Russel Torah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5075803/publications.pdf

Version: 2024-02-01

172457 123424 3,966 95 29 61 citations h-index g-index papers 95 95 95 4069 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A micro electromagnetic generator for vibration energy harvesting. Journal of Micromechanics and Microengineering, 2007, 17, 1257-1265.	2.6	1,203
2	Self-powered autonomous wireless sensor node using vibration energy harvesting. Measurement Science and Technology, 2008, 19, 125202.	2.6	207
3	Recent progress on textile-based triboelectric nanogenerators. Nano Energy, 2019, 55, 401-423.	16.0	184
4	Inkjet-Printed Microstrip Patch Antennas Realized on Textile for Wearable Applications. IEEE Antennas and Wireless Propagation Letters, 2014, 13, 71-74.	4.0	147
5	Inkjet printed dipole antennas on textiles for wearable communications. IET Microwaves, Antennas and Propagation, 2013, 7, 760-767.	1.4	104
6	Experimental investigation into the effect of substrate clamping on the piezoelectric behaviour of thick-film PZT elements. Journal Physics D: Applied Physics, 2004, 37, 1074-1078.	2.8	101
7	Waterproof and durable screen printed silver conductive tracks on textiles. Textile Reseach Journal, 2013, 83, 2023-2031.	2.2	99
8	Flexible screen printed thermoelectric generator with enhanced processes and materials. Sensors and Actuators A: Physical, 2016, 238, 196-206.	4.1	94
9	Screen printed fabric electrode array for wearable functional electrical stimulation. Sensors and Actuators A: Physical, 2014, 213, 108-115.	4.1	90
10	Flexible piezoelectric nano-composite films for kinetic energy harvesting from textiles. Nano Energy, 2017, 33, 146-156.	16.0	89
11	The development of screen printed conductive networks on textiles for biopotential monitoring applications. Sensors and Actuators A: Physical, 2014, 206, 35-41.	4.1	88
12	A Smart Textile Based Facial EMG and EOG Computer Interface. IEEE Sensors Journal, 2014, 14, 393-400.	4.7	79
13	Integrating Flexible Filament Circuits for Eâ€Textile Applications. Advanced Materials Technologies, 2019, 4, 1900176.	5.8	74
14	Novel active electrodes for ECG monitoring on woven textiles fabricated by screen and stencil printing. Sensors and Actuators A: Physical, 2015, 221, 60-66.	4.1	66
15	Textile-based triboelectric nanogenerator with alternating positive and negative freestanding grating structure. Nano Energy, 2019, 66, 104148.	16.0	66
16	Screen Printable Flexible BiTe–SbTe-Based Composite Thermoelectric Materials on Textiles for Wearable Applications. IEEE Transactions on Electron Devices, 2016, 63, 4024-4030.	3.0	61
17	Printed frequency selective surfaces on textiles. Electronics Letters, 2014, 50, 916-917.	1.0	59
18	Fully spray-coated organic solar cells on woven polyester cotton fabrics for wearable energy harvesting applications. Journal of Materials Chemistry A, 2016, 4, 5561-5568.	10.3	57

#	Article	IF	CITATIONS
19	A multilayer thick-film PZT actuator for MEMs applications. Sensors and Actuators A: Physical, 2006, 132, 311-316.	4.1	52
20	Development of User-Friendly Wearable Electronic Textiles for Healthcare Applications. Sensors, 2018, 18, 2410.	3.8	49
21	Thick-film piezoceramics and devices. Journal of Electroceramics, 2007, 19, 97-112.	2.0	47
22	Experimental comparison of macro and micro scale electromagnetic vibration powered generators. Microsystem Technologies, 2007, 13, 1647-1653.	2.0	47
23	An investigation into the durability of screen-printed conductive tracks on textiles. Measurement Science and Technology, 2014, 25, 025006.	2.6	45
24	E-Textile Technology Review–From Materials to Application. IEEE Access, 2021, 9, 97152-97179.	4.2	40
25	Reliable UHF Long-Range Textile-Integrated RFID Tag Based on a Compact Flexible Antenna Filament. Sensors, 2020, 20, 3435.	3.8	38
26	Improving the piezoelectric properties of thick-film PZT: the influence of paste composition, powder milling process and electrode material. Sensors and Actuators A: Physical, 2004, 110, 378-384.	4.1	37
27	Textile-based triboelectric nanogenerator with alternating positive and negative freestanding woven structure for harvesting sliding energy in all directions. Nano Energy, 2022, 92, 106739.	16.0	36
28	Screen printing of a capacitive cantilever-based motion sensor on fabric using a novel sacrificial layer process for smart fabric applications. Measurement Science and Technology, 2013, 24, 075104.	2.6	35
29	Dispenser printed capacitive proximity sensor on fabric for applications in the creative industries. Sensors and Actuators A: Physical, 2016, 247, 239-246.	4.1	33
30	An all-inkjet printed flexible capacitor on a textile using a new poly (4-vinylphenol) dielectric ink for wearable applications. , 2012, , .		29
31	Energy-harvesting materials for smart fabrics and textiles. MRS Bulletin, 2018, 43, 214-219.	3.5	29
32	Wearable EEG headband using printed electrodes and powered by energy harvesting for emotion monitoring in ambient assisted living. Smart Materials and Structures, 2015, 24, 125028.	3.5	27
33	Solution Processed Organic Solar Cells on Textiles. IEEE Journal of Photovoltaics, 2018, 8, 1710-1715.	2.5	26
34	A systematic review of the key factors affecting tissue viability and rehabilitationÂoutcomes of the residual limb in lower extremity traumatic amputees. Journal of Tissue Viability, 2014, 23, 81-93.	2.0	25
35	A Complex Multilayer Screen-Printed Electroluminescent Watch Display on Fabric. Journal of Display Technology, 2016, 12, 1757-1763.	1.2	25
36	Embedded Capacitive Proximity and Touch Sensing Flexible Circuit System for Electronic Textile and Wearable Systems. IEEE Sensors Journal, 2019, 19, 6975-6985.	4.7	24

#	Article	IF	CITATIONS
37	Modified PDMS packaging of sensory e-textile circuit microsystems for improved robustness with washing. Microsystem Technologies, 2022, 28, 1467-1484.	2.0	23
38	An improved thick-film piezoelectric material by powder blending and enhanced processing parameters. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 10-16.	3.0	22
39	Dispenser-printed sound-emitting fabrics for applications in the creative fashion and smart architecture industry. Journal of the Textile Institute, 2019, 110, 1-9.	1.9	22
40	Screen Printed PZT Thick Films Using Composite Film Technology. Integrated Ferroelectrics, 2003, 54, 651-658.	0.7	21
41	Dispenser printed electroluminescent lamps on textiles for smart fabric applications. Smart Materials and Structures, 2016, 25, 045016.	3.5	21
42	Wash Testing of Electronic Yarn. Materials, 2020, 13, 1228.	2.9	21
43	A screen printable sacrificial fabrication process to realise a cantilever on fabric using a piezoelectric layer to detect motion for wearable applications. Sensors and Actuators A: Physical, 2013, 203, 241-248.	4.1	19
44	Screen Printed PZT Composite Thick Films. Integrated Ferroelectrics, 2004, 63, 89-92.	0.7	18
45	Self powered wireless sensors for condition monitoring applications. Sensor Review, 2009, 29, 38-43.	1.8	17
46	A novel fabrication process to realize a valveless micropump on a flexible substrate. Smart Materials and Structures, 2014, 23, 025034.	3.5	17
47	Dispenser printing of electrochromic display on textiles for creative applications. Electronics Letters, 2017, 53, 779-781.	1.0	16
48	Textile-Based Flexible Coils for Wireless Inductive Power Transmission. Applied Sciences (Switzerland), 2018, 8, 912.	2.5	15
49	Novel Electronic Packaging Method for Functional Electronic Textiles. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9, 216-225.	2.5	15
50	Integration and Testing of a Three-Axis Accelerometer in a Woven E-Textile Sleeve for Wearable Movement Monitoring. Sensors, 2020, 20, 5033.	3.8	15
51	Clamping effect on the piezoelectric responses of screen-printed low temperature PZT/Polymer films on flexible substrates. Smart Materials and Structures, 2015, 24, 115030.	3.5	13
52	A printed, dry electrode Frank configuration vest for ambulatory vectorcardiographic monitoring. Smart Materials and Structures, 2017, 26, 025029.	3. 5	13
53	Smart Textiles for Smart Home Control and Enriching Future Wireless Sensor Network Data. Smart Sensors, Measurement and Instrumentation, 2017, , 159-183.	0.6	13
54	Functional Electronic Screen-printing – Electroluminescent Lamps on Fabric. Procedia Engineering, 2014, 87, 1513-1516.	1.2	12

#	Article	IF	Citations
55	Stress Analysis and Optimization of a Flip Chip on Flex Electronic Packaging Method for Functional Electronic Textiles. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8, 186-194.	2.5	12
56	Screen Printed Capacitive Free-standing Cantilever Beams used as a Motion Detector for Wearable Sensors. Procedia Engineering, 2012, 47, 165-169.	1.2	11
57	Fully directâ€write dispenser printed dipole antenna on woven polyester cotton fabric for wearable electronics applications. Electronics Letters, 2015, 51, 1306-1308.	1.0	11
58	Automated insertion of package dies onto wire and into a textile yarn sheath. Microsystem Technologies, 2022, 28, 1409-1421.	2.0	9
59	Actively actuated all dispenser printed thermochromic smart fabric device. Electronics Letters, 2016, 52, 1601-1603.	1.0	7
60	Investigation and improvement of the dispenser printing of electrical interconnections for smart fabric applications. Smart Materials and Structures, 2016, 25, 105021.	3.5	7
61	A novel pneumatic dispenser fabrication technique for digitally printing electroluminescent lamps on fabric. , 2015, , .		6
62	Influence of textile structure on the wearability of printed e-textiles. , 2020, , .		6
63	A novel fabrication process to realise piezoelectric cantilever structures for smart fabric sensor applications., 2012,,.		5
64	Fully direct write dispenser printed sound emitting smart fabrics. Electronics Letters, 2015, 51, 1266-1268.	1.0	5
65	Integration of temperature sensors in fabrics. , 2019, , .		5
66	Investigation of Nozzle Height Control to Improve Dispenser Printing of E-Textiles. Proceedings (mdpi), 2021, 68, .	0.2	5
67	Prototyping a voice-controlled smart home hub wirelessly integrated with a wearable device. , 2015, , .		4
68	Optimisation of a novel direct-write dispenser printer technique for improving printed smart fabric device performance., 2015,,.		4
69	Effect of infill patterns on print quality of dispenserâ€printed electronic ink. Electronics Letters, 2015, 51, 1186-1187.	1.0	4
70	Improving the Durability of Screen Printed Conductors on Woven Fabrics for E-Textile Applications. Proceedings (mdpi), 2017, 1, 613.	0.2	4
71	Enabling platform technology for smart fabric design and printing. Journal of Engineered Fibers and Fabrics, 2019, 14, 155892501984590.	1.0	4
72	Autonomy is the key. , 2016, , .		3

#	Article	IF	Citations
73	Stress Analysis of Flexible Packaging for the Integration of Electronic Components within Woven Textiles. , $2017, \dots$		3
74	Functional Electronic Textiles: Circuit Integration and Energy Harvesting Power Supplies. , 2018, , .		3
75	An automated process for inclusion of package dies and circuitry within a textile yarn. , 2018, , .		3
76	Energy Harvesting Power Supplies for Electronic Textiles. , 2019, , .		3
77	Screen Printed Free-standing Resonator with Piezoelectric Excitation and Detection on Flexible Substrate. Procedia Engineering, 2014, 87, 947-950.	1.2	2
78	Laser curing of screen and inkjet printed conductors on flexible substrates. , 2015, , .		2
79	Dispenser printed proximity sensor on fabric for creative smart fabric applications. , 2015, , .		2
80	Improving the integration of e-textile microsystems' encapsulation by modifying PDMS formulation , 2018, , .		2
81	Finite element analysis (FEA) modelling and experimental verification to optimise flexible electronic packaging for e-textiles. Microsystem Technologies, 2022, 28, 1515-1524.	2.0	2
82	A novel fabrication process to realise a valveless micropump on a flexible substrate., 2013,,.		1
83	Development of a low temperature PZT/polymer paste for screen printed flexible electronics applications., 2014,,.		1
84	Screen-printed free-standing piezoelectric devices using low temperature process., 2015,,.		1
85	The thickness and material optimization of flexible electronic packaging for functional electronic textile. , $2018, \ldots$		1
86	Investigation of the Effects of Ink Pigmentation on Substrate Profiling for E-Textile Dispenser Printing. , 2021, , .		1
87	Effect of textile primer layer on screen printed conductors for e-textiles. , 2021, , .		1
88	Screen Printing Reliable Wearable Microstrip Antennas on Rough Textile Substrates. , 2021, , .		1
89	An all screen-printed free-standing piezoelectric diaphragm for application on textile. , 2018, , .		O
90	Modelling Reliable Electrical Conductors for E-Textile Circuits on Polyimide Filaments. Proceedings (mdpi), 2019, 32, .	0.2	0

#	Article	IF	CITATIONS
91	Textile Manufacturing Compatible Triboelectric Nanogenerator with Alternating Positive and Negative Freestanding Grating Structure. Proceedings (mdpi), 2020, 32, .	0.2	O
92	Development of a Printed E-Textile for the Measurement of Muscle Activation via EMG for the Purpose of Gesture Control. Proceedings (mdpi), 2021, 68, .	0.2	0
93	E-Textile Haptic Feedback Gloves for Virtual and Augmented Reality Applications. , 2022, 15, .		0
94	Investigating the Mechanical Failures at the Bonded Joints of Screen-Printed E-Textile Circuits. , 2022, 15 , .		0
95	Textile Manufacturing Compatible Triboelectric Nanogenerator with Alternating Positive and Negative Woven Structure., 2022, 15,.		0