
## Yongbing Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5073296/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Reactive Oxygen Species and Catalytic Active Sites in Heterogeneous Catalytic Ozonation for Water<br>Purification. Environmental Science & Technology, 2020, 54, 5931-5946.                                                       | 10.0 | 285       |
| 2  | Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation.<br>Chemosphere, 2015, 121, 1-17.                                                                                                              | 8.2  | 282       |
| 3  | Efficient Catalytic Ozonation over Reduced Graphene Oxide for <i>p</i> -Hydroxylbenzoic Acid (PHBA)<br>Destruction: Active Site and Mechanism. ACS Applied Materials & Interfaces, 2016, 8, 9710-9720.                            | 8.0  | 234       |
| 4  | Single-Atom Mn–N <sub>4</sub> Site-Catalyzed Peroxone Reaction for the Efficient Production of<br>Hydroxyl Radicals in an Acidic Solution. Journal of the American Chemical Society, 2019, 141,<br>12005-12010.                   | 13.7 | 203       |
| 5  | 2D/2D nano-hybrids of Î <sup>3</sup> -MnO 2 on reduced graphene oxide for catalytic ozonation and coupling peroxymonosulfate activation. Journal of Hazardous Materials, 2016, 301, 56-64.                                        | 12.4 | 195       |
| 6  | Role of oxygen vacancies and Mn sites in hierarchical Mn2O3/LaMnO3-δ perovskite composites for<br>aqueous organic pollutants decontamination. Applied Catalysis B: Environmental, 2019, 245, 546-554.                             | 20.2 | 187       |
| 7  | A closed-loop process for recycling LiNi1/3Co1/3Mn1/3O2 from the cathode scraps of lithium-ion batteries: Process optimization and kinetics analysis. Separation and Purification Technology, 2015, 150, 186-195.                 | 7.9  | 169       |
| 8  | Dramatic coupling of visible light with ozone on honeycomb-like porous g-C 3 N 4 towards superior oxidation of water pollutants. Applied Catalysis B: Environmental, 2016, 183, 417-425.                                          | 20.2 | 165       |
| 9  | An overview on the processes and technologies for recycling cathodic active materials from spent<br>lithium-ion batteries. Journal of Material Cycles and Waste Management, 2013, 15, 420-430.                                    | 3.0  | 163       |
| 10 | Selection of active phase of MnO2 for catalytic ozonation of 4-nitrophenol. Chemosphere, 2017, 168, 1457-1466.                                                                                                                    | 8.2  | 159       |
| 11 | Synthesis and Characterization of Noble Metal (Pd, Pt, Au, Ag) Nanostructured Materials Confined in the Channels of Mesoporous SBA-15. Journal of Physical Chemistry C, 2008, 112, 19818-19824.                                   | 3.1  | 156       |
| 12 | Nanocarbon-Based Catalytic Ozonation for Aqueous Oxidation: Engineering Defects for Active Sites and Tunable Reaction Pathways. ACS Catalysis, 2020, 10, 13383-13414.                                                             | 11.2 | 141       |
| 13 | Enhanced proton and electron reservoir abilities of polyoxometalate grafted on graphene for high-performance hydrogen evolution. Energy and Environmental Science, 2016, 9, 1012-1023.                                            | 30.8 | 138       |
| 14 | Fast Electron Transfer and <sup>•</sup> OH Formation: Key Features for High Activity in<br>Visible-Light-Driven Ozonation with C <sub>3</sub> N <sub>4</sub> Catalysts. ACS Catalysis, 2017, 7,<br>6198-6206.                     | 11.2 | 135       |
| 15 | The evolution of surface charge on graphene oxide during the reduction and its application in electroanalysis. Carbon, 2014, 66, 302-311.                                                                                         | 10.3 | 134       |
| 16 | Tailored synthesis of active reduced graphene oxides from waste graphite: Structural defects and pollutant-dependent reactive radicals in aqueous organics decontamination. Applied Catalysis B: Environmental, 2018, 229, 71-80. | 20.2 | 128       |
| 17 | Is C <sub>3</sub> N <sub>4</sub> Chemically Stable toward Reactive Oxygen Species in Sunlight-Driven<br>Water Treatment?. Environmental Science & Technology, 2017, 51, 13380-13387.                                              | 10.0 | 119       |
| 18 | Super synergy between photocatalysis and ozonation using bulk g-C3N4 as catalyst: A potential sunlight/O3/g-C3N4 method for efficient water decontamination. Applied Catalysis B: Environmental, 2016, 181, 420-428.              | 20.2 | 113       |

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A novel process for recycling and resynthesizing LiNi1/3Co1/3Mn1/3O2 from the cathode scraps intended for lithium-ion batteries. Waste Management, 2014, 34, 1715-1724.                                              | 7.4  | 111       |
| 20 | Occurrence of both hydroxyl radical and surface oxidation pathways in N-doped layered nanocarbons for aqueous catalytic ozonation. Applied Catalysis B: Environmental, 2019, 254, 283-291.                           | 20.2 | 109       |
| 21 | Promoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acid. Applied Catalysis B: Environmental, 2014, 146, 169-176.                                                    | 20.2 | 99        |
| 22 | Catalytic ozonation of 4-nitrophenol over an mesoporous α-MnO2 with resistance to leaching.<br>Catalysis Today, 2015, 258, 595-601.                                                                                  | 4.4  | 88        |
| 23 | Metal-free catalytic ozonation on surface-engineered graphene: Microwave reduction and heteroatom doping. Chemical Engineering Journal, 2019, 355, 118-129.                                                          | 12.7 | 86        |
| 24 | Superoxide radical-mediated photocatalytic oxidation of phenolic compounds over Ag + /TiO 2 :<br>Influence of electron donating and withdrawing substituents. Journal of Hazardous Materials, 2016,<br>304, 126-133. | 12.4 | 82        |
| 25 | Visible-Light Photocatalytic Ozonation Using Graphitic C <sub>3</sub> N <sub>4</sub> Catalysts: A<br>Hydroxyl Radical Manufacturer for Wastewater Treatment. Accounts of Chemical Research, 2020, 53,<br>1024-1033.  | 15.6 | 81        |
| 26 | Hierarchical shape-controlled mixed-valence calcium manganites for catalytic ozonation of aqueous phenolic compounds. Catalysis Science and Technology, 2016, 6, 2918-2929.                                          | 4.1  | 69        |
| 27 | The role of ozone and influence of band structure in WO3 photocatalysis and ozone integrated process for pharmaceutical wastewater treatment. Journal of Hazardous Materials, 2018, 360, 481-489.                    | 12.4 | 60        |
| 28 | Carbon dioxide reforming of methane over glow discharge plasma-reduced Ir/Al2O3 catalyst. Catalysis<br>Communications, 2008, 9, 1558-1562.                                                                           | 3.3  | 58        |
| 29 | g-C3N4-triggered super synergy between photocatalysis and ozonation attributed to promoted OH generation. Catalysis Communications, 2015, 66, 10-14.                                                                 | 3.3  | 57        |
| 30 | The influence of the substituent on the phenol oxidation rate and reactive species in cubic<br>MnO <sub>2</sub> catalytic ozonation. Catalysis Science and Technology, 2016, 6, 7875-7884.                           | 4.1  | 57        |
| 31 | Hierarchical biomimetic BiVO4 for the treatment of pharmaceutical wastewater in visible-light photocatalytic ozonation. Chemosphere, 2019, 222, 38-45.                                                               | 8.2  | 55        |
| 32 | Different roles of Fe atoms and nanoparticles on g-C3N4 in regulating the reductive activation of ozone under visible light. Applied Catalysis B: Environmental, 2021, 296, 120362.                                  | 20.2 | 54        |
| 33 | Towards effective design of active nanocarbon materials for integrating visible-light photocatalysis with ozonation. Carbon, 2016, 107, 658-666.                                                                     | 10.3 | 52        |
| 34 | Mechanistic Investigations of the Pyridinic N–Co Structures in Co Embedded N-Doped Carbon<br>Nanotubes for Catalytic Ozonation. ACS ES&T Engineering, 2021, 1, 32-45.                                                | 7.6  | 50        |
| 35 | Highly Selective PdCu/Amorphous Silicaâ~'Alumina (ASA) Catalysts for Groundwater Denitration.<br>Environmental Science & Technology, 2011, 45, 4066-4072.                                                            | 10.0 | 48        |
| 36 | Br/Co/N Co-doped porous carbon frameworks with enriched defects for high-performance electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 10865-10874.                                                       | 10.3 | 47        |

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Phenolic compounds removal by wet air oxidation based processes. Frontiers of Environmental<br>Science and Engineering, 2018, 12, 1.                                                                                            | 6.0  | 46        |
| 38 | Activated carbon-enhanced ozonation of oxalate attributed to HO oxidation in bulk solution and surface oxidation: Effects of the type and number of basic sites. Chemical Engineering Journal, 2014, 245, 71-79.                | 12.7 | 45        |
| 39 | Stability of Ionic Liquids under the Influence of Glow Discharge Plasmas. Plasma Processes and Polymers, 2008, 5, 239-245.                                                                                                      | 3.0  | 44        |
| 40 | High activity of g-C3N4/multiwall carbon nanotube in catalytic ozonation promotes electro-peroxone process. Chemosphere, 2018, 201, 206-213.                                                                                    | 8.2  | 42        |
| 41 | Degradation of phenolic compounds by dielectric barrier plasma: Process optimization and influence of phenol substituents. Chemical Engineering Journal, 2020, 385, 123732.                                                     | 12.7 | 42        |
| 42 | Disparate roles of doped metal ions in promoting surface oxidation of TiO 2 photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 315, 59-66.                                                          | 3.9  | 38        |
| 43 | Novel oxidative cutting graphene oxide to graphene quantum dots for electrochemical sensing application. Materials Today Communications, 2016, 8, 127-133.                                                                      | 1.9  | 33        |
| 44 | N-dependent ozonation efficiency over nitrogen-containing heterocyclic contaminants: A combined density functional theory study on reaction kinetics and degradation pathways. Chemical Engineering Journal, 2020, 382, 122708. | 12.7 | 33        |
| 45 | Insights into the mechanism of phenolic mixture degradation by catalytic ozonation with a<br>mesoporous Fe <sub>3</sub> O <sub>4</sub> /MnO <sub>2</sub> composite. RSC Advances, 2016, 6,<br>29674-29684.                      | 3.6  | 32        |
| 46 | Support effect boosting the electrocatalytic N <sub>2</sub> reduction activity of<br>Ni <sub>2</sub> P/N,P-codoped carbon nanosheet hybrids. Journal of Materials Chemistry A, 2020, 8,<br>2691-2700.                           | 10.3 | 32        |
| 47 | Number of Reactive Charge Carriers—A Hidden Linker between Band Structure and Catalytic<br>Performance in Photocatalysts. ACS Catalysis, 2019, 9, 8852-8861.                                                                    | 11.2 | 31        |
| 48 | Temperature-Dependent Selectivity of Hydrogenation/Hydrogenolysis during Phenol Conversion over<br>Ni Catalysts. ACS Sustainable Chemistry and Engineering, 2019, 7, 9464-9473.                                                 | 6.7  | 31        |
| 49 | The duet of surface and radical-based carbocatalysis for oxidative destructions of aqueous contaminants over built-in nanotubes of graphite. Journal of Hazardous Materials, 2020, 384, 121486.                                 | 12.4 | 29        |
| 50 | Graphene–CdS quantum dots–polyoxometalate composite films for efficient photoelectrochemical<br>water splitting and pollutant degradation. Physical Chemistry Chemical Physics, 2014, 16, 26016-26023.                          | 2.8  | 27        |
| 51 | Mechanism of ozone adsorption and activation on B-, N-, P-, and Si-doped graphene: A DFT study.<br>Chemical Engineering Journal, 2022, 430, 133114.                                                                             | 12.7 | 27        |
| 52 | Insights into the Mechanism of Ozone Activation and Singlet Oxygen Generation on N-Doped Defective<br>Nanocarbons: A DFT and Machine Learning Study. Environmental Science & Technology, 2022, 56,<br>7853-7863.                | 10.0 | 27        |
| 53 | Towards a better understanding of the synergistic effect in the electro-peroxone process using a three electrode system. Chemical Engineering Journal, 2018, 337, 733-740.                                                      | 12.7 | 26        |
| 54 | Enhanced hole-dominated photocatalytic activity of doughnut-like porous g-C3N4 driven by<br>down-shifted valance band maximum. Catalysis Today, 2018, 307, 147-153.                                                             | 4.4  | 25        |

| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Reaction mechanism and metal ion transformation in photocatalytic ozonation of phenol and oxalic acid with Ag+/TiO2. Journal of Environmental Sciences, 2014, 26, 662-672.                                                | 6.1  | 23        |
| 56 | Morphologic evolution of Au nanocrystals grown in ionic liquid by plasma reduction. Journal of<br>Colloid and Interface Science, 2012, 374, 40-44.                                                                        | 9.4  | 21        |
| 57 | Acidity induced fast transformation of acetaminophen by different MnO2: Kinetics and pathways.<br>Chemical Engineering Journal, 2019, 359, 518-529.                                                                       | 12.7 | 21        |
| 58 | In-situ synthesis of N, S co-doped hollow carbon microspheres for efficient catalytic oxidation of organic contaminants. Chinese Chemical Letters, 2022, 33, 1298-1302.                                                   | 9.0  | 20        |
| 59 | Activated carbon adsorption coupled with ozonation regeneration for efficient removal of chlorobenzene. Journal of Environmental Chemical Engineering, 2022, 10, 107319.                                                  | 6.7  | 19        |
| 60 | Wet air oxidation of indole, benzopyrazole, and benzotriazole: Effects of operating conditions and reaction mechanisms. Chemical Engineering Journal, 2018, 338, 496-503.                                                 | 12.7 | 18        |
| 61 | The structure-activity relationship of aromatic compounds in advanced oxidation processes:a review.<br>Chemosphere, 2022, 296, 134071.                                                                                    | 8.2  | 18        |
| 62 | Promising application of SiC without co-catalyst in photocatalysis and ozone integrated process for aqueous organics degradation. Catalysis Today, 2018, 315, 223-229.                                                    | 4.4  | 17        |
| 63 | Dendritic BiVO4 decorated with MnOx co-catalyst as an efficient hierarchical catalyst for photocatalytic ozonation. Frontiers of Chemical Science and Engineering, 2019, 13, 185-191.                                     | 4.4  | 17        |
| 64 | Enhanced Activity of Bimetallic Pd-Based Catalysts for Methane Combustion. Catalysis Letters, 2008, 125, 130-133.                                                                                                         | 2.6  | 16        |
| 65 | Chloro-benquinone Modified on Graphene Oxide as Metal-free Catalyst: Strong Promotion of<br>Hydroxyl Radical and Generation of Ultra-Small Graphene Oxide. Scientific Reports, 2017, 7, 42643.                            | 3.3  | 16        |
| 66 | Conversion of phenol to cyclohexane in the aqueous phase over Ni/zeolite bi-functional catalysts.<br>Frontiers of Chemical Science and Engineering, 2021, 15, 288-298.                                                    | 4.4  | 16        |
| 67 | Capacitive deionization by ordered mesoporous carbon: electrosorption isotherm, kinetics, and the effect of modification. Desalination and Water Treatment, 2014, 52, 1388-1395.                                          | 1.0  | 15        |
| 68 | Activated carbon enhanced ozonation of oxalate attributed to HO oxidation in bulk solution and<br>surface oxidation: Effect of activated carbon dosage and pH. Journal of Environmental Sciences, 2014,<br>26, 2095-2105. | 6.1  | 15        |
| 69 | Stability test and EXAFS characterization of plasma prepared Pd/HZSM-5 catalyst for methane combustion. Applied Surface Science, 2007, 254, 1506-1510.                                                                    | 6.1  | 14        |
| 70 | Double layered, one-pot hydrothermal synthesis of M-TiO2 (M = Fe3+, Ni2+, Cu2+ and Co2+) and their<br>application in photocatalysis. Science China Chemistry, 2013, 56, 1783-1789.                                        | 8.2  | 14        |
| 71 | Selective Production of Jet-Fuel-Range Alkanes from Palmitic Acid over Ni/H-MCM-49 with Two<br>Independent Pore Systems. Industrial & Engineering Chemistry Research, 2019, 58, 21341-21349.                              | 3.7  | 14        |
| 72 | Enhanced removal of benzothiazole in persulfate promoted wet air oxidation via degradation and synchronous polymerization. Chemical Engineering Journal, 2019, 370, 208-217.                                              | 12.7 | 14        |

| #  | Article                                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Stability of Pt particles on ZrO2 support during partial oxidation of methane: DRIFT studies of adsorbed CO. Journal of Molecular Catalysis A, 2008, 282, 67-73.                                                                                                              | 4.8  | 13        |
| 74 | Distinct synergetic effects in the ozone enhanced photocatalytic degradation of phenol and oxalic acid with Fe 3+ /TiO 2 catalyst. Chinese Journal of Chemical Engineering, 2018, 26, 1528-1535.                                                                              | 3.5  | 12        |
| 75 | Boosting oxygen evolution reactivity by modulating electronic structure and honeycomb-like<br>architecture in Ni2P/N,P-codoped carbon hybrids. Green Energy and Environment, 2021, 6, 866-874.                                                                                | 8.7  | 12        |
| 76 | Efficient Tetra-Functional Electrocatalyst with Synergetic Effect of Different Active Sites for<br>Multi-Model Energy Conversion and Storage. ACS Applied Materials & Interfaces, 2020, 12,<br>23017-23027.                                                                   | 8.0  | 12        |
| 77 | Mechanisms of Cu <sup>2+</sup> migration, recovery and detoxification in Cu <sup>2+</sup> -,<br>-containing wastewater treatment process with anaerobic granular sludge. Environmental<br>Technology (United Kingdom), 2014, 35, 1956-1961.                                   | 2.2  | 11        |
| 78 | Synthesis of Magnetic Carbon Supported Manganese Catalysts for Phenol Oxidation by Activation of Peroxymonosulfate. Catalysts, 2017, 7, 3.                                                                                                                                    | 3.5  | 10        |
| 79 | C <sub>3</sub> N <sub>4</sub> –Mn/CNT composite as a heterogeneous catalyst in the electro-peroxone<br>process for promoting the reaction between O <sub>3</sub> and H <sub>2</sub> O <sub>2</sub> in acid<br>solution. Catalysis Science and Technology, 2018, 8, 6241-6251. | 4.1  | 10        |
| 80 | Iron/nickel nano-alloy encapsulated in nitrogen-doped carbon framework for CO2 electrochemical conversion with prominent CO selectivity. Journal of Power Sources, 2020, 449, 227496.                                                                                         | 7.8  | 10        |
| 81 | A facial synthesis of nitrogen-doped reduced graphene oxide quantum dot and its application in aqueous organics degradation. Green Energy and Environment, 2022, 7, 440-448.                                                                                                  | 8.7  | 9         |
| 82 | Ni nanoparticles encapsulated within H-type ZSM-5 crystals for upgrading palmitic acid to diesel-like fuels. Chinese Chemical Letters, 2022, 33, 803-806.                                                                                                                     | 9.0  | 9         |
| 83 | Upgrading of palmitic acid to diesel-like fuels over Ni@HZSM-5 bi-functional catalysts through the in situ encapsulation method. Molecular Catalysis, 2021, 511, 111715.                                                                                                      | 2.0  | 9         |
| 84 | Coupling-oxidation process promoted ring-opening degradation of 2-mecapto-5-methyl-1,3,4-thiadizaole in wastewater. Water Research, 2020, 186, 116362.                                                                                                                        | 11.3 | 7         |
| 85 | A promising catalytic solution of NO reduction by CO using g-C3N4/TiO2: A DFT study. Journal of Colloid and Interface Science, 2022, 610, 152-163.                                                                                                                            | 9.4  | 7         |
| 86 | Reaction condition optimization and degradation pathway in wet oxidation of benzopyrazole revealed by computational and experimental approaches. Journal of Hazardous Materials, 2018, 351, 169-176.                                                                          | 12.4 | 6         |
| 87 | Degradation of potassium alkyl xanthogenate in wet air oxidation: Enhancement method, degradation mechanism and structure impact. Journal of Environmental Chemical Engineering, 2022, 10, 107349.                                                                            | 6.7  | 4         |
| 88 | Coagulation behaviors and in-situ flocs characteristics of composite coagulants in<br>cyanide-containing wastewater: Role of cationic polyelectrolyte. Science China Chemistry, 2013, 56,<br>1765-1774.                                                                       | 8.2  | 3         |
| 89 | Encapsulated Ni Nanoparticles within Silicalite-1 Crystals for Upgrading Phenolic Compounds to Arenes. Industrial & Engineering Chemistry Research, 2021, 60, 13790-13801.                                                                                                    | 3.7  | 3         |
| 90 | Facile synthesis of nitrogen and sulfur co-doped hollow microsphere polymers from benzothiazole containing wastewater for water treatment. Chemosphere, 2022, 287, 131982.                                                                                                    | 8.2  | 2         |