
Adam Kenneth Wheatley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5073739/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Poor protective potential of influenza nucleoprotein antibodies despite wide prevalence. Immunology and Cell Biology, 2022, 100, 49-60.	2.3	9
2	T follicular helper cells in the humoral immune response to SARS-CoV-2 infection and vaccination. Journal of Leukocyte Biology, 2022, 111, 355-365.	3.3	25
3	Neutralising antibody titres as predictors of protection against SARS-CoV-2 variants and the impact of boosting: a meta-analysis. Lancet Microbe, The, 2022, 3, e52-e61.	7.3	436
4	COVID-19 vaccines in the age of the delta variant. Lancet Infectious Diseases, The, 2022, 22, 429-430.	9.1	6
5	Lung-resident memory B cells established after pulmonary influenza infection display distinct transcriptional and phenotypic profiles. Science Immunology, 2022, 7, eabf5314.	11.9	38
6	Establishment and recall of SARS-CoV-2 spike epitope-specific CD4+ T cell memory. Nature Immunology, 2022, 23, 768-780.	14.5	41
7	Cutting Edge: SARS-CoV-2 Infection Induces Robust Germinal Center Activity in the Human Tonsil. Journal of Immunology, 2022, , ji2101199.	0.8	6
8	Disentangling the relative importance of T cell responses in COVID-19: leading actors or supporting cast?. Nature Reviews Immunology, 2022, 22, 387-397.	22.7	93
9	The magnitude and timing of recalled immunity after breakthrough infection is shaped by SARS-CoV-2 variants. Immunity, 2022, 55, 1316-1326.e4.	14.3	38
10	SARS-CoV-2-specific TÂcell memory with common TCRαβ motifs is established in unvaccinated children who seroconvert after infection. Immunity, 2022, 55, 1299-1315.e4.	14.3	23
11	Anti-PEG Antibodies Boosted in Humans by SARS-CoV-2 Lipid Nanoparticle mRNA Vaccine. ACS Nano, 2022, 16, 11769-11780.	14.6	108
12	Immune profiling of influenzaâ€specific B―and Tâ€cell responses in macaques using flow cytometryâ€based assays. Immunology and Cell Biology, 2021, 99, 97-106.	2.3	6
13	Robust correlations across six SARS oVâ€2 serology assays detecting distinct antibody features. Clinical and Translational Immunology, 2021, 10, e1258.	3.8	28
14	Evolution of immune responses to SARS-CoV-2 in mild-moderate COVID-19. Nature Communications, 2021, 12, 1162.	12.8	316
15	Atypical B cells are part of an alternative lineage of B cells that participates in responses to vaccination and infection in humans. Cell Reports, 2021, 34, 108684.	6.4	134
16	Hemagglutinin Functionalized Liposomal Vaccines Enhance Germinal Center and Follicular Helper T Cell Immunity. Advanced Healthcare Materials, 2021, 10, e2002142.	7.6	27
17	Integrated immune dynamics define correlates of COVID-19 severity and antibody responses. Cell Reports Medicine, 2021, 2, 100208.	6.5	115
18	Immunogenicity of prime-boost protein subunit vaccine strategies against SARS-CoV-2 in mice and macaques. Nature Communications, 2021, 12, 1403.	12.8	65

#	Article	IF	CITATIONS
19	Nanobody cocktails potently neutralize SARS-CoV-2 D614G N501Y variant and protect mice. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	109
20	Prospects for durable immune control of SARS-CoV-2 and prevention of reinfection. Nature Reviews Immunology, 2021, 21, 395-404.	22.7	223
21	Neutralizing Antibody Therapeutics for COVID-19. Viruses, 2021, 13, 628.	3.3	99
22	Systems serology detects functionally distinct coronavirus antibody features in children and elderly. Nature Communications, 2021, 12, 2037.	12.8	125
23	Immune cellular networks underlying recovery from influenza virus infection in acute hospitalized patients. Nature Communications, 2021, 12, 2691.	12.8	34
24	CD8+ TÂcells specific for an immunodominant SARS-CoV-2 nucleocapsid epitope display high naive precursor frequency and TCR promiscuity. Immunity, 2021, 54, 1066-1082.e5.	14.3	106
25	Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nature Medicine, 2021, 27, 1205-1211.	30.7	3,133
26	Decay of Fc-dependent antibody functions after mild to moderate COVID-19. Cell Reports Medicine, 2021, 2, 100296.	6.5	56
27	SARS oVâ€2â€specific CD8 ⁺ Tâ€cell responses and TCR signatures in the context of a prominent HLAâ€A*24:02 allomorph. Immunology and Cell Biology, 2021, 99, 990-1000.	2.3	28
28	Coformulation with Tattoo Ink for Immunological Assessment of Vaccine Immunogenicity in the Draining Lymph Node. Journal of Immunology, 2021, 207, 735-744.	0.8	6
29	Simultaneous evaluation of antibodies that inhibit SARS-CoV-2 variants via multiplex assay. JCI Insight, 2021, 6, .	5.0	33
30	Protective efficacy of the anti-HIV broadly neutralizing antibody PGT121 in the context of semen exposure. EBioMedicine, 2021, 70, 103518.	6.1	3
31	From influenza to COVID-19: Lipid nanoparticle mRNA vaccines at the frontiers of infectious diseases. Acta Biomaterialia, 2021, 131, 16-40.	8.3	140
32	Structural basis of biased T cell receptor recognition of an immunodominant HLA-A2 epitope of the SARS-CoV-2 spike protein. Journal of Biological Chemistry, 2021, 297, 101065.	3.4	20
33	Influenza lineage extinction during the COVID-19 pandemic?. Nature Reviews Microbiology, 2021, 19, 741-742.	28.6	82
34	Immune imprinting and SARS-CoV-2 vaccine design. Trends in Immunology, 2021, 42, 956-959.	6.8	73
35	Landscape of human antibody recognition of the SARS-CoV-2 receptor binding domain. Cell Reports, 2021, 37, 109822.	6.4	35
36	Adaptive immunity to human coronaviruses is widespread but low in magnitude. Clinical and Translational Immunology, 2021, 10, e1264.	3.8	16

#	Article	IF	CITATIONS
37	Screening and development of monoclonal antibodies for identification of ferret T follicular helper cells. Scientific Reports, 2021, 11, 1864.	3.3	4
38	Robust and prototypical immune responses toward influenza vaccines in the high-risk group of Indigenous Australians. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	4
39	Boosting immunity to COVID-19 vaccines. Nature Medicine, 2021, 27, 1874-1875.	30.7	56
40	Current and future nanoparticle vaccines for COVID-19. EBioMedicine, 2021, 74, 103699.	6.1	57
41	A point-of-care lateral flow assay for neutralising antibodies against SARS-CoV-2. EBioMedicine, 2021, 74, 103729.	6.1	29
42	Butyrophilin 2A1 is essential for phosphoantigen reactivity by $\hat{I}^3\hat{I}$ T cells. Science, 2020, 367, .	12.6	275
43	Humoral and circulating follicular helper T cell responses in recovered patients with COVID-19. Nature Medicine, 2020, 26, 1428-1434.	30.7	400
44	New Technologies for Influenza Vaccines. Microorganisms, 2020, 8, 1745.	3.6	33
45	Need for Speed: From Human SARS-CoV-2 Samples to Protective and Efficacious Antibodies in Weeks. Cell, 2020, 182, 7-9.	28.9	3
46	Measuring immunity to SARS-CoV-2 infection: comparing assays and animal models. Nature Reviews Immunology, 2020, 20, 727-738.	22.7	107
47	Person-Specific Biomolecular Coronas Modulate Nanoparticle Interactions with Immune Cells in Human Blood. ACS Nano, 2020, 14, 15723-15737.	14.6	55
48	Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nature Microbiology, 2020, 5, 1185-1191.	13.3	553
49	Suboptimal SARS-CoV-2â^'specific CD8 ⁺ T cell response associated with the prominent HLA-A*02:01 phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24384-24391.	7.1	168
50	Cellular Interactions: Cellular Interactions of Liposomes and PISA Nanoparticles during Human Blood Flow in a Microvascular Network (Small 33/2020). Small, 2020, 16, 2070185.	10.0	1
51	Sequencing B cell receptors from ferrets (Mustela putorius furo). PLoS ONE, 2020, 15, e0233794.	2.5	5
52	High CD26 and Low CD94 Expression Identifies an IL-23 Responsive Vδ2+ T Cell Subset with a MAIT Cell-like Transcriptional Profile. Cell Reports, 2020, 31, 107773.	6.4	32
53	Safety, tolerability, and immunogenicity of influenza vaccination with a high-density microarray patch: Results from a randomized, controlled phase I clinical trial. PLoS Medicine, 2020, 17, e1003024.	8.4	62
54	Cellular Interactions of Liposomes and PISA Nanoparticles during Human Blood Flow in a Microvascular Network. Small, 2020, 16, e2002861.	10.0	67

#	Article	IF	CITATIONS
55	Fc functional antibody responses to adjuvanted versus unadjuvanted seasonal influenza vaccination in community-dwelling older adults. Vaccine, 2020, 38, 2368-2377.	3.8	10
56	Self-assembling influenza nanoparticle vaccines drive extended germinal center activity and memory B cell maturation. JCI Insight, 2020, 5, .	5.0	64
57	Aggregation by peptide conjugation rescues poor immunogenicity of the HA stem. PLoS ONE, 2020, 15, e0241649.	2.5	1
58	Sequencing B cell receptors from ferrets (Mustela putorius furo). , 2020, 15, e0233794.		0
59	Sequencing B cell receptors from ferrets (Mustela putorius furo). , 2020, 15, e0233794.		0
60	Sequencing B cell receptors from ferrets (Mustela putorius furo). , 2020, 15, e0233794.		0
61	Sequencing B cell receptors from ferrets (Mustela putorius furo). , 2020, 15, e0233794.		0
62	Improving immunological insights into the ferret model of human viral infectious disease. Influenza and Other Respiratory Viruses, 2019, 13, 535-546.	3.4	28
63	Immunomodulation Induced by Host Pathogen Interaction. Journal of Immunology Research, 2019, 2019, 1-2.	2.2	0
64	Cross-lineage protection by human antibodies binding the influenza B hemagglutinin. Nature Communications, 2019, 10, 324.	12.8	62
65	Link between Low-Fouling and Stealth: A Whole Blood Biomolecular Corona and Cellular Association Analysis on Nanoengineered Particles. ACS Nano, 2019, 13, 4980-4991.	14.6	53
66	Prolonged evolution of the memory B cell response induced by a replicating adenovirus-influenza H5 vaccine. Science Immunology, 2019, 4, .	11.9	40
67	Inducible Bronchus-Associated Lymphoid Tissues (iBALT) Serve as Sites of B Cell Selection and Maturation Following Influenza Infection in Mice. Frontiers in Immunology, 2019, 10, 611.	4.8	40
68	Design of Nanoparticulate Group 2 Influenza Virus Hemagglutinin Stem Antigens That Activate Unmutated Ancestor B Cell Receptors of Broadly Neutralizing Antibody Lineages. MBio, 2019, 10, .	4.1	88
69	Modulating Targeting of Poly(ethylene glycol) Particles to Tumor Cells Using Bispecific Antibodies. Advanced Healthcare Materials, 2019, 8, e1801607.	7.6	38
70	Mosaic nanoparticle display of diverse influenza virus hemagglutinins elicits broad B cell responses. Nature Immunology, 2019, 20, 362-372.	14.5	211
71	Identification of murine antigen-specific T follicular helper cells using an activation-induced marker assay. Journal of Immunological Methods, 2019, 467, 48-57.	1.4	15
72	Low pH Exposure During Immunoglobulin G Purification Methods Results in Aggregates That Avidly Bind Fcl ³ Receptors: Implications for Measuring Fc Dependent Antibody Functions. Frontiers in Immunology, 2019, 10, 2415.	4.8	35

Adam Kenneth Wheatley

#	Article	IF	CITATIONS
73	Immunological basis for enhanced immunity of nanoparticle vaccines. Expert Review of Vaccines, 2019, 18, 269-280.	4.4	97
74	Hemagglutinin head-specific responses dominate over stem-specific responses following prime boost with mismatched vaccines. JCI Insight, 2019, 4, .	5.0	15
75	Subdominance and poor intrinsic immunogenicity limit humoral immunity targeting influenza HA stem. Journal of Clinical Investigation, 2019, 129, 850-862.	8.2	78
76	Circulating T _{FH} cells, serological memory, and tissue compartmentalization shape human influenza-specific B cell immunity. Science Translational Medicine, 2018, 10, .	12.4	196
77	Intranasal Live Influenza Vaccine Priming Elicits Localized B Cell Responses in Mediastinal Lymph Nodes. Journal of Virology, 2018, 92, .	3.4	30
78	A human monoclonal antibody prevents malaria infection by targeting a new site of vulnerability on the parasite. Nature Medicine, 2018, 24, 408-416.	30.7	235
79	Induction of vaginal-resident HIV-specific CD8 T cells with mucosal prime–boost immunization. Mucosal Immunology, 2018, 11, 994-1007.	6.0	41
80	Anti-Influenza Hyperimmune Immunoglobulin Enhances Fc-Functional Antibody Immunity During Human Influenza Infection. Journal of Infectious Diseases, 2018, 218, 1383-1393.	4.0	8
81	Fc-dependent functions are redundant to efficacy of anti-HIV antibody PGT121 in macaques. Journal of Clinical Investigation, 2018, 129, 182-191.	8.2	69
82	Immunological Principles Guiding the Rational Design of Particles for Vaccine Delivery. ACS Nano, 2017, 11, 54-68.	14.6	153
83	Antibody-dependent cellular cytotoxicity and influenza virus. Current Opinion in Virology, 2017, 22, 89-96.	5.4	60
84	Defining B cell immunodominance to viruses. Nature Immunology, 2017, 18, 456-463.	14.5	218
85	Fc or not Fc; that is the question: Antibody Fc-receptor interactions are key to universal influenza vaccine design. Human Vaccines and Immunotherapeutics, 2017, 13, 1288-1296.	3.3	55
86	The aryl hydrocarbon receptor controls cell-fate decisions in B cells. Journal of Experimental Medicine, 2017, 214, 197-208.	8.5	83
87	Preferential induction of cross-group influenza A hemagglutinin stem–specific memory B cells after H7N9 immunization in humans. Science Immunology, 2017, 2, .	11.9	84
88	Antibody-dependent phagocytosis (ADP) responses following trivalent inactivated influenza vaccination of younger and older adults. Vaccine, 2017, 35, 6451-6458.	3.8	16
89	Longitudinal dynamics of the HIV-specific B cell response during intermittent treatment of primary HIV infection. PLoS ONE, 2017, 12, e0173577.	2.5	5
90	HIV-dependent depletion of influenza-specific memory B cells impacts B cell responsiveness to seasonal influenza immunisation. Scientific Reports, 2016, 6, 26478.	3.3	32

Adam Kenneth Wheatley

#	Article	IF	CITATIONS
91	Antibody Responses with Fc-Mediated Functions after Vaccination of HIV-Infected Subjects with Trivalent Influenza Vaccine. Journal of Virology, 2016, 90, 5724-5734.	3.4	52
92	Twist in the Tail: Escape from HIV Neutralising Antibodies at a Single Site Confers Broad Susceptibility to Others. EBioMedicine, 2016, 12, 14-15.	6.1	1
93	Vaccine-Induced Antibodies that Neutralize Group 1 and Group 2 Influenza A Viruses. Cell, 2016, 166, 609-623.	28.9	270
94	Reconstituted B cell receptor signaling reveals carbohydrate-dependent mode of activation. Scientific Reports, 2016, 6, 36298.	3.3	29
95	A Simple Flow-Cytometric Method Measuring B Cell Surface Immunoglobulin Avidity Enables Characterization of Affinity Maturation to Influenza A Virus. MBio, 2015, 6, e01156.	4.1	34
96	H5N1 Vaccine–Elicited Memory B Cells Are Genetically Constrained by the IGHV Locus in the Recognition of a Neutralizing Epitope in the Hemagglutinin Stem. Journal of Immunology, 2015, 195, 602-610.	0.8	83
97	Prospects for antibody-based universal influenza vaccines in the context of widespread pre-existing immunity. Expert Review of Vaccines, 2015, 14, 1227-1239.	4.4	16
98	Abnormal B cell memory subsets dominate HIV-specific responses in infected individuals. Journal of Clinical Investigation, 2014, 124, 3252-3262.	8.2	130
99	Loss of Circulating CD4 T Cells with B Cell Helper Function during Chronic HIV Infection. PLoS Pathogens, 2014, 10, e1003853.	4.7	153
100	Flow Cytometry Reveals that H5N1 Vaccination Elicits Cross-Reactive Stem-Directed Antibodies from Multiple Ig Heavy-Chain Lineages. Journal of Virology, 2014, 88, 4047-4057.	3.4	220
101	Utility of the Sindbis replicon system as an Env-targeted HIV vaccine. Vaccine, 2013, 31, 2260-2266.	3.8	3
102	Hyperimmune Bovine Colostrum as a Low-Cost, Large-Scale Source of Antibodies with Broad Neutralizing Activity for HIV-1 Envelope with Potential Use in Microbicides. Antimicrobial Agents and Chemotherapy, 2012, 56, 4310-4319.	3.2	50
103	Induction of humoral and cellular immune responses against the HIV-1 envelope protein using Î ³ -retroviral virus-like particles. Virology Journal, 2011, 8, 381.	3.4	3
104	Co-Expression of miRNA Targeting the Expression of PERK, but Not PKR, Enhances Cellular Immunity from an HIV-1 Env DNA Vaccine. PLoS ONE, 2011, 6, e18225.	2.5	16
105	Efficient transcription through an intron requires the binding of an Sm-type U1 snRNP with intact stem loop II to the splice donor. Nucleic Acids Research, 2010, 38, 3041-3053.	14.5	23
106	Induction of HIV-1 subtype B and AE-specific neutralizing antibodies in mice and macaques with DNA prime and recombinant gp140 protein boost regimens. Vaccine, 2009, 27, 6605-6612.	3.8	38
107	High Precursor Frequency and Promiscuity in Îβ T Cell Receptor Pairing Underpin CD8+ T-Cell Responses to an Immunodominant SARS-CoV-2 Nucleocapsid Epitope. SSRN Electronic Journal, 0, , .	0.4	0