James D Foster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5074276/publications.pdf Version: 2024-02-01

IAMES D FOSTED

#	Article	IF	CITATIONS
1	Mechanisms of dopamine transporter regulation in normal and disease states. Trends in Pharmacological Sciences, 2013, 34, 489-496.	8.7	323
2	SLC6 transporters: Structure, function, regulation, disease association and therapeutics. Molecular Aspects of Medicine, 2013, 34, 197-219.	6.4	232
3	Dopamine Transporters Are Phosphorylated on N-terminal Serines in Rat Striatum. Journal of Biological Chemistry, 2002, 277, 25178-25186.	3.4	130
4	Phorbol ester induced traffickingâ€independent regulation and enhanced phosphorylation of the dopamine transporter associated with membrane rafts and cholesterol. Journal of Neurochemistry, 2008, 105, 1683-1699.	3.9	115
5	Psychoactive Substrates Stimulate Dopamine Transporter Phosphorylation and Down-regulation by Cocaine-sensitive and Protein Kinase C-dependent Mechanisms. Journal of Biological Chemistry, 2005, 280, 40442-40449.	3.4	113
6	Dopamine Transporter Phosphorylation Site Threonine 53 Regulates Substrate Reuptake and Amphetamine-stimulated Efflux. Journal of Biological Chemistry, 2012, 287, 29702-29712.	3.4	79
7	Palmitoylation Controls Dopamine Transporter Kinetics, Degradation, and Protein Kinase C-dependent Regulation. Journal of Biological Chemistry, 2011, 286, 5175-5186.	3.4	63
8	Phosphorylation mechanisms in dopamine transporter regulation. Journal of Chemical Neuroanatomy, 2017, 83-84, 10-18.	2.1	56
9	The Biochemistry and Molecular Biology of the Clucose-6-Phosphatase System ¹ . Experimental Biology and Medicine, 2002, 227, 601-608.	2.4	50
10	Proline-Directed Phosphorylation of the Dopamine Transporter N-Terminal Domain. Biochemistry, 2009, 48, 1067-1076.	2.5	49
11	Phosphorylation of Dopamine Transporter Serine 7 Modulates Cocaine Analog Binding. Journal of Biological Chemistry, 2013, 288, 20-32.	3.4	47
12	Reciprocal Phosphorylation and Palmitoylation Control Dopamine Transporter Kinetics. Journal of Biological Chemistry, 2015, 290, 29095-29105.	3.4	46
13	Dopamine transporters are dephosphorylated in striatal homogenates and in vitro by protein phosphatase 1. Molecular Brain Research, 2003, 110, 100-108.	2.3	36
14	Palmitoylation mechanisms in dopamine transporter regulation. Journal of Chemical Neuroanatomy, 2017, 83-84, 3-9.	2.1	33
15	A network of phosphatidylinositol (4,5)-bisphosphate (PIP2) binding sites on the dopamine transporter regulates amphetamine behavior in Drosophila Melanogaster. Molecular Psychiatry, 2021, 26, 4417-4430.	7.9	26
16	Computational and Biochemical Docking of the Irreversible Cocaine Analog RTI 82 Directly Demonstrates Ligand Positioning in the Dopamine Transporter Central Substrate-binding Site. Journal of Biological Chemistry, 2014, 289, 29712-29727.	3.4	24
17	Dopamine transporter phosphorylation site threonine 53 is stimulated by amphetamines and regulates dopamine transport, efflux, and cocaine analog binding. Journal of Biological Chemistry, 2017, 292, 19066-19075.	3.4	24
18	Model systems for analysis of dopamine transporter function and regulation. Neurochemistry International, 2019, 123, 13-21.	3.8	20

JAMES D FOSTER

#	Article	IF	CITATIONS
19	Palmitoylation by Multiple DHHC Enzymes Enhances Dopamine Transporter Function and Stability. ACS Chemical Neuroscience, 2019, 10, 2707-2717.	3.5	16
20	MPP+ decreases store-operated calcium entry and TRPC1 expression in Mesenchymal Stem Cell derived dopaminergic neurons. Scientific Reports, 2018, 8, 11715.	3.3	13
21	Dephosphorylation of human dopamine transporter at threonine 48 by protein phosphatase PP1/2A up-regulates transport velocity. Journal of Biological Chemistry, 2019, 294, 3419-3431.	3.4	11
22	Antagonist-induced conformational changes in dopamine transporter extracellular loop two involve residues in a potential salt bridge. Neurochemistry International, 2014, 73, 16-26.	3.8	7
23	Inhibitor mechanisms in the S1 binding site of the dopamine transporter defined by multi-site molecular tethering of photoactive cocaine analogs. Biochemical Pharmacology, 2017, 142, 204-215.	4.4	4
24	Sodium hydrogen exchanger (NHE1) palmitoylation and potential functional regulation. Life Sciences, 2022, 288, 120142.	4.3	2
25	Subcellular Distribution of the Dopamine Transporter Phosphorylated on Threonine 53. FASEB Journal, 2018, 32, lb196.	0.5	Ο