Noah Fahlgren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5075394/publications.pdf

Version: 2024-02-01

58 papers

14,587 citations

87723 38 h-index 55 g-index

84 all docs 84 docs citations

84 times ranked 14531 citing authors

#	Article	IF	CITATIONS
1	Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature, 2010, 463, 763-768.	13.7	1,685
2	Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature, 2009, 461, 393-398.	13.7	1,405
3	High-Throughput Sequencing of Arabidopsis microRNAs: Evidence for Frequent Birth and Death of MIRNA Genes. PLoS ONE, 2007, 2, e219.	1.1	1,100
4	The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nature Genetics, 2011, 43, 476-481.	9.4	814
5	Specificity of ARGONAUTE7-miR390 Interaction and Dual Functionality in TAS3 Trans-Acting siRNA Formation. Cell, 2008, 133, 128-141.	13.5	712
6	Evolution and Functional Diversification of <i>MIRNA</i> Genes. Plant Cell, 2011, 23, 431-442.	3.1	645
7	Expression of Arabidopsis MIRNA Genes. Plant Physiology, 2005, 138, 2145-2154.	2.3	626
8	Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Current Opinion in Plant Biology, 2015, 24, 93-99.	3.5	567
9	Repression of <i>AUXIN RESPONSE FACTOR10</i> by microRNA160 is critical for seed germination and postâ€germination stages. Plant Journal, 2007, 52, 133-146.	2.8	548
10	Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA Affects Developmental Timing and Patterning in Arabidopsis. Current Biology, 2006, 16, 939-944.	1.8	545
11	PRG-1 and 21U-RNAs Interact to Form the piRNA Complex Required for Fertility in C. elegans. Molecular Cell, 2008, 31, 67-78.	4.5	528
12	Genome-Wide Profiling and Analysis of Arabidopsis siRNAs. PLoS Biology, 2007, 5, e57.	2.6	473
13	<i>Arabidopsis</i> RNA-Dependent RNA Polymerases and Dicer-Like Proteins in Antiviral Defense and Small Interfering RNA Biogenesis during <i>Turnip Mosaic Virus</i> Infection Â. Plant Cell, 2010, 22, 481-496.	3.1	454
14	Distinct Argonaute-Mediated 22G-RNA Pathways Direct Genome Surveillance in the C. elegans Germline. Molecular Cell, 2009, 36, 231-244.	4.5	449
15	Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nature Structural and Molecular Biology, 2010, 17, 997-1003.	3.6	448
16	Genome-Wide Analysis of the RNA-DEPENDENT RNA POLYMERASE6/DICER-LIKE4 Pathway in Arabidopsis Reveals Dependency on miRNA- and tasiRNA-Directed Targeting. Plant Cell, 2007, 19, 926-942.	3.1	381
17	Functional Analysis of Three <i>Arabidopsis</i> ARGONAUTES Using Slicer-Defective Mutants Â. Plant Cell, 2012, 24, 3613-3629.	3.1	249
18	miRNA Target Prediction in Plants. Methods in Molecular Biology, 2010, 592, 51-57.	0.4	246

#	Article	IF	Citations
19	MicroRNA Gene Evolution in <i>Arabidopsis lyrata</i> and <i>Arabidopsis thaliana</i> ÂÂ. Plant Cell, 2010, 22, 1074-1089.	3.1	234
20	PlantCV v2: Image analysis software for high-throughput plant phenotyping. PeerJ, 2017, 5, e4088.	0.9	211
21	A Versatile Phenotyping System and Analytics Platform Reveals Diverse Temporal Responses to Water Availability in Setaria. Molecular Plant, 2015, 8, 1520-1535.	3.9	202
22	AGO1-miR173 complex initiates phased siRNA formation in plants. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20055-20062.	3.3	178
23	Roles and Programming of Arabidopsis ARGONAUTE Proteins during Turnip Mosaic Virus Infection. PLoS Pathogens, 2015, 11, e1004755.	2.1	175
24	Identification of <i>MIR390a</i> precursor processing-defective mutants in Arabidopsis by direct genome sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 466-471.	3.3	137
25	CG gene body DNA methylation changes and evolution of duplicated genes in cassava. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13729-13734.	3.3	129
26	<i>mut-16</i> and other <i>mutator</i> class genes modulate 22G and 26G siRNA pathways in <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1201-1208.	3.3	128
27	New Generation of Artificial MicroRNA and Synthetic Trans-Acting Small Interfering RNA Vectors for Efficient Gene Silencing in Arabidopsis. Plant Physiology, 2014, 165, 15-29.	2.3	119
28	Genetic Diversity and Population Structure of a Camelina sativa Spring Panel. Frontiers in Plant Science, 2019, 10, 184.	1.7	118
29	Computational and analytical framework for small RNA profiling by high-throughput sequencing. Rna, 2009, 15, 992-1002.	1.6	112
30	Genome-wide profiling of Populus small RNAs. BMC Genomics, 2009, 10, 620.	1.2	90
31	Phytophthora Have Distinct Endogenous Small RNA Populations That Include Short Interfering and microRNAs. PLoS ONE, 2013, 8, e77181.	1.1	88
32	The ERI-6/7 Helicase Acts at the First Stage of an siRNA Amplification Pathway That Targets Recent Gene Duplications. PLoS Genetics, 2011, 7, e1002369.	1.5	74
33	Update of ASRP: the Arabidopsis Small RNA Project database. Nucleic Acids Research, 2007, 36, D982-D985.	6.5	70
34	Raspberry Pi–powered imaging for plant phenotyping. Applications in Plant Sciences, 2018, 6, e1031.	0.8	68
35	Parallel analysis of RNA ends enhances global investigation of microRNAs and target RNAs of Brachypodium distachyon. Genome Biology, 2013, 14, R145.	13.9	67
36	P-SAMS: a web site for plant artificial microRNA and synthetic <i>trans</i> -acting small interfering RNA design. Bioinformatics, 2016, 32, 157-158.	1.8	67

3

#	Article	IF	Citations
37	The Caenorhabditis elegans RDE-10/RDE-11 Complex Regulates RNAi by Promoting Secondary siRNA Amplification. Current Biology, 2012, 22, 881-890.	1.8	49
38	Components of Water Use Efficiency Have Unique Genetic Signatures in the Model C ₄ Grass <i>Setaria</i> . Plant Physiology, 2018, 178, 699-715.	2.3	47
39	Highly specific gene silencing in a monocot species by artificial micro <scp>RNA</scp> s derived from chimeric <i>mi<scp>RNA</scp></i> precursors. Plant Journal, 2015, 82, 1061-1075.	2.8	45
40	Highâ€ŧhroughput phenotyping. American Journal of Botany, 2017, 104, 505-508.	0.8	44
41	Classifying coldâ€stress responses of inbred maize seedlings using <scp>RGB</scp> imaging. Plant Direct, 2019, 3, e00104.	0.8	34
42	Vision, challenges and opportunities for a Plant Cell Atlas. ELife, 2021, 10, .	2.8	31
43	An automated, high-throughput method for standardizing image color profiles to improve image-based plant phenotyping. PeerJ, 2018, 6, e5727.	0.9	31
44	TERRA-REF Data Processing Infrastructure. , 2018, , .		22
45	Genome-wide association study (GWAS) of leaf cuticular wax components in Camelina sativa identifies genetic loci related to intracellular wax transport. BMC Plant Biology, 2019, 19, 187.	1.6	22
46	Antiviral ARGONAUTEs Against <i>Turnip Crinkle Virus</i> Revealed by Image-Based Trait Analysis. Plant Physiology, 2019, 180, 1418-1435.	2.3	22
47	Heating quinoa shoots results in yield loss by inhibiting fruit production and delaying maturity. Plant Journal, 2020, 102, 1058-1073.	2.8	19
48	The Next Generation of Training for Arabidopsis Researchers: Bioinformatics and Quantitative Biology. Plant Physiology, 2017, 175, 1499-1509.	2.3	11
49	Picturing the future of food. The Plant Phenome Journal, 2021, 4, e20014.	1.0	11
50	Na $ ilde{A}^{\scriptscriptstyle-}$ ve Bayes pixel-level plant segmentation. , 2016, , .		8
51	Heat stress changes mineral nutrient concentrations in <i>Chenopodium quinoa</i> seed. Plant Direct, 2022, 6, e384.	0.8	8
52	Preparation of Multiplexed Small RNA Libraries from Plants. Bio-protocol, 2014, 4, .	0.2	7
53	Plant scientists: GM technology is safe. Science, 2016, 351, 824-824.	6.0	5
54	Early Drought Plant Stress Detection with Bi-Directional Long-Term Memory Networks. Photogrammetric Engineering and Remote Sensing, 2018, 84, 459-468.	0.3	5

#	Article	IF	CITATIONS
55	NAPPN: Who We Are, Where We Are Going, and Why You Should Join Us!. The Plant Phenome Journal, 2019, 2, 1-4.	1.0	4
56	A protocol for Chenopodium quinoa pollen germination. Plant Methods, 2022, 18, 65.	1.9	3
57	What Does TERRA-REF's High Resolution, Multi Sensor Plant Sensing Public Domain Data Offer the Computer Vision Community?. , 2021, , .		1
58	First Plant Cell Atlas symposium report. Plant Direct, 2022, 6, .	0.8	1