List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5075803/publications.pdf Version: 2024-02-01

RUSSEL TODAH

#	Article	IF	CITATIONS
1	Modified PDMS packaging of sensory e-textile circuit microsystems for improved robustness with washing. Microsystem Technologies, 2022, 28, 1467-1484.	2.0	23
2	Automated insertion of package dies onto wire and into a textile yarn sheath. Microsystem Technologies, 2022, 28, 1409-1421.	2.0	9
3	Finite element analysis (FEA) modelling and experimental verification to optimise flexible electronic packaging for e-textiles. Microsystem Technologies, 2022, 28, 1515-1524.	2.0	2
4	Textile-based triboelectric nanogenerator with alternating positive and negative freestanding woven structure for harvesting sliding energy in all directions. Nano Energy, 2022, 92, 106739.	16.0	36
5	E-Textile Haptic Feedback Gloves for Virtual and Augmented Reality Applications. , 2022, 15, .		0
6	Investigating the Mechanical Failures at the Bonded Joints of Screen-Printed E-Textile Circuits. , 2022, 15, .		0
7	Textile Manufacturing Compatible Triboelectric Nanogenerator with Alternating Positive and Negative Woven Structure. , 2022, 15, .		0
8	E-Textile Technology Review–From Materials to Application. IEEE Access, 2021, 9, 97152-97179.	4.2	40
9	Investigation of Nozzle Height Control to Improve Dispenser Printing of E-Textiles. Proceedings (mdpi), 2021, 68, .	0.2	5
10	Development of a Printed E-Textile for the Measurement of Muscle Activation via EMG for the Purpose of Gesture Control. Proceedings (mdpi), 2021, 68, .	0.2	0
11	Investigation of the Effects of Ink Pigmentation on Substrate Profiling for E-Textile Dispenser Printing. , 2021, , .		1
12	Effect of textile primer layer on screen printed conductors for e-textiles. , 2021, , .		1
13	Screen Printing Reliable Wearable Microstrip Antennas on Rough Textile Substrates. , 2021, , .		1
14	Textile Manufacturing Compatible Triboelectric Nanogenerator with Alternating Positive and Negative Freestanding Grating Structure. Proceedings (mdpi), 2020, 32, .	0.2	0
15	Integration and Testing of a Three-Axis Accelerometer in a Woven E-Textile Sleeve for Wearable Movement Monitoring. Sensors, 2020, 20, 5033.	3.8	15
16	Reliable UHF Long-Range Textile-Integrated RFID Tag Based on a Compact Flexible Antenna Filament. Sensors, 2020, 20, 3435.	3.8	38
17	Wash Testing of Electronic Yarn. Materials, 2020, 13, 1228.	2.9	21

18 Influence of textile structure on the wearability of printed e-textiles. , 2020, , .

6

#	Article	IF	CITATIONS
19	Dispenser-printed sound-emitting fabrics for applications in the creative fashion and smart architecture industry. Journal of the Textile Institute, 2019, 110, 1-9.	1.9	22
20	Enabling platform technology for smart fabric design and printing. Journal of Engineered Fibers and Fabrics, 2019, 14, 155892501984590.	1.0	4
21	Energy Harvesting Power Supplies for Electronic Textiles. , 2019, , .		3
22	Textile-based triboelectric nanogenerator with alternating positive and negative freestanding grating structure. Nano Energy, 2019, 66, 104148.	16.0	66
23	Novel Electronic Packaging Method for Functional Electronic Textiles. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9, 216-225.	2.5	15
24	Integrating Flexible Filament Circuits for Eâ€Textile Applications. Advanced Materials Technologies, 2019, 4, 1900176.	5.8	74
25	Embedded Capacitive Proximity and Touch Sensing Flexible Circuit System for Electronic Textile and Wearable Systems. IEEE Sensors Journal, 2019, 19, 6975-6985.	4.7	24
26	Modelling Reliable Electrical Conductors for E-Textile Circuits on Polyimide Filaments. Proceedings (mdpi), 2019, 32, .	0.2	0
27	Integration of temperature sensors in fabrics. , 2019, , .		5
28	Recent progress on textile-based triboelectric nanogenerators. Nano Energy, 2019, 55, 401-423.	16.0	184
29	Energy-harvesting materials for smart fabrics and textiles. MRS Bulletin, 2018, 43, 214-219.	3.5	29
30	Stress Analysis and Optimization of a Flip Chip on Flex Electronic Packaging Method for Functional Electronic Textiles. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8, 186-194.	2.5	12
31	Functional Electronic Textiles: Circuit Integration and Energy Harvesting Power Supplies. , 2018, , .		3
32	Textile-Based Flexible Coils for Wireless Inductive Power Transmission. Applied Sciences (Switzerland), 2018, 8, 912.	2.5	15
33	Solution Processed Organic Solar Cells on Textiles. IEEE Journal of Photovoltaics, 2018, 8, 1710-1715.	2.5	26
34	An automated process for inclusion of package dies and circuitry within a textile yarn. , 2018, , .		3
35	Development of User-Friendly Wearable Electronic Textiles for Healthcare Applications. Sensors, 2018, 18, 2410.	3.8	49
36	Improving the integration of e-textile microsystems' encapsulation by modifying PDMS formulation , 2018, , .		2

#	Article	IF	CITATIONS
37	The thickness and material optimization of flexible electronic packaging for functional electronic textile. , 2018, , .		1
38	An all screen-printed free-standing piezoelectric diaphragm for application on textile. , 2018, , .		0
39	Flexible piezoelectric nano-composite films for kinetic energy harvesting from textiles. Nano Energy, 2017, 33, 146-156.	16.0	89
40	A printed, dry electrode Frank configuration vest for ambulatory vectorcardiographic monitoring. Smart Materials and Structures, 2017, 26, 025029.	3.5	13
41	Dispenser printing of electrochromic display on textiles for creative applications. Electronics Letters, 2017, 53, 779-781.	1.0	16
42	Stress Analysis of Flexible Packaging for the Integration of Electronic Components within Woven Textiles. , 2017, , .		3
43	Improving the Durability of Screen Printed Conductors on Woven Fabrics for E-Textile Applications. Proceedings (mdpi), 2017, 1, 613.	0.2	4
44	Smart Textiles for Smart Home Control and Enriching Future Wireless Sensor Network Data. Smart Sensors, Measurement and Instrumentation, 2017, , 159-183.	0.6	13
45	Dispenser printed electroluminescent lamps on textiles for smart fabric applications. Smart Materials and Structures, 2016, 25, 045016.	3.5	21
46	Dispenser printed capacitive proximity sensor on fabric for applications in the creative industries. Sensors and Actuators A: Physical, 2016, 247, 239-246.	4.1	33
47	Actively actuated all dispenser printed thermochromic smart fabric device. Electronics Letters, 2016, 52, 1601-1603.	1.0	7
48	Screen Printable Flexible BiTe–SbTe-Based Composite Thermoelectric Materials on Textiles for Wearable Applications. IEEE Transactions on Electron Devices, 2016, 63, 4024-4030.	3.0	61
49	Investigation and improvement of the dispenser printing of electrical interconnections for smart fabric applications. Smart Materials and Structures, 2016, 25, 105021.	3.5	7
50	Autonomy is the key. , 2016, , .		3
51	A Complex Multilayer Screen-Printed Electroluminescent Watch Display on Fabric. Journal of Display Technology, 2016, 12, 1757-1763.	1.2	25
52	Fully spray-coated organic solar cells on woven polyester cotton fabrics for wearable energy harvesting applications. Journal of Materials Chemistry A, 2016, 4, 5561-5568.	10.3	57
53	Flexible screen printed thermoelectric generator with enhanced processes and materials. Sensors and Actuators A: Physical, 2016, 238, 196-206.	4.1	94
54	Screen-printed free-standing piezoelectric devices using low temperature process. , 2015, , .		1

#	Article	IF	CITATIONS
55	Fully directâ€write dispenser printed dipole antenna on woven polyester cotton fabric for wearable electronics applications. Electronics Letters, 2015, 51, 1306-1308.	1.0	11
56	Prototyping a voice-controlled smart home hub wirelessly integrated with a wearable device. , 2015, , .		4
57	Laser curing of screen and inkjet printed conductors on flexible substrates. , 2015, , .		2
58	Wearable EEG headband using printed electrodes and powered by energy harvesting for emotion monitoring in ambient assisted living. Smart Materials and Structures, 2015, 24, 125028.	3.5	27
59	A novel pneumatic dispenser fabrication technique for digitally printing electroluminescent lamps on fabric. , 2015, , .		6
60	Optimisation of a novel direct-write dispenser printer technique for improving printed smart fabric device performance. , 2015, , .		4
61	Clamping effect on the piezoelectric responses of screen-printed low temperature PZT/Polymer films on flexible substrates. Smart Materials and Structures, 2015, 24, 115030.	3.5	13
62	Fully direct write dispenser printed sound emitting smart fabrics. Electronics Letters, 2015, 51, 1266-1268.	1.0	5
63	Effect of infill patterns on print quality of dispenserâ€printed electronic ink. Electronics Letters, 2015, 51, 1186-1187.	1.0	4
64	Dispenser printed proximity sensor on fabric for creative smart fabric applications. , 2015, , .		2
65	Novel active electrodes for ECG monitoring on woven textiles fabricated by screen and stencil printing. Sensors and Actuators A: Physical, 2015, 221, 60-66.	4.1	66
66	Printed frequency selective surfaces on textiles. Electronics Letters, 2014, 50, 916-917.	1.0	59
67	A novel fabrication process to realize a valveless micropump on a flexible substrate. Smart Materials and Structures, 2014, 23, 025034.	3.5	17
68	Screen printed fabric electrode array for wearable functional electrical stimulation. Sensors and Actuators A: Physical, 2014, 213, 108-115.	4.1	90
69	An investigation into the durability of screen-printed conductive tracks on textiles. Measurement Science and Technology, 2014, 25, 025006.	2.6	45
70	The development of screen printed conductive networks on textiles for biopotential monitoring applications. Sensors and Actuators A: Physical, 2014, 206, 35-41.	4.1	88
71	A Smart Textile Based Facial EMG and EOG Computer Interface. IEEE Sensors Journal, 2014, 14, 393-400.	4.7	79
72	A systematic review of the key factors affecting tissue viability and rehabilitationÂoutcomes of the residual limb in lower extremity traumatic amputees. Journal of Tissue Viability, 2014, 23, 81-93.	2.0	25

#	Article	IF	CITATIONS
73	Inkjet-Printed Microstrip Patch Antennas Realized on Textile for Wearable Applications. IEEE Antennas and Wireless Propagation Letters, 2014, 13, 71-74.	4.0	147
74	Development of a low temperature PZT/polymer paste for screen printed flexible electronics applications. , 2014, , .		1
75	Functional Electronic Screen-printing – Electroluminescent Lamps on Fabric. Procedia Engineering, 2014, 87, 1513-1516.	1.2	12
76	Screen Printed Free-standing Resonator with Piezoelectric Excitation and Detection on Flexible Substrate. Procedia Engineering, 2014, 87, 947-950.	1.2	2
77	A screen printable sacrificial fabrication process to realise a cantilever on fabric using a piezoelectric layer to detect motion for wearable applications. Sensors and Actuators A: Physical, 2013, 203, 241-248.	4.1	19
78	Inkjet printed dipole antennas on textiles for wearable communications. IET Microwaves, Antennas and Propagation, 2013, 7, 760-767.	1.4	104
79	Waterproof and durable screen printed silver conductive tracks on textiles. Textile Reseach Journal, 2013, 83, 2023-2031.	2.2	99
80	Screen printing of a capacitive cantilever-based motion sensor on fabric using a novel sacrificial layer process for smart fabric applications. Measurement Science and Technology, 2013, 24, 075104.	2.6	35
81	A novel fabrication process to realise a valveless micropump on a flexible substrate. , 2013, , .		1
82	Screen Printed Capacitive Free-standing Cantilever Beams used as a Motion Detector for Wearable Sensors. Procedia Engineering, 2012, 47, 165-169.	1.2	11
83	A novel fabrication process to realise piezoelectric cantilever structures for smart fabric sensor applications. , 2012, , .		5
84	An all-inkjet printed flexible capacitor on a textile using a new poly(4-vinylphenol) dielectric ink for wearable applications. , 2012, , .		29
85	Self powered wireless sensors for condition monitoring applications. Sensor Review, 2009, 29, 38-43.	1.8	17
86	Self-powered autonomous wireless sensor node using vibration energy harvesting. Measurement Science and Technology, 2008, 19, 125202.	2.6	207
87	A micro electromagnetic generator for vibration energy harvesting. Journal of Micromechanics and Microengineering, 2007, 17, 1257-1265.	2.6	1,203
88	Thick-film piezoceramics and devices. Journal of Electroceramics, 2007, 19, 97-112.	2.0	47
89	Experimental comparison of macro and micro scale electromagnetic vibration powered generators. Microsystem Technologies, 2007, 13, 1647-1653.	2.0	47
90	A multilayer thick-film PZT actuator for MEMs applications. Sensors and Actuators A: Physical, 2006, 132, 311-316.	4.1	52

#	Article	IF	CITATIONS
91	An improved thick-film piezoelectric material by powder blending and enhanced processing parameters. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 10-16.	3.0	22
92	Improving the piezoelectric properties of thick-film PZT: the influence of paste composition, powder milling process and electrode material. Sensors and Actuators A: Physical, 2004, 110, 378-384.	4.1	37
93	Screen Printed PZT Composite Thick Films. Integrated Ferroelectrics, 2004, 63, 89-92.	0.7	18
94	Experimental investigation into the effect of substrate clamping on the piezoelectric behaviour of thick-film PZT elements. Journal Physics D: Applied Physics, 2004, 37, 1074-1078.	2.8	101
95	Screen Printed PZT Thick Films Using Composite Film Technology. Integrated Ferroelectrics, 2003, 54, 651-658.	0.7	21