
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5075145/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PKA-Dependent and PKA-Independent Pathways for cAMP-Regulated Exocytosis. Physiological Reviews, 2005, 85, 1303-1342.	28.8	499
2	ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis. Nature Neuroscience, 2001, 4, 507-512.	14.8	470
3	ATP-SENSITIVE POTASSIUM CHANNELS: A Model of Heteromultimeric Potassium Channel/Receptor Assemblies. Annual Review of Physiology, 1999, 61, 337-362.	13.1	458
4	Physiological and pathophysiological roles of ATP-sensitive K+ channels. Progress in Biophysics and Molecular Biology, 2003, 81, 133-176.	2.9	451
5	Protective Role of ATP-Sensitive Potassium Channels in Hypoxia-Induced Generalized Seizure. Science, 2001, 292, 1543-1546.	12.6	318
6	Critical Role of cAMP-GEFII·Rim2 Complex in Incretin-potentiated Insulin Secretion. Journal of Biological Chemistry, 2001, 276, 46046-46053.	3.4	313
7	Dynamics of insulin secretion and the clinical implications for obesity and diabetes. Journal of Clinical Investigation, 2011, 121, 2118-2125.	8.2	290
8	Regulation of Ca2+ channel expression at the cell surface by the small G-protein kir/Gem. Nature, 2001, 411, 701-706.	27.8	269
9	The cAMP Sensor Epac2 Is a Direct Target of Antidiabetic Sulfonylurea Drugs. Science, 2009, 325, 607-610.	12.6	198
10	Expression and role of ionotropic glutamate receptors in pancreatic islet cells. FASEB Journal, 1995, 9, 686-691.	0.5	182
11	Cblb is a major susceptibility gene for rat type 1 diabetes mellitus. Nature Genetics, 2002, 31, 391-394.	21.4	171
12	Glutamate Acts as a Key Signal Linking Glucose Metabolism to Incretin/cAMP Action to Amplify Insulin Secretion. Cell Reports, 2014, 9, 661-673.	6.4	128
13	Insulin secretion and differential gene expression in glucose-responsive and -unresponsive MIN6 sublines. American Journal of Physiology - Endocrinology and Metabolism, 2000, 279, E773-E781.	3.5	116
14	Distinct Effects of Glucose-Dependent Insulinotropic Polypeptide and Glucagon-Like Peptide-1 on Insulin Secretion and Gut Motility. Diabetes, 2005, 54, 1056-1063.	0.6	103
15	Rim2α Determines Docking and Priming States in Insulin Granule Exocytosis. Cell Metabolism, 2010, 12, 117-129.	16.2	97
16	Accumulation of N-Acetyl-L-Aspartate in the Brain of the Tremor Rat, a Mutant Exhibiting Absence-Like Seizure and Spongiform Degeneration in the Central Nervous System. Journal of Neurochemistry, 2002, 74, 2512-2519.	3.9	95
17	Genetic analysis for diabetes in a new rat model of nonobese type 2 diabetes, Spontaneously Diabetic Torii rat. Biochemical and Biophysical Research Communications, 2003, 304, 196-206.	2.1	70
18	A Comparative Genetic Map of Rat, Mouse and Human Genomes Experimental Animals, 1998, 47, 1-9.	1.1	69

#	Article	IF	CITATIONS
19	A Novel Rat Model of Type 2 Diabetes: The Zucker Fatty Diabetes Mellitus ZFDM Rat. Journal of Diabetes Research, 2013, 2013, 1-9.	2.3	68
20	Liraglutide Improves Pancreatic Beta Cell Mass and Function in Alloxan-Induced Diabetic Mice. PLoS ONE, 2015, 10, e0126003.	2.5	55
21	Role of Epac2A/Rap1 Signaling in Interplay Between Incretin and Sulfonylurea in Insulin Secretion. Diabetes, 2015, 64, 1262-1272.	0.6	52
22	Essential Role of Ubiquitin-Proteasome System in Normal Regulation of Insulin Secretion. Journal of Biological Chemistry, 2006, 281, 13015-13020.	3.4	51
23	Correlation between genetic and cytogenetic maps of the rat. Mammalian Genome, 1998, 9, 287-293.	2.2	49
24	Cephalic phase insulin secretion is KATP channel independent. Journal of Endocrinology, 2013, 218, 25-33.	2.6	48
25	Gs/Gq signaling switch in \hat{I}^2 cells defines incretin effectiveness in diabetes. Journal of Clinical Investigation, 2020, 130, 6639-6655.	8.2	46
26	Actin Dynamics Regulated by the Balance of Neuronal Wiskott-Aldrich Syndrome Protein (N-WASP) and Cofilin Activities Determines the Biphasic Response of Glucose-induced Insulin Secretion. Journal of Biological Chemistry, 2013, 288, 25851-25864.	3.4	41
27	Establishment of new clonal pancreatic βâ€cell lines (MIN6â€K) useful for study of incretin/cyclic adenosine monophosphate signaling. Journal of Diabetes Investigation, 2010, 1, 137-142.	2.4	36
28	KATP channel as well as SGLT1 participates in GIP secretion in the diabetic state. Journal of Endocrinology, 2014, 222, 191-200.	2.6	35
29	Genetic Reconstitution of Autoimmune Type 1 Diabetes With Two Major Susceptibility Genes in the Rat. Diabetes, 2007, 56, 506-512.	0.6	32
30	Distinct action of the α-glucosidase inhibitor miglitol on SGLT3, enteroendocrine cells, and GLP1 secretion. Journal of Endocrinology, 2015, 224, 205-214.	2.6	32
31	Physiology and pathophysiology of KATP channels in the pancreas and cardiovascular system. Journal of Diabetes and Its Complications, 2003, 17, 2-5.	2.3	30
32	Identification of putative biomarkers for prediabetes by metabolome analysis of rat models of type 2 diabetes. Metabolomics, 2015, 11, 1277-1286.	3.0	28
33	Cloning of a Mouse Rabphilin-3A Expressed in Hormone-Secreting Cells1. Journal of Biochemistry, 1994, 116, 239-242.	1.7	26
34	Establishment and Characterization of the Komeda Diabetes-prone Rat as a Segregating Inbred Strain Experimental Animals, 2003, 52, 295-301.	1.1	23
35	Identification and functional analysis of CBLB mutations in type 1 diabetes. Biochemical and Biophysical Research Communications, 2008, 368, 37-42.	2.1	23
36	Glutamate as intracellular and extracellular signals in pancreatic islet functions. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2019, 95, 246-260.	3.8	22

#	Article	IF	CITATIONS
37	Normalization of Intracellular Ca2+ Induces a Glucose-responsive State in Glucose-unresponsive β-Cells. Journal of Biological Chemistry, 2002, 277, 25277-25282.	3.4	21
38	Sulfonylurea action reâ€revisited. Journal of Diabetes Investigation, 2010, 1, 37-39.	2.4	21
39	Glutamate is an essential mediator in glutamineâ€amplified insulin secretion. Journal of Diabetes Investigation, 2021, 12, 920-930.	2.4	20
40	Fructose induces glucoseâ€dependent insulinotropic polypeptide, glucagonâ€like peptideâ€1 and insulin secretion: Role of adenosine triphosphateâ€sensitive K + channels. Journal of Diabetes Investigation, 2015, 6, 522-526.	2.4	19
41	ATP-sensitive K+ channel-mediated glucose uptake is independent of IRS-1/phosphatidylinositol 3-kinase signaling. American Journal of Physiology - Endocrinology and Metabolism, 2003, 285, E1289-E1296.	3.5	18
42	Identification of a major locus for islet inflammation and fibrosis in the spontaneously diabetic Torii rat. Physiological Genomics, 2008, 35, 96-105.	2.3	18
43	Increased glycolysis affects β-cell function and identity in aging and diabetes. Molecular Metabolism, 2022, 55, 101414.	6.5	16
44	Essential roles of aspartate aminotransferase 1 and vesicular glutamate transporters in β-cell glutamate signaling for incretin-induced insulin secretion. PLoS ONE, 2017, 12, e0187213.	2.5	15
45	βâ€Cell glutamate signaling: Its role in incretinâ€induced insulin secretion. Journal of Diabetes Investigation, 2016, 7, 38-43.	2.4	14
46	Kir2.2v: a possible negative regulator of the inwardly rectifying K+channel Kir2.2. FEBS Letters, 1996, 386, 211-214.	2.8	13
47	Identification of a Major Gene Responsible for Type 1 Diabetes in the Komeda Diabetes-Prone Rat. Experimental Animals, 2005, 54, 111-115.	1.1	12
48	Characterization of the Prediabetic State in a Novel Rat Model of Type 2 Diabetes, the ZFDM Rat. Journal of Diabetes Research, 2015, 2015, 1-8.	2.3	12
49	Current status of regeneration of pancreatic βâ€cells. Journal of Diabetes Investigation, 2013, 4, 131-141.	2.4	10
50	Inhibition of SNAT5 Induces Incretin-Responsive State From Incretin-Unresponsive State in Pancreatic β-Cells: Study of β-Cell Spheroid Clusters as a Model. Diabetes, 2018, 67, 1795-1806.	0.6	10
51	Glucose regulation of arginine-induced pancreatic somatostatin release from the isolated perfused rat pancreas. Regulatory Peptides, 1982, 3, 271-279.	1.9	8
52	TM Rats: A Model for Platelet Storage Pool Deficiency Experimental Animals, 1997, 46, 235-239.	1.1	8
53	Pdx1, a Homeodomain Transcription Factor Required for Pancreas Development, Maps to Rat Chromosome 12 Experimental Animals, 1997, 46, 323-324.	1.1	8
54	Functional adenosine triphosphateâ€sensitive potassium channel is required in highâ€carbohydrate dietâ€induced increase in βâ€cell mass. Journal of Diabetes Investigation, 2019, 10, 238-250.	2.4	7

#	Article	IF	CITATIONS
55	Epigenetic dysregulation in pancreatic islets and pathogenesis of type 2 diabetes. Journal of Diabetes Investigation, 2018, 9, 475-477.	2.4	6
56	Extension of Conserved Regions in the Rat and Mouse Genomes by Chromosomal Assignments of 29 Rat Genes Experimental Animals, 1998, 47, 83-88.	1.1	5
57	In vitro generation of insulin-secreting cells from human pancreatic exocrine cells. Journal of Diabetes Investigation, 2011, 2, 271-275.	2.4	5
58	Tracing phenotypic reversibility of pancreatic β ells <i>in vitro</i> . Journal of Diabetes Investigation, 2010, 1, 242-251.	2.4	4
59	Tumorâ€like features of gene expression and metabolic profiles in enlarged pancreatic islets are associated with impaired incretinâ€induced insulin secretion in obese diabetes: A study of Zucker fatty diabetes mellitus rat. Journal of Diabetes Investigation, 2020, 11, 1434-1447.	2.4	3
60	O-GlcNAcylation of myocyte-specific enhancer factor 2D negatively regulates insulin secretion from pancreatic β-cells. Biochemical and Biophysical Research Communications, 2022, 605, 90-96.	2.1	3
61	Genetic profiling of two phenotypically distinct outbred rats derived from a colony of the Zucker fatty rats maintained at Tokyo Medical University. Experimental Animals, 2017, 66, 91-98.	1.1	1
62	Genetic Analysis of Autoimmune Type 1 Diabetes in the KDP Rat Proceedings of the Japanese Society of Animal Models for Human Diseases, 1997, 13, 61-70.	0.0	0
63	Elucidation of genetic factors in diabetes based on studies of animal models. Diabetology International, 2015, 6, 255-260.	1.4	0
64	Simulation Model of Insulin Granule Dynamics in Pancreatic Beta Cell. IEEJ Transactions on Electronics, Information and Systems, 2015, 135, 963-970.	0.2	0