Francois Waldner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5076513/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Graincastâ"¢: monitoring crop production across the Australian grainbelt. Crop and Pasture Science, 2023, 74, 509-523.	1.5	5
2	Data fusion using climatology and seasonal climate forecasts improves estimates of Australian national wheat yields. Agricultural and Forest Meteorology, 2022, 320, 108932.	4.8	5
3	Detect, Consolidate, Delineate: Scalable Mapping of Field Boundaries Using Satellite Images. Remote Sensing, 2021, 13, 2197.	4.0	32
4	Looking for Change? Roll the Dice and Demand Attention. Remote Sensing, 2021, 13, 3707.	4.0	44
5	Yield forecasting with machine learning and small data: What gains for grains?. Agricultural and Forest Meteorology, 2021, 308-309, 108555.	4.8	28
6	Modelling seasonal pasture growth and botanical composition at the paddock scale with satellite imagery. In Silico Plants, 2021, 3, .	1.9	11
7	Nationwide crop yield estimation based on photosynthesis and meteorological stress indices. Agricultural and Forest Meteorology, 2020, 284, 107872.	4.8	22
8	Estimating wheat yields in Australia using climate records, satellite image time series and machine learning methods. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 160, 124-135.	11.1	157
9	Climate drivers provide valuable insights into late season prediction of Australian wheat yield. Agricultural and Forest Meteorology, 2020, 295, 108202.	4.8	3
10	The T Index: Measuring the Reliability of Accuracy Estimates Obtained from Non-Probability Samples. Remote Sensing, 2020, 12, 2483.	4.0	4
11	To Blend or Not to Blend? A Framework for Nationwide Landsat–MODIS Data Selection for Crop Yield Prediction. Remote Sensing, 2020, 12, 1653.	4.0	6
12	ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 162, 94-114.	11.1	728
13	Combining Fractional Cover Images with One-Class Classifiers Enables Near Real-Time Monitoring of Fallows in the Northern Grains Region of Australia. Remote Sensing, 2020, 12, 1337.	4.0	5
14	All pixels are useful, but some are more useful: Efficient in situ data collection for crop-type mapping using sequential exploration methods. International Journal of Applied Earth Observation and Geoinformation, 2020, 91, 102114.	2.8	11
15	Deep learning on edge: Extracting field boundaries from satellite images with a convolutional neural network. Remote Sensing of Environment, 2020, 245, 111741.	11.0	134
16	Simplicity on the far side of complexity: optimizing nitrogen for wheat in increasingly variable rainfall environments. Environmental Research Letters, 2020, 15, 114060.	5.2	11
17	How Response Designs and Class Proportions Affect the Accuracy of Validation Data. Remote Sensing, 2020, 12, 257.	4.0	6
18	A comparison of global agricultural monitoring systems and current gaps. Agricultural Systems, 2019–168–258-272	6.1	183

FRANCOIS WALDNER

#	Article	IF	CITATIONS
19	Needle in a haystack: Mapping rare and infrequent crops using satellite imagery and data balancing methods. Remote Sensing of Environment, 2019, 233, 111375.	11.0	37
20	Socio-psychological and management drivers explain farm level wheat yield gaps in Australia. Agronomy for Sustainable Development, 2019, 39, 1.	5.3	12
21	Roadside collection of training data for cropland mapping is viable when environmental and management gradients are surveyed. International Journal of Applied Earth Observation and Geoinformation, 2019, 80, 82-93.	2.8	22
22	High temporal resolution of leaf area data improves empirical estimation of grain yield. Scientific Reports, 2019, 9, 15714.	3.3	35
23	Conflation of expert and crowd reference data to validate global binary thematic maps. Remote Sensing of Environment, 2019, 221, 235-246.	11.0	24
24	Social capital and transaction costs in millet markets. Heliyon, 2018, 4, e00505.	3.2	9
25	Regional-scale monitoring of cropland intensity and productivity with multi-source satellite image time series. GIScience and Remote Sensing, 2018, 55, 539-567.	5.9	38
26	Local adjustments of image spatial resolution to optimize large-area mapping in the era of big data. International Journal of Applied Earth Observation and Geoinformation, 2018, 73, 374-385.	2.8	9
27	Mapping Cropland Abandonment in the Aral Sea Basin with MODIS Time Series. Remote Sensing, 2018, 10, 159.	4.0	68
28	Where can pixel counting area estimates meet user-defined accuracy requirements?. International Journal of Applied Earth Observation and Geoinformation, 2017, 60, 1-10.	2.8	25
29	A global reference database of crowdsourced cropland data collected using the Geo-Wiki platform. Scientific Data, 2017, 4, 170136.	5.3	46
30	The impact of training class proportions on binary cropland classification. Remote Sensing Letters, 2017, 8, 1122-1131.	1.4	18
31	An information-based criterion to measure pixel-level thematic uncertainty in land cover classifications. Stochastic Environmental Research and Risk Assessment, 2017, 31, 2297-2312.	4.0	9
32	National-scale cropland mapping based on spectral-temporal features and outdated land cover information. PLoS ONE, 2017, 12, e0181911.	2.5	42
33	A multi-disciplinary perspective on emergent and future innovations in peer review. F1000Research, 2017, 6, 1151.	1.6	62
34	A multi-disciplinary perspective on emergent and future innovations in peer review. F1000Research, 2017, 6, 1151.	1.6	134
35	The academic, economic and societal impacts of Open Access: an evidence-based review. F1000Research, 2016, 5, 632.	1.6	284
36	A Unified Cropland Layer at 250 m for Global Agriculture Monitoring. Data, 2016, 1, 3.	2.3	52

FRANCOIS WALDNER

#	Article	IF	CITATIONS
37	Cropland Mapping over Sahelian and Sudanian Agrosystems: A Knowledge-Based Approach Using PROBA-V Time Series at 100-m. Remote Sensing, 2016, 8, 232.	4.0	49
38	Sentinel-2's Potential for Sub-Pixel Landscape Feature Detection. Remote Sensing, 2016, 8, 488.	4.0	132
39	Timely monitoring of Asian Migratory locust habitats in the Amudarya delta, Uzbekistan using time series of satellite remote sensing vegetation index. Journal of Environmental Management, 2016, 183, 562-575.	7.8	19
40	Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity. International Journal of Remote Sensing, 2016, 37, 3196-3231.	2.9	92
41	The academic, economic and societal impacts of Open Access: an evidence-based review. F1000Research, 2016, 5, 632.	1.6	141
42	An Automated Method for Annual Cropland Mapping along the Season for Various Globally-Distributed Agrosystems Using High Spatial and Temporal Resolution Time Series. Remote Sensing, 2015, 7, 13208-13232.	4.0	112
43	Operational Monitoring of the Desert Locust Habitat with Earth Observation: An Assessment. ISPRS International Journal of Geo-Information, 2015, 4, 2379-2400.	2.9	39
44	A Dynamic Vegetation Senescence Indicator for Near-Real-Time Desert Locust Habitat Monitoring with MODIS. Remote Sensing, 2015, 7, 7545-7570.	4.0	43
45	Mapping Priorities to Focus Cropland Mapping Activities: Fitness Assessment of Existing Global, Regional and National Cropland Maps. Remote Sensing, 2015, 7, 7959-7986.	4.0	87
46	Land Cover and Crop Type Classification along the Season Based on Biophysical Variables Retrieved from Multi-Sensor High-Resolution Time Series. Remote Sensing, 2015, 7, 10400-10424.	4.0	54
47	A Generic Algorithm to Estimate LAI, FAPAR and FCOVER Variables from SPOT4_HRVIR and Landsat Sensors: Evaluation of the Consistency and Comparison with Ground Measurements. Remote Sensing, 2015, 7, 15494-15516.	4.0	70
48	Maize Leaf Area Index Retrieval from Synthetic Quad Pol SAR Time Series Using the Water Cloud Model. Remote Sensing, 2015, 7, 16204-16225.	4.0	53
49	Automated annual cropland mapping using knowledge-based temporal features. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 110, 1-13.	11.1	135
50	A multi-disciplinary perspective on emergent and future innovations in peer review. F1000Research, 0, 6, 1151.	1.6	14
51	The academic, economic and societal impacts of Open Access: an evidence-based review. F1000Research, 0, 5, 632.	1.6	17