Hendra Hermawan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5075155/publications.pdf

Version: 2024-02-01

93 papers 4,144 citations

147801 31 h-index 62 g-index

97 all docs 97 docs citations

97 times ranked 3525 citing authors

#	Article	IF	Citations
1	Potential bioactive coating system for high-performance absorbable magnesium bone implants. Bioactive Materials, 2022, 12, 42-63.	15.6	42
2	Effectiveness of a fish scales-derived chitosan coating for corrosion protection of carbon steel. Egyptian Journal of Petroleum, 2022, 31, 25-31.	2.6	4
3	Niobium addition improves the corrosion resistance of TiHfZrNbx high-entropy alloys in Hanks' solution. Electrochimica Acta, 2022, 424, 140651.	5. 2	9
4	Synthesis, Characterization, and Antibacterial Evaluation of a Cost-Effective Endodontic Sealer Based on Tricalcium Silicate-White Portland Cement. Materials, 2021, 14, 417.	2.9	2
5	Optimum Processing of Absorbable Carbon Nanofiber Reinforced Mg–Zn Composites Based on Two-Level Factorial Design. Metals, 2021, 11, 278.	2.3	5
6	Post-corrosion mechanical properties of absorbable open cell iron foams with hollow struts. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 117, 104413.	3.1	2
7	Special Issue "Absorbable Metals for Biomedical Applications― Materials, 2021, 14, 3835.	2.9	O
8	Effect of Mo addition on the pitting resistance of TiMn alloys in Hanks' solution. Journal of Alloys and Compounds, 2021, 871, 159582.	5 . 5	12
9	Nephelium lappaceum Extract as an Organic Inhibitor to Control the Corrosion of Carbon Steel Weldment in the Acidic Environment. Sustainability, 2021, 13, 12135.	3.2	7
10	In Vitro Degradation, Hemocompatibility, and Cytocompatibility of Nanostructured Absorbable Fe–Mn–Ag Alloys for Biomedical Application. ACS Biomaterials Science and Engineering, 2020, 6, 2094-2106.	5 . 2	20
11	Current status and perspectives of zinc-based absorbable alloys for biomedical applications. Acta Biomaterialia, 2019, 97, 1-22.	8.3	179
12	Biological Assessment of Zn–Based Absorbable Metals for Ureteral Stent Applications. Materials, 2019, 12, 3325.	2.9	12
13	Absorbable metals for cardiovascular applications. , 2019, , 523-543.		1
14	Electrochemical Corrosion Behavior of Fe3Al/TiC and Fe3Al-Cr/TiC Coatings Prepared by HVOF in NaCl Solution. Metals, 2019, 9, 437.	2.3	9
15	In-Vivo Corrosion Characterization and Assessment of Absorbable Metal Implants. Coatings, 2019, 9, 282.	2.6	26
16	In Vitro Degradation of Absorbable Zinc Alloys in Artificial Urine. Materials, 2019, 12, 295.	2.9	32
17	Monitoring magnesium degradation using microdialysis and fabric-based biosensors. Science China Materials, 2018, 61, 643-651.	6.3	7
18	Mechanical and corrosion properties of partially degradable bone screws made of pure iron and stainless steel 316L by friction welding. Science China Materials, 2018, 61, 593-606.	6.3	8

#	Article	IF	CITATIONS
19	Development and characterization of silver containing calcium phosphate coatings on pure iron foam intended for bone scaffold applications. Materials and Design, 2018, 148, 124-134.	7.0	36
20	Novel antibacterial biodegradable Fe-Mn-Ag alloys produced by mechanical alloying. Materials Science and Engineering C, 2018, 88, 88-94.	7.3	64
21	Bioinspired surface functionalization of metallic biomaterials. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 77, 90-105.	3.1	146
22	Structure, degradation, drug release and mechanical properties relationships of iron-based drug eluting scaffolds: The effects of PLGA. Materials and Design, 2018, 160, 203-217.	7.0	23
23	Updates on the research and development of absorbable metals for biomedical applications. Progress in Biomaterials, 2018, 7, 93-110.	4.5	182
24	Design and characterization of nano and bimodal structured biodegradable Fe-Mn-Ag alloy with accelerated corrosion rate. Journal of Alloys and Compounds, 2018, 767, 955-965.	5 . 5	39
25	Processing of Zn-3Mg alloy by equal channel angular pressing for biodegradable metal implants. Journal of King Saud University - Science, 2017, 29, 455-461.	3.5	58
26	Monitoring degradation products and metal ions inÂvivo. , 2017, , 19-44.		9
27	Investigation on Mechanical Behavior of Biodegradable Iron Foams under Different Compression Test Conditions. Metals, 2017, 7, 202.	2.3	36
28	Antibacterial efficacy of triple-layered poly(lactic- <i>co</i> -glycolic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf Materials Journal, 2017, 36, 260-265.	50 387 To 1.8	d (acid)/nanoa 10
29	Systemic Assessment of Calcium and Phosphorus Level after Implantation of Porous Iron in Rats. IOP Conference Series: Materials Science and Engineering, 2017, 214, 012019.	0.6	0
30	Structure and Properties of Biomaterials. Advanced Structured Materials, 2016, , 1-22.	0.5	4
31	Indonesian Perspective on Biomaterials and Medical Devices. Advanced Structured Materials, 2016, , 235-242.	0.5	3
32	Biomaterials in Orthopaedics. Advanced Structured Materials, 2016, , 161-181.	0.5	36
33	Dynamic degradation of porous magnesium under a simulated environment of human cancellous bone. Corrosion Science, 2016, 112, 495-506.	6.6	44
34	Improvement of microstructure, mechanical and corrosion properties of biomedical Ti-Mn alloys by Mo addition. Materials and Design, 2016, 110, 414-424.	7.0	54
35	Drug-eluting coating of ginsenoside Rg1 and Re incorporated poly(lactic- co -glycolic acid) on stainless steel 316L: Physicochemical and drug release analyses. International Journal of Pharmaceutics, 2016, 515, 460-466.	5.2	13
36	Immobilization of antibacterial chlorhexidine on stainless steel using crosslinking polydopamine film: Towards infection resistant medical devices. Colloids and Surfaces B: Biointerfaces, 2016, 145, 130-139.	5.0	27

#	Article	IF	CITATIONS
37	Degradable Biomaterials for Temporary Medical Implants. Advanced Structured Materials, 2016, , 127-160.	0.5	10
38	Naturally Derived Biomaterials and Its Processing. Advanced Structured Materials, 2016, , 23-39.	0.5	3
39	Influence of homogenization treatment on the degradation behavior of Zn–3 Mg alloy in simulated body fluid solution. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2016, 230, 615-619.	1.1	0
40	The effect of hydrogen gas evolution of magnesium implant on the postimplantation mortality of rats. Journal of Orthopaedic Translation, $2016, 5, 9-15$.	3.9	102
41	Surface Characterization of Biomimetic Hydroxyapatite-Silver Functionalized on Polydopamine Film. Advanced Materials Research, 2015, 1125, 395-400.	0.3	2
42	Peripheral white blood cells profile of biodegradable metal implant in mice animal model. AIP Conference Proceedings, $2015, \ldots$	0.4	3
43	<i>In Vitro</i> Cytotoxicity and <i>In Vivo</i> Tissue Response Study of Foreign Bodies Iron Based Materials. Advanced Materials Research, 2015, 1112, 449-452.	0.3	6
44	Radiography Study of Iron-Based Foreign Body Material Degradation at Different Implantation Site in Mice. Advanced Materials Research, 2015, 1112, 466-469.	0.3	0
45	Evidences of <i>in vivo</i> bioactivity of Feâ€bioceramic composites for temporary bone implants. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 1354-1365.	3.4	38
46	In vitro degradation and cell viability assessment of Zn–3Mg alloy for biodegradable bone implants. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2015, 229, 335-342.	1.8	15
47	Assessment of prolonged tissue response to porousiron implant by radiodensity approach. , 2015, , .		1
48	Degradation behavior of biodegradable Fe35Mn alloy stents. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 572-577.	3.4	21
49	Cytotoxicity evaluation of biodegradable Zn–3Mg alloy toward normal human osteoblast cells. Materials Science and Engineering C, 2015, 49, 560-566.	7.3	166
50	Controlling the degradation kinetics of porous iron by poly(lactic-co-glycolic acid) infiltration for use as temporary medical implants. Scientific Reports, 2015, 5, 11194.	3.3	78
51	Influence of thermal treatment on microstructure, mechanical and degradation properties of Zn–3Mg alloy as potential biodegradable implant material. Materials and Design, 2015, 85, 431-437.	7.0	76
52	Structure–property relationships of iron–hydroxyapatite ceramic matrix nanocomposite fabricated using mechanosynthesis method. Materials Science and Engineering C, 2015, 51, 294-299.	7.3	21
53	Partially degradable friction-welded pure iron-stainless steel 316L bone pin., 2015, 103, 31-38.		17
54	The Effect of TiCl ₄ and Chitosan Concentration on the Coating of TiO ₂ on Iron Foam Substrate by Self-Assembled Monolayer Method. Applied Mechanics and Materials, 2014, 660, 265-269.	0.2	0

#	Article	IF	Citations
55	Degradation and inÂvitro cell–material interaction studies on hydroxyapatite-coated biodegradable porous iron for hard tissue scaffolds. Journal of Orthopaedic Translation, 2014, 2, 177-184.	3.9	40
56	Antibacterial Properties of Guided Bone Regeneration Membrane for Periodontal Applications. Applied Mechanics and Materials, 2014, 606, 47-50.	0.2	0
57	In vitro and in vivo degradation evaluation of novel iron-bioceramic composites for bone implant applications. Materials Science and Engineering C, 2014, 36, 336-344.	7.3	89
58	The influence of new wet synthesis route on the morphology, crystallinity and thermal stability of multiple ions doped nanoapatite. Ceramics International, 2014, 40, 1001-1012.	4.8	12
59	Triple-layered PLGA/nanoapatite/lauric acid graded composite membrane for periodontal guided bone regeneration. Materials Science and Engineering C, 2014, 43, 253-263.	7. 3	28
60	Biodegradable Metal Stents: A Focused Review on Materials and Clinical Studies. Journal of Biomaterials and Tissue Engineering, 2014, 4, 868-874.	0.1	38
61	Process of prototyping coronary stents from biodegradable Fe–Mn alloys. Acta Biomaterialia, 2013, 9, 8585-8592.	8.3	65
62	Polydopamine as an intermediate layer for silver and hydroxyapatite immobilisation on metallic biomaterials surface. Materials Science and Engineering C, 2013, 33, 4715-4724.	7.3	73
63	Gene expression profile of mouse fibroblasts exposed to a biodegradable iron alloy for stents. Acta Biomaterialia, 2013, 9, 8746-8753.	8.3	14
64	Can the Current Stent Manufacturing Process be Used for Making Metallic Biodegradable Stents. Advanced Materials Research, 2013, 746, 416-421.	0.3	1
65	Interaction between fibroblast cells and porous iron-based biodegradable metals. , 2012, , .		4
66	Porous Biodegradable Metals for Hard Tissue Scaffolds: A Review. International Journal of Biomaterials, 2012, 2012, 1-10.	2.4	172
67	Monitoring system for degradation assessment of biodegradable metals using microdialysis and enzymatic-spectrophotometric analysis. , 2012 , , .		0
68	Introduction to Metallic Biomaterials. SpringerBriefs in Materials, 2012, , 1-11.	0.3	3
69	Biodegradable Metals for Cardiovascular Applications. SpringerBriefs in Materials, 2012, , 23-37.	0.3	8
70	Metallic Biodegradable Coronary Stent: Materials Development. SpringerBriefs in Materials, 2012, , 39-48.	0.3	0
71	Biodegradable Metals: State of the Art. SpringerBriefs in Materials, 2012, , 13-22.	0.3	27
72	Metallic Biodegradable Coronary Stent: Degradation Study. SpringerBriefs in Materials, 2012, , 49-57.	0.3	1

#	Article	IF	Citations
73	Biodegradable Metals. SpringerBriefs in Materials, 2012, , .	0.3	52
74	New generation of medical implants: Metallic biodegradable coronary stent. , 2011, , .		6
75	Degradable metallic biomaterials: Design and development of Fe–Mn alloys for stents. Journal of Biomedical Materials Research - Part A, 2010, 93A, 1-11.	4.0	151
76	Developments in metallic biodegradable stentsâ~†. Acta Biomaterialia, 2010, 6, 1693-1697.	8.3	509
77	Fe–Mn alloys for metallic biodegradable stents: Degradation and cell viability studiesâ~†. Acta Biomaterialia, 2010, 6, 1852-1860.	8.3	291
78	Assessing the biocompatibility of degradable metallic materials: State-of-the-art and focus on the potential of genetic regulationa *†. Acta Biomaterialia, 2010, 6, 1800-1807.	8.3	130
79	Degradable metallic biomaterials for cardiovascular applications. , 2010, , 379-404.		10
80	Patents on Metallic Biodegradable Stents. Recent Patents on Materials Science, 2010, 3, 140-145.	0.5	2
81	Patents on Metallic Biodegradable Stents. Recent Patents on Materials Science, 2010, 3, 140-145.	0.5	0
82	Design of a pseudo-physiological test bench specific to the development of biodegradable metallic biomaterials. Acta Biomaterialia, 2008, 4, 284-295.	8.3	221
83	Iron–manganese: new class of metallic degradable biomaterials prepared by powder metallurgy. Powder Metallurgy, 2008, 51, 38-45.	1.7	233
84	Degradation Behaviour of Metallic Biomaterials for Degradable Stents. Advanced Materials Research, 2007, 15-17, 113-118.	0.3	39
85	Development of Degradable Fe-35Mn Alloy for Biomedical Application. Advanced Materials Research, 2007, 15-17, 107-112.	0.3	56
86	Metals for Biomedical Applications. , 0, , .		105
87	Influence of Heat Treatment Cooling Mediums on the Degradation Property of Biodegradable Zn-3Mg Alloy. Advanced Materials Research, 0, 845, 7-11.	0.3	10
88	Synthesis and Development of Polymers-Infiltrated Porous Iron for Temporary Medical Implants: A Preliminary Result. Advanced Materials Research, 0, 686, 331-335.	0.3	11
89	Susceptibility to Stress Corrosion Cracking of Fe-35Mn Alloy under a Pseudo-Physiological Condition. Applied Mechanics and Materials, 0, 284-287, 216-219.	0.2	2
90	Chemical and Thermal Stability of Multiple Ions Doped Non-Stoichiometric Nanoapatite Heat-Treated in CO ₂ and Air Atmospheres. Advanced Materials Research, 0, 925, 77-81.	0.3	0

#	Article	IF	CITATIONS
91	Effect of Heat Treatment on Microstructure Homogeneity of Zn-3Mg Alloy. Applied Mechanics and Materials, 0, 493, 777-782.	0.2	1
92	Review on Zn-Based Alloys as Potential Biodegradable Medical Devices Materials. Applied Mechanics and Materials, 0, 776, 277-281.	0.2	11
93	Friction welding of AZ31-SS316L for partially-degradable orthopaedic pins. IOP Conference Series: Materials Science and Engineering, 0, 532, 012014.	0.6	4