Joanna L Jankowsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5073399/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Temporal and spatially-controlled APP transgene expression using Cre-dependent alleles. DMM Disease Models and Mechanisms, 2022, , .	2.4	4
2	Gene therapy using $A\hat{I}^2$ variants for amyloid reduction. Molecular Therapy, 2021, 29, 2294-2307.	8.2	7
3	Type I interferon response drives neuroinflammation and synapse loss in Alzheimer disease. Journal of Clinical Investigation, 2020, 130, 1912-1930.	8.2	268
4	Brain-wide distribution of reporter expression in five transgenic tetracycline-transactivator mouse lines. Scientific Data, 2019, 6, 190028.	5.3	1
5	Cross-species genetic screens to identify kinase targets for APP reduction in Alzheimer's disease. Human Molecular Genetics, 2019, 28, 2014-2029.	2.9	5
6	Combination anti-AÎ ² treatment maximizes cognitive recovery and rebalances mTOR signaling in APP mice. Journal of Experimental Medicine, 2018, 215, 1349-1364.	8.5	14
7	Discrete Pools of Oligomeric Amyloid-β Track with Spatial Learning Deficits in a Mouse Model of Alzheimer Amyloidosis. American Journal of Pathology, 2018, 188, 739-756.	3.8	16
8	Combination of Al ² Suppression and Innate Immune Activation in the Brain Significantly Attenuates Amyloid Plaque Deposition. American Journal of Pathology, 2017, 187, 2886-2894.	3.8	7
9	Practical considerations for choosing a mouse model of Alzheimer's disease. Molecular Neurodegeneration, 2017, 12, 89.	10.8	305
10	Amyloid-β plaques disrupt axon initial segments. Experimental Neurology, 2016, 281, 93-98.	4.1	49
11	Impaired Recall of Positional Memory following Chemogenetic Disruption of Place Field Stability. Cell Reports, 2016, 16, 793-804.	6.4	22
12	Neuronal overexpression of human VAPB slows motor impairment and neuromuscular denervation in a mouse model of ALS. Human Molecular Genetics, 2016, 25, ddw294.	2.9	19
13	Astrocyte-Microglia Cross Talk through Complement Activation Modulates Amyloid Pathology in Mouse Models of Alzheimer's Disease. Journal of Neuroscience, 2016, 36, 577-589.	3.6	399
14	Transgene expression in the Nop-tTA driver line is not inherently restricted to the entorhinal cortex. Brain Structure and Function, 2016, 221, 2231-2249.	2.3	32
15	Widespread Neuronal Transduction of the Rodent CNS via Neonatal Viral Injection. Methods in Molecular Biology, 2016, 1382, 239-250.	0.9	13
16	Humanized Tau Mice with Regionalized Amyloid Exhibit Behavioral Deficits but No Pathological Interaction. PLoS ONE, 2016, 11, e0153724.	2.5	11
17	Wild-type microglia do not reverse pathology in mouse models of Rett syndrome. Nature, 2015, 521, E1-E4.	27.8	159
18	Quaternary Structure Defines a Large Class of Amyloid-Î ² Oligomers Neutralized by Sequestration. Cell Reports, 2015, 11, 1760-1771.	6.4	141

JOANNA L JANKOWSKY

#	Article	IF	CITATIONS
19	NFκB-Activated Astroglial Release of Complement C3 Compromises Neuronal Morphology and Function Associated with Alzheimer's Disease. Neuron, 2015, 85, 101-115.	8.1	442
20	Genetic Suppression of Transgenic APP Rescues Hypersynchronous Network Activity in a Mouse Model of Alzeimer's Disease. Journal of Neuroscience, 2014, 34, 3826-3840.	3.6	144
21	Cerebral Vascular Leak in a Mouse Model of Amyloid Neuropathology. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 1646-1654.	4.3	24
22	Specificity and efficiency of reporter expression in adult neural progenitors vary substantially among nestinâ€CreER ^{T2} lines. Journal of Comparative Neurology, 2014, 522, 1191-1208.	1.6	63
23	Intracerebroventricular Viral Injection of the Neonatal Mouse Brain for Persistent and Widespread Neuronal Transduction. Journal of Visualized Experiments, 2014, , 51863.	0.3	151
24	Genetic Modulation of Soluble AÂ Rescues Cognitive and Synaptic Impairment in a Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2014, 34, 7871-7885.	3.6	74
25	Impairments in experience-dependent scaling and stability of hippocampal place fields limit spatial learning in a mouse model of Alzheimer's disease. Hippocampus, 2014, 24, 963-978.	1.9	33
26	Viral transduction of the neonatal brain delivers controllable genetic mosaicism for visualising and manipulating neuronal circuits <i>in vivo</i> . European Journal of Neuroscience, 2013, 37, 1203-1220.	2.6	123
27	Wild-Type Neural Progenitors Divide and Differentiate Normally in an Amyloid-Rich Environment. Journal of Neuroscience, 2013, 33, 17335-17341.	3.6	19
28	Capsid Serotype and Timing of Injection Determines AAV Transduction in the Neonatal Mice Brain. PLoS ONE, 2013, 8, e67680.	2.5	149
29	Strain Background Influences Neurotoxicity and Behavioral Abnormalities in Mice Expressing the Tetracycline Transactivator. Journal of Neuroscience, 2012, 32, 10574-10586.	3.6	94
30	Neuronal aggregates are associated with phenotypic onset in the R6/2 Huntington's disease transgenic mouse. Behavioural Brain Research, 2012, 229, 308-319.	2.2	11
31	Transgenic APP expression during postnatal development causes persistent locomotor hyperactivity in the adult. Molecular Neurodegeneration, 2012, 7, 28.	10.8	55
32	Robust Amyloid Clearance in a Mouse Model of Alzheimer's Disease Provides Novel Insights into the Mechanism of Amyloid-β Immunotherapy. Journal of Neuroscience, 2011, 31, 4124-4136.	3.6	97
33	Remote sites of structural atrophy predict later amyloid formation in a mouse model of Alzheimer's disease. NeuroImage, 2010, 50, 416-427.	4.2	42
34	GABA transporter function, oligomerization state, and anchoring: correlates with subcellularly resolved FRET. Journal of General Physiology, 2009, 134, 489-521.	1.9	39
35	Quantification Of Sensitized FRET From Fluorescent GAT1 Î ³ -aminobutyric Acid Transporters Distinguishes Between Subsurface And Plasma Membrane Resident Oligomers And Predicts Function. Biophysical Journal, 2009, 96, 271a.	0.5	0
36	Rodent AÎ ² Modulates the Solubility and Distribution of Amyloid Deposits in Transgenic Mice. Journal of Biological Chemistry, 2007, 282, 22707-22720.	3.4	98

JOANNA L JANKOWSKY

#	Article	IF	CITATIONS
37	Alzheimer's-Type Amyloidosis in Transgenic Mice Impairs Survival of Newborn Neurons Derived from Adult Hippocampal Neurogenesis. Journal of Neuroscience, 2007, 27, 6771-6780.	3.6	203
38	Persistent Amyloidosis following Suppression of AÎ ² Production in a Transgenic Model of Alzheimer Disease. PLoS Medicine, 2005, 2, e355.	8.4	202
39	Environmental Enrichment Mitigates Cognitive Deficits in a Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2005, 25, 5217-5224.	3.6	455
40	Transgenic mouse models of neurodegenerative disease. , 2004, , 533-557.		0
41	APP processing and amyloid deposition in mice haplo-insufficient for presenilin 1. Neurobiology of Aging, 2004, 25, 885-892.	3.1	143
42	Mutant presenilins specifically elevate the levels of the 42 residue β-amyloid peptide in vivo: evidence for augmentation of a 42-specific γ secretase. Human Molecular Genetics, 2004, 13, 159-170.	2.9	1,350
43	Environmental Enrichment Exacerbates Amyloid Plaque Formation in a Transgenic Mouse Model of Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2003, 62, 1220-1227.	1.7	190
44	Transgenic mouse models of neurodegenerative disease: Opportunities for therapeutic development. Current Neurology and Neuroscience Reports, 2002, 2, 457-464.	4.2	54
45	Co-expression of multiple transgenes in mouse CNS: a comparison of strategies. New Biotechnology, 2001, 17, 157-165.	2.7	712