035-1042.                                                                                                                    | 7.1 | 130       |
| 218 | Mutation analysis of the GJB2 (Connexin 26) gene in Egypt. Human Mutation, 2005, 26, 60-61.                                                                                                                                                      | 1.1 | 63        |
| 219 | Study of the origin of nondisjunction in a family with two cases of Down syndrome using cytogenetic and molecular polymorphisms. American Journal of Medical Genetics Part A, 2005, 37, 133-136.                                                 | 2.4 | 1         |
| 220 | GJB2 (connexin 26) mutations are not a major cause of hearing loss in the Indonesian population.<br>American Journal of Medical Genetics, Part A, 2005, 135A, 126-129.                                                                           | 0.7 | 15        |
| 221 | Fine mapping of autosomal dominant nonsyndromic hearing impairmentDFNA21 to chromosome<br>6p24.1-22.3. American Journal of Medical Genetics, Part A, 2005, 137A, 41-46.                                                                          | 0.7 | 5         |
| 222 | Mutation of COL11A2 causes autosomal recessive non-syndromic hearing loss at the DFNB53 locus.<br>Journal of Medical Genetics, 2005, 42, e61-e61.                                                                                                | 1.5 | 75        |
| 223 | GJB2 Mutations and Degree of Hearing Loss: A Multicenter Study. American Journal of Human Genetics, 2005, 77, 945-957.                                                                                                                           | 2.6 | 455       |
| 224 | A novel deletion involving the connexin-30 gene, del(GJB6-d13s1854), found in trans with mutations in<br>the GJB2 gene (connexin-26) in subjects with DFNB1 non-syndromic hearing impairment. Journal of<br>Medical Genetics, 2005, 42, 588-594. | 1.5 | 282       |
| 225 | Mice lacking Dfna5 show a diverging number of cochlear fourth row outer hair cells. Neurobiology of Disease, 2005, 19, 386-399.                                                                                                                  | 2.1 | 51        |
| 226 | The influence of genetic variation in oxidative stress genes on human noise susceptibility. Hearing<br>Research, 2005, 202, 87-96.                                                                                                               | 0.9 | 88        |
| 227 | DFNA5: hearing impairment exon instead of hearing impairment gene?. Journal of Medical Genetics, 2004, 41, 401-406.                                                                                                                              | 1.5 | 50        |
| 228 | Deafness Genes and Their Diagnostic Applications. Audiology and Neuro-Otology, 2004, 9, 2-22.                                                                                                                                                    | 0.6 | 47        |
| 229 | A fifth locus for otosclerosis, OTSC5, maps to chromosome 3q22-24. Journal of Medical Genetics, 2004, 41, 450-453.                                                                                                                               | 1.5 | 62        |
| 230 | A novel locus for autosomal dominant non-syndromic hearing loss, DFNA31, maps to chromosome<br>6p21.3. Journal of Medical Genetics, 2004, 41, 11-13.                                                                                             | 1.5 | 19        |
| 231 | Sex-Related Hearing Impairment in Wolfram Syndrome Patients Identified by Inactivating <i>WFS1</i> Mutations. Audiology and Neuro-Otology, 2004, 9, 51-62.                                                                                       | 0.6 | 24        |
| 232 | A Genotype-Phenotype Correlation with Gender-Effect for Hearing Impairment Caused by <i>TECTA</i> Mutations. Cellular Physiology and Biochemistry, 2004, 14, 369-376.                                                                            | 1.1 | 56        |
| 233 | Pendred syndrome and DFNB4-mutation screening ofSLC26A4by denaturing high-performance liquid chromatography and the identification of eleven novel mutations. , 2004, 124A, 1-9.                                                                 |     | 61        |
| 234 | Circling behavior in theEcl mouse is caused by lateral semicircular canal defects. Journal of<br>Comparative Neurology, 2004, 468, 587-595.                                                                                                      | 0.9 | 26        |

| #   | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | GJB2: The spectrum of deafness-causing allele variants and their phenotype. Human Mutation, 2004, 24, 305-311.                                                                                                  | 1.1 | 72        |
| 236 | A genotype-phenotype correlation for GJB2 (connexin 26) deafness. Journal of Medical Genetics, 2004, 41, 147-154.                                                                                               | 1.5 | 178       |
| 237 | Nonmuscle Myosin Heavy-Chain Gene MYH14 Is Expressed in Cochlea and Mutated in Patients Affected<br>by Autosomal Dominant Hearing Impairment (DFNA4). American Journal of Human Genetics, 2004, 74,<br>770-776. | 2.6 | 150       |
| 238 | A Novel Z-Score–Based Method to Analyze Candidate Genes for Age-Related Hearing Impairment. Ear<br>and Hearing, 2004, 25, 133-141.                                                                              | 1.0 | 25        |
| 239 | The WFS1 gene, responsible for low frequency sensorineural hearing loss and Wolfram syndrome, is expressed in a variety of inner ear cells. Histochemistry and Cell Biology, 2003, 119, 247-256.                | 0.8 | 85        |
| 240 | GJB2 deafness gene shows a specific spectrum of mutations in Japan, including a frequent founder mutation. Human Genetics, 2003, 112, 329-333.                                                                  | 1.8 | 144       |
| 241 | Age-related hearing impairment (ARHI): environmental risk factors and genetic prospects. Experimental<br>Gerontology, 2003, 38, 353-359.                                                                        | 1.2 | 80        |
| 242 | Mutational spectrum of theWFS1 gene in Wolfram syndrome, nonsyndromic hearing impairment, diabetes mellitus, and psychiatric disease. Human Mutation, 2003, 22, 275-287.                                        | 1.1 | 160       |
| 243 | Mutations in the COCH gene are a frequent cause of autosomal dominant progressive cochleo-vestibular dysfunction, but not of Meniere's disease. European Journal of Human Genetics, 2003, 11, 744-748.          | 1.4 | 85        |
| 244 | Molecular Characterization of WFS1 in Patients with Wolfram Syndrome. Journal of Molecular<br>Diagnostics, 2003, 5, 88-95.                                                                                      | 1.2 | 44        |
| 245 | Prevalence and Evolutionary Origins of the del(CJB6-D13S1830) Mutation in the DFNB1 Locus in<br>Hearing-Impaired Subjects: a Multicenter Study. American Journal of Human Genetics, 2003, 73,<br>1452-1458.     | 2.6 | 269       |
| 246 | A yeast model for the study of human DFNA5, a gene mutated in nonsyndromic hearing impairment.<br>Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2003, 1638, 179-186.                              | 1.8 | 37        |
| 247 | Recommendations for the Description of Genetic and Audiological Data for Families with<br>Nonsyndromic Hereditary Hearing Impairment. Audiological Medicine, 2003, 1, 148-150.                                  | 0.4 | 125       |
| 248 | A Review of Progressive Phenotypes in Nonsyndromic Autosomal Dominant Hearing Impairment.<br>Audiological Medicine, 2003, 1, 47-55.                                                                             | 0.4 | 12        |
| 249 | The Role of Connexins in Human Disease. Ear and Hearing, 2003, 24, 314-323.                                                                                                                                     | 1.0 | 57        |
| 250 | Nonsyndromic Hearing Loss. Ear and Hearing, 2003, 24, 275-288.                                                                                                                                                  | 1.0 | 51        |
| 251 | Autosomal Dominant Nonsyndromic Hearing Impairment: an Overview. Audiological Medicine, 2003, 1, 21-28.                                                                                                         | 0.4 | 1         |
| 252 | Progressive Late-Onset Sensorineural Hearing Loss and Vestibular Impairment with Vertigo<br>(DFNA9/COCH): Longitudinal Analyses in a Belgian Family. Otology and Neurotology, 2003, 24, 743-748.                | 0.7 | 29        |

| #   | Article                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Progression of Low-Frequency Sensorineural Hearing Loss (DFNA6/14-WFS1). JAMA Otolaryngology, 2003, 129, 421.                                                                    | 1.5 | 36        |
| 254 | Dfna5., 2003,,.                                                                                                                                                                  |     | 0         |
| 255 | a-Tectorin. , 2003, , .                                                                                                                                                          |     | 0         |
| 256 | Coll1a2., 2003,,.                                                                                                                                                                |     | 0         |
| 257 | Linkage of otosclerosis to a third locus (OTSC3) on human chromosome 6p21.3-22.3. Journal of Medical Genetics, 2002, 39, 473-477.                                                | 1.5 | 71        |
| 258 | The ABCA4 2588G>C Stargardt mutation: single origin and increasing frequency from South-West to North-East Europe. European Journal of Human Genetics, 2002, 10, 197-203.        | 1.4 | 45        |
| 259 | Longitudinal and Cross-Sectional Phenotype Analysis in a New, Large Dutch DFNA2/ <i>KCNQ4</i> Family. Annals of Otology, Rhinology and Laryngology, 2002, 111, 267-274.          | 0.6 | 47        |
| 260 | Further Delineation of the <i>DFNA5</i> Phenotype: Results of Speech Recognition Tests. Annals of Otology, Rhinology and Laryngology, 2002, 111, 639-641.                        | 0.6 | 8         |
| 261 | Vestibular Dysfunction in the Epistatic circler Mouse Is Caused by Phenotypic Interaction of One<br>Recessive Gene and Three Modifier Genes. Genome Research, 2002, 12, 613-617. | 2.4 | 12        |
| 262 | Autosomal Dominant Low-Frequency Hearing Impairment (DFNA6/14). Otology and Neurotology, 2002, 23, 876-884.                                                                      | 0.7 | 15        |
| 263 | DFNA10/EYA4 - The Clinical Picture. , 2002, 61, 73-78.                                                                                                                           |     | 12        |
| 264 | DFNA2/ <i>KCNQ4</i> and Its Manifestations. , 2002, 61, 41-46.                                                                                                                   |     | 19        |
| 265 | Clinical Presentation of DFNA8-DFNA12. , 2002, 61, 60-65.                                                                                                                        |     | 2         |
| 266 | Clinical Presentation of the DFNA Loci Where Causative Genes Have Not Yet Been Cloned. , 2002, 61, 98-106.                                                                       |     | 7         |
| 267 | Clinical Features of <i>DFNA5</i> ., 2002, 61, 53-59.                                                                                                                            |     | 8         |
| 268 | Otosclerosis: a genetically heterogeneous disease involving at least three different genes. Bone, 2002, 30, 624-630.                                                             | 1.4 | 47        |
| 269 | A mutational hot spot in theKCNQ4 gene responsible for autosomal dominant hearing impairment.<br>Human Mutation, 2002, 20, 15-19.                                                | 1.1 | 48        |
| 270 | Mutations in the WFS1 gene that cause low-frequency sensorineural hearing loss are small non-inactivating mutations. Human Genetics, 2002, 110, 389-394.                         | 1.8 | 81        |

| #   | Article                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Is DFNA5 a susceptibility gene for age-related hearing impairment?. European Journal of Human<br>Genetics, 2002, 10, 883-886.                                                                       | 1.4 | 27        |
| 272 | Mapping and Cloning of Genes for Inherited Hearing Impairment. Springer Handbook of Auditory<br>Research, 2002, , 45-66.                                                                            | 0.3 | 0         |
| 273 | A common founder for the 35delG GJB2 gene mutation in connexin 26 hearing impairment. Journal of<br>Medical Genetics, 2001, 38, 515-518.                                                            | 1.5 | 169       |
| 274 | A Second Gene for Otosclerosis, OTSC2, Maps to Chromosome 7q34-36. American Journal of Human<br>Genetics, 2001, 68, 495-500.                                                                        | 2.6 | 91        |
| 275 | Fluctuant, progressive hearing loss associated with Menière like vertigo in three patients with the<br>Pendred syndrome. International Journal of Pediatric Otorhinolaryngology, 2001, 61, 207-215. | 0.4 | 29        |
| 276 | Hereditary Otovestibular Dysfunction and M??ni??re's Disease in a Large Belgian Family Is Caused by a Missense Mutation in the COCH Gene. Otology and Neurotology, 2001, 22, 874-881.               | 0.7 | 38        |
| 277 | Speech Recognition Scores Related to Age and Degree of Hearing Impairment in DFNA2/KCNQ4 and DFNA9/COCH. JAMA Otolaryngology, 2001, 127, 1045.                                                      | 1.5 | 42        |
| 278 | MYO1F as a Candidate Gene for Nonsyndromic Deafness, DFNB15. JAMA Otolaryngology, 2001, 127, 921.                                                                                                   | 1.5 | 25        |
| 279 | A Dutch family with progressive autosomal dominant non-syndromic sensorineural hearing impairment linked to DFNA13. Clinical Otolaryngology, 2001, 26, 310-316.                                     | 0.0 | 7         |
| 280 | Hereditary cochleovestibular dysfunction due to a COCH gene mutation (DFNA9): a follow-up study of a family. Clinical Otolaryngology, 2001, 26, 477-483.                                            | 0.0 | 24        |
| 281 | Multiple origins of the mtDNA 7472insC mutation associated with hearing loss and neurological dysfunction. European Journal of Human Genetics, 2001, 9, 385-387.                                    | 1.4 | 19        |
| 282 | Genes in the ear: what have we learned over the last years?. Scandinavian Audiology, 2001, 30, 44-53.                                                                                               | 0.5 | 3         |
| 283 | Mutations in the Wolfram syndrome 1 gene (WFS1) are a common cause of low frequency sensorineural hearing loss. Human Molecular Genetics, 2001, 10, 2501-2508.                                      | 1.4 | 213       |
| 284 | Mutations in the transcriptional activator EYA4 cause late-onset deafness at the DFNA10 locus. Human<br>Molecular Genetics, 2001, 10, 195-200.                                                      | 1.4 | 210       |
| 285 | Mutations in the novel protocadherin PCDH15 cause Usher syndrome type 1F. Human Molecular<br>Genetics, 2001, 10, 1709-1718.                                                                         | 1.4 | 257       |
| 286 | A common ancestor for COCH related cochleovestibular (DFNA9) patients in Belgium and The<br>Netherlands bearing the P51S mutation. Journal of Medical Genetics, 2001, 38, 61-65.                    | 1.5 | 43        |
| 287 | High resolution imaging of the mouse inner ear by microtomography: A new tool in inner ear research. , 2000, 259, 229-236.                                                                          |     | 23        |
| 288 | Mutations in the KCNQ4 K+ channel gene, responsible for autosomal dominant hearing loss, cluster<br>in the channel pore region. American Journal of Medical Genetics Part A, 2000, 93, 184-187.     | 2.4 | 59        |

| #   | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 289 | Maternally inherited hearing impairment. Clinical Genetics, 2000, 57, 409-414.                                                                                                                                           | 1.0 | 75        |
| 290 | Identification of a new connexin gene GJA11 (Cx59) using degenerate PCR primers. GeneScreen, 2000, 1,<br>35-40.                                                                                                          | 0.7 | 1         |
| 291 | A Dutch family with progressive sensorineural hearing impairment linked to the DFNA2 region.<br>European Archives of Oto-Rhino-Laryngology, 2000, 257, 62-67.                                                            | 0.8 | 11        |
| 292 | Refined localization and two additional linked families for the DFNA10 locus for nonsyndromic hearing impairment. Human Genetics, 2000, 107, 7-11.                                                                       | 1.8 | 4         |
| 293 | Familial Progressive Vestibulocochlear Dysfunction Caused by a COCH Mutation (DFNA9). Archives of Neurology, 2000, 57, 1045.                                                                                             | 4.9 | 24        |
| 294 | The M34T Allele Variant of Connexin 26. Genetic Testing and Molecular Biomarkers, 2000, 4, 335-344.                                                                                                                      | 1.7 | 47        |
| 295 | Identification of BPESC1, a Novel Gene Disrupted by a Balanced Chromosomal Translocation, t(3;4)(q23;p15.2), in a Patient with BPES. Genomics, 2000, 68, 296-304.                                                        | 1.3 | 23        |
| 296 | Refined localization and two additional linked families for the DFNA10 locus for nonsyndromic hearing impairment. Human Genetics, 2000, 107, 7-11.                                                                       | 1.8 | 12        |
| 297 | The phenotype of DFNA13/: Nonsyndromic autosomal dominant mid-frequency and high-frequency sensorineural hearing impairment. American Journal of Otolaryngology - Head and Neck Medicine and Surgery, 2000, 21, 181-187. | 0.6 | 27        |
| 298 | The Coch Gene: A Frequent Cause of Hearing Impairment and Vestibular Dysfunction?. International<br>Journal of Audiology, 1999, 33, 297-302.                                                                             | 0.7 | 16        |
| 299 | Cloning Genes for Non-Syndromal Hearing Impairment. International Journal of Audiology, 1999, 33, 271-278.                                                                                                               | 0.7 | 2         |
| 300 | High Prevalence of Symptoms of Meniere's Disease in three Families With a Mutation in the COCH Gene.<br>Human Molecular Genetics, 1999, 8, 1425-1429.                                                                    | 1.4 | 144       |
| 301 | Deafness linked to DFNA2: one locus but how many genes?. Nature Genetics, 1999, 21, 263-263.                                                                                                                             | 9.4 | 35        |
| 302 | Mutations in COL11A2 cause non-syndromic hearing loss (DFNA13). Nature Genetics, 1999, 23, 413-419.                                                                                                                      | 9.4 | 285       |
| 303 | Hearing impairment and neurological dysfunction associated with a mutation in the mitochondrial tRNASer(UCN) gene. European Journal of Human Genetics, 1999, 7, 45-51.                                                   | 1.4 | 80        |
| 304 | Mutation in the zonadhesin-like domain of α-tectorin associated with autosomal dominant non-syndromic hearing loss. European Journal of Human Genetics, 1999, 7, 255-258.                                                | 1.4 | 51        |
| 305 | Mutations in the KCNQ4 gene are responsible for autosomal dominant deafness in four DFNA2<br>families. Human Molecular Genetics, 1999, 8, 1321-1328.                                                                     | 1.4 | 154       |
| 306 | Non-syndromic hearing loss associated with enlarged vestibular aqueduct is caused by PDS mutations. Human Genetics, 1999, 104, 188-192.                                                                                  | 1.8 | 289       |

| #   | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 307 | Alpha-tectorin involvement in hearing disabilities: one gene - two phenotypes. Human Genetics, 1999,<br>105, 211-216.                                                                                                 | 1.8 | 51        |
| 308 | Determination of the carrier frequency of the common GJB2 (connexin-26) 35delG mutation in the Belgian population using an easy and reliable screening method. , 1999, 14, 263-266.                                   |     | 83        |
| 309 | Autosomal recessive nonsyndromic hearing loss. , 1999, 89, 123-129.                                                                                                                                                   |     | 23        |
| 310 | Autosomal dominant nonsyndromic hearing impairment. American Journal of Medical Genetics Part A, 1999, 89, 167-174.                                                                                                   | 2.4 | 23        |
| 311 | A Gene for Fluctuating, Progressive Autosomal Dominant Nonsyndromic Hearing Loss, DFNA16, Maps<br>to Chromosome 2q23-24.3. American Journal of Human Genetics, 1999, 65, 141-150.                                     | 2.6 | 39        |
| 312 | Non-syndromic hearing impairment: gene linkage and cloning. International Journal of Pediatric<br>Otorhinolaryngology, 1999, 49, S159-S163.                                                                           | 0.4 | 7         |
| 313 | Congenital non-syndromal sensorineural hearing impairment due to connexin 26 gene mutations —<br>molecular and audiological findings. International Journal of Pediatric Otorhinolaryngology, 1999,<br>50, 3-13.      | 0.4 | 57        |
| 314 | The Dfna2 Locus for Hearing Impairment: Two Genes Regulating K+ Ion Recycling in the Inner Ear.<br>International Journal of Audiology, 1999, 33, 285-289.                                                             | 0.7 | 11        |
| 315 | Nonsyndromic hearing impairment is associated with a mutation in DFNA5. Nature Genetics, 1998, 20, 194-197.                                                                                                           | 9.4 | 323       |
| 316 | Nonsyndromic Autosomal Dominant Progressive Sensorineural Hearing Loss: Audiologic Analysis of a<br>Pedigree Linked to DFNA2. Laryngoscope, 1998, 108, 74-80.                                                         | 1.1 | 25        |
| 317 | Mutations in the human α-tectorin gene cause autosomal dominant non-syndromic hearing impairment.<br>Nature Genetics, 1998, 19, 60-62.                                                                                | 9.4 | 323       |
| 318 | Evidence for somatic and germline mosaicism in CRASH syndrome. Human Mutation, 1998, 11, S284-S287.                                                                                                                   | 1.1 | 14        |
| 319 | Localization of a novel gene for nonsyndromic hearing loss (DFNB17) to chromosome region 7q31.<br>American Journal of Medical Genetics Part A, 1998, 78, 107-113.                                                     | 2.4 | 45        |
| 320 | Identification of mutations in the connexin 26 gene that cause autosomal recessive nonsyndromic hearing loss. , 1998, 11, 387-394.                                                                                    |     | 216       |
| 321 | Mitochondrial inherited hearing loss. Clinical Otolaryngology, 1998, 23, 3-8.                                                                                                                                         | 0.0 | 12        |
| 322 | Non-syndromic autosomal dominant sensorineural hearing loss: a new field of research. Clinical<br>Otolaryngology, 1998, 23, 9-17.                                                                                     | 0.0 | 9         |
| 323 | Identification and mutation analysis of a cochlear-expressed, zinc finger protein gene at the DFNB7/11<br>and dn hearing-loss-loci on human chromosome 9q and mouse chromosome 19. Gene, 1998, 215, 461-469.          | 1.0 | 32        |
| 324 | Progressive hearing loss, hypoplasia of the cochlea and widened vestibular aqueducts are very<br>common features in Pendred's syndrome. International Journal of Pediatric Otorhinolaryngology,<br>1998, 45, 113-123. | 0.4 | 85        |

| #   | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 325 | Connexin-26 mutations in sporadic non-syndromal sensorineural deafness. Lancet, The, 1998, 351, 415.                                                                                                                    | 6.3  | 109       |
| 326 | Mutations in the Connexin 26 Gene (GJB2) among Ashkenazi Jews with Nonsyndromic Recessive<br>Deafness. New England Journal of Medicine, 1998, 339, 1500-1505.                                                           | 13.9 | 513       |
| 327 | Van Buchem Disease (Hyperostosis Corticalis Generalisata) Maps to Chromosome 17q12-q21. American<br>Journal of Human Genetics, 1998, 62, 391-399.                                                                       | 2.6  | 141       |
| 328 | Familial congenital hydrocephalus and aqueduct stenosis with probably autosomal dominant inheritance and variable expression. Journal of the Neurological Sciences, 1998, 158, 101-105.                                 | 0.3  | 23        |
| 329 | Dependence of the Ligation Efficiency of Large DNA Fragments Isolated from Agarose Gels on the Purification Method. Preparative Biochemistry and Biotechnology, 1998, 28, 235-241.                                      | 1.0  | 1         |
| 330 | Two Frequent Missense Mutations in Pendred Syndrome. Human Molecular Genetics, 1998, 7, 1099-1104.                                                                                                                      | 1.4  | 174       |
| 331 | Genotype-phenotype correlation in L1 associated diseases Journal of Medical Genetics, 1998, 35, 399-404.                                                                                                                | 1.5  | 99        |
| 332 | L1 knockout mice show dilated ventricles, vermis hypoplasia and impaired exploration patterns. Human<br>Molecular Genetics, 1998, 7, 999-1009.                                                                          | 1.4  | 228       |
| 333 | Localization of a gene for otosclerosis to chromosome 15q25-q26. Human Molecular Genetics, 1998, 7, 285-290.                                                                                                            | 1.4  | 112       |
| 334 | Early-Onset Sensorineural Hearing Loss and Late-Onset Neurologic Complaints Caused by a<br>Mitochondrial Mutation at Position 7472. JAMA Otolaryngology, 1998, 124, 886.                                                | 1.5  | 16        |
| 335 | Presymptomatic Diagnosis of Nonsyndromic Hearing Loss by Genotyping. JAMA Otolaryngology, 1998,<br>124, 20.                                                                                                             | 1.5  | 12        |
| 336 | Localization of a novel gene for nonsyndromic hearing loss (DFNB17) to chromosome region 7q31.<br>American Journal of Medical Genetics Part A, 1998, 78, 107-113.                                                       | 2.4  | 1         |
| 337 | Complementary Deoxyribonucleic Acid Cloning and Characterization of a Putative Human Axonemal<br>Dynein Light Chain Gene1. Journal of Clinical Endocrinology and Metabolism, 1997, 82, 3047-3053.                       | 1.8  | 23        |
| 338 | Branchio-Oto-Renal Syndrome: Identification of Novel Mutations, Molecular Characterization,<br>Mutation Distribution, and Prospects for Genetic Testing. Genetic Testing and Molecular Biomarkers,<br>1997, 1, 243-251. | 1.7  | 46        |
| 339 | L1-associated diseases: clinical geneticists divide, molecular geneticists unite. Human Molecular<br>Genetics, 1997, 6, 1625-1632.                                                                                      | 1.4  | 172       |
| 340 | The Gene for Pendred Syndrome Is Located between D7S501 and D7S692 in a 1.7-cM Region on Chromosome 7q. Genomics, 1997, 40, 48-54.                                                                                      | 1.3  | 29        |
| 341 | Linkage Analysis of Progressive Hearing Loss in Five Extended Families Maps the DFNA2 Gene to a 1.25-Mb<br>Region on Chromosome 1p. Genomics, 1997, 41, 70-74.                                                          | 1.3  | 52        |
| 342 | Chromosomal Mapping of Two Members of the Human Dynein Gene Family to Chromosome Regions 7p15 and 11q13 near the Deafness Loci DFNA 5 and DFNA 11. Genomics, 1997, 44, 362-364.                                         | 1.3  | 9         |

| #   | Article                                                                                                                                                                                                                                           | IF                | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|
| 343 | A Novel Locus for Autosomal Dominant Nonsyndromic Hearing Loss, DFNA13, Maps to Chromosome 6p.<br>American Journal of Human Genetics, 1997, 61, 924-927.                                                                                          | 2.6               | 45        |
| 344 | Construction of P1-Derived Artificial Chromosome and Yeast Artificial Chromosome Contigs<br>Encompassing theDFNB7andDFNB11Region of Chromosome 9q13–21. Genome Research, 1997, 7, 879-88                                                          | 86 <sup>2.4</sup> | 14        |
| 345 | Physical mapping of the HOXA1 gene and the hnRPA2B1 gene in a YAC contig from human chromosome<br>7p14-p15. Human Genetics, 1997, 99, 831-833.                                                                                                    | 1.8               | 5         |
| 346 | New gene for autosomal recessive non-syndromic hearing loss maps to either chromosome 3q or 19p.<br>American Journal of Medical Genetics Part A, 1997, 71, 467-471.                                                                               | 2.4               | 50        |
| 347 | Refined Mapping of a Gene for Autosomal Dominant Progressive Sensorineural Hearing Loss (DFNA5)<br>to a 2-cM Region, and Exclusion of a Candidate Gene That Is Expressed in the Cochlea. European Journal<br>of Human Genetics, 1997, 5, 397-405. | 1.4               | 20        |
| 348 | Complementary Deoxyribonucleic Acid Cloning and Characterization of a Putative Human Axonemal<br>Dynein Light Chain Gene. Journal of Clinical Endocrinology and Metabolism, 1997, 82, 3047-3053.                                                  | 1.8               | 21        |
| 349 | Reassignment of MYCL1 to human chromosome 1p34.3 by fluorescence in situ hybridization.<br>Cytogenetic and Genome Research, 1996, 72, 189-190.                                                                                                    | 0.6               | 14        |
| 350 | The clinical spectrum of mutations in L1, a neuronal cell adhesion molecule. , 1996, 64, 73-77.                                                                                                                                                   |                   | 74        |
| 351 | A locus-specific mutation database for the neural cell adhesion molecule L1CAM (Xq28). Human<br>Mutation, 1996, 8, 391-391.                                                                                                                       | 1.1               | 47        |
| 352 | A gene for autosomal dominant late-onset progressive non-syndromic hearing loss, DFNA10, maps to<br>chromosome 6. Human Molecular Genetics, 1996, 5, 853-856.                                                                                     | 1.4               | 60        |
| 353 | Refined Genetic and Physical Mapping of BPES Type II. European Journal of Human Genetics, 1996, 4, 34-38.                                                                                                                                         | 1.4               | 20        |
| 354 | Chromosome 13q deletion with Waardenburg syndrome: further evidence for a gene involved in neural crest function on 13q Journal of Medical Genetics, 1995, 32, 531-536.                                                                           | 1.5               | 34        |
| 355 | Consanguineous nuclear families used to identify a new locus for recessive non-syndromic hearing<br>loss on 14q. Human Molecular Genetics, 1995, 4, 1643-1648.                                                                                    | 1.4               | 51        |
| 356 | An autosomal recessive nonsyndromic form of sensorineural hearing loss maps to 3p-DFNB6 Genome<br>Research, 1995, 5, 305-308.                                                                                                                     | 2.4               | 48        |
| 357 | CRASH Syndrome: Clinical Spectrum of Corpus Callosum Hypoplasia, Retardation, Adducted Thumbs,<br>Spastic Paraparesis and Hydrocephalus Due to Mutations in One Single Gene, L1. European Journal of<br>Human Genetics, 1995, 3, 273-284.         | 1.4               | 201       |
| 358 | X-linked hydrocephalus and MASA syndrome present in one family are due to a single missense mutation in exon 28 of the L1CAM gene. Human Molecular Genetics, 1994, 3, 2255-2256.                                                                  | 1.4               | 50        |
| 359 | Identification of a 5' splice site mutation in intron 4 of the L1CAM gene in an X-linked hydrocephalus<br>family. Human Molecular Genetics, 1994, 3, 671-673.                                                                                     | 1.4               | 34        |
| 360 | Linkage of Autosomal Dominant Hearing Loss to the Short Arm of Chromosome 1 in Two Families. New<br>England Journal of Medicine, 1994, 331, 425-431.                                                                                              | 13.9              | 137       |

| #   | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 361 | MASA syndrome is due to mutations in the neural cell adhesion gene L1CAM. Nature Genetics, 1994, 7, 408-413.                                                                                                                        | 9.4 | 165       |
| 362 | A duplication in the L1CAM gene associated with X–linked hydrocephalus. Nature Genetics, 1993, 4,<br>421-425.                                                                                                                       | 9.4 | 91        |
| 363 | Amplification and sequencing of variable regions in bacterial 23S ribosomal RNA genes with conserved primer sequences. Current Microbiology, 1993, 27, 147-151.                                                                     | 1.0 | 65        |
| 364 | A Contiguous Physical Map of the Pericentromeric Region of Chromosome 21q between D21Z1 and D21S13E. Genomics, 1993, 15, 626-630.                                                                                                   | 1.3 | 12        |
| 365 | Identification of Enteropathogenic Campylobacter Species by Oligonucleotide Probes and Polymerase<br>Chain Reaction Based on 16S rRNA Genes. Systematic and Applied Microbiology, 1993, 16, 30-36.                                  | 1.2 | 39        |
| 366 | Structure of 16S and 23S Ribosomal RNA Genes in Campylobacter Species: Phylogenetic Analysis of the<br>Genus Campylobacter and Presence of Internal Transcribed Spacers. Systematic and Applied<br>Microbiology, 1993, 16, 361-368. | 1.2 | 38        |
| 367 | Discrimination among thermophilic Campylobacter species by polymerase chain reaction amplification of 23S rRNA gene fragments. Journal of Clinical Microbiology, 1993, 31, 3340-3343.                                               | 1.8 | 118       |
| 368 | Unique sequence homology in the pericentromeric regions of the long arms of chromosomes 13 and 21. Genomics, 1992, 12, 158-160.                                                                                                     | 1.3 | 13        |
| 369 | Identification of chromosome 21 DNA polymorphisms for genetic studies in Alzheimer's disease and<br>Down syndrome. Human Genetics, 1991, 87, 649-653.                                                                               | 1.8 | 13        |
| 370 | Subregional localization of the chromosome 21 loci D21S24 and D21S26 using physical mapping techniques. Human Genetics, 1991, 87, 109-111.                                                                                          | 1.8 | 2         |
| 371 | An informative Mspl polymorphism detected at the D21S16 locus. Human Genetics, 1990, 85, 140-140.                                                                                                                                   | 1.8 | 2         |
| 372 | The pericentromeric 21 DNA marker pGSM21 (D21S13) contains an expressed HTF island. Genomics, 1990,<br>7, 119-122.                                                                                                                  | 1.3 | 9         |
| 373 | Selection of human chromosome 21-specific DNA probes for genetic analysis in Alzheimer's dementia<br>and Down syndrome. Human Genetics, 1989, 83, 58-60.                                                                            | 1.8 | 11        |
| 374 | The ABCA4 2588G>C Stargardt mutation: single origin and increasing frequency from South-West to<br>North-East Europe. , 0, .                                                                                                        |     | 1         |