Mako Kamiya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5072919/publications.pdf

Version: 2024-02-01

107	6,912	39	81
papers	citations	h-index	g-index
116	116	116	7288
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes. Nature Medicine, 2009, 15, 104-109.	30.7	742
2	Evolution of Fluorescein as a Platform for Finely Tunable Fluorescence Probes. Journal of the American Chemical Society, 2005, 127, 4888-4894.	13.7	637
3	Rapid Cancer Detection by Topically Spraying a γ-Glutamyltranspeptidase–Activated Fluorescent Probe. Science Translational Medicine, 2011, 3, 110ra119.	12.4	404
4	Rational design of reversible fluorescent probes for live-cell imaging and quantification of fast glutathione dynamics. Nature Chemistry, 2017, 9, 279-286.	13.6	398
5	A spontaneously blinking fluorophore based on intramolecular spirocyclization for live-cell super-resolution imaging. Nature Chemistry, 2014, 6, 681-689.	13.6	374
6	Sensitive \hat{I}^2 -galactosidase-targeting fluorescence probe for visualizing small peritoneal metastatic tumours in vivo. Nature Communications, 2015, 6, 6463.	12.8	334
7	Rational Design of Highly Sensitive Fluorescence Probes for Protease and Glycosidase Based on Precisely Controlled Spirocyclization. Journal of the American Chemical Society, 2013, 135, 409-414.	13.7	231
8	\hat{l}^2 -Galactosidase Fluorescence Probe with Improved Cellular Accumulation Based on a Spirocyclized Rhodol Scaffold. Journal of the American Chemical Society, 2011, 133, 12960-12963.	13.7	216
9	Long time-lapse nanoscopy with spontaneously blinking membrane probes. Nature Biotechnology, 2017, 35, 773-780.	17.5	157
10	Systemically Injectable Enzyme‣oaded Polyion Complex Vesicles as In Vivo Nanoreactors Functioning in Tumors. Angewandte Chemie - International Edition, 2016, 55, 560-565.	13.8	149
11	Macrophage extracellular trap formation promoted by platelet activation is a key mediator of rhabdomyolysis-induced acute kidney injury. Nature Medicine, 2018, 24, 232-238.	30.7	139
12	Lactoferrin Suppresses Neutrophil Extracellular Traps Release in Inflammation. EBioMedicine, 2016, 10, 204-215.	6.1	131
13	An Activatable Photosensitizer Targeted to γâ€Glutamyltranspeptidase. Angewandte Chemie - International Edition, 2017, 56, 10418-10422.	13.8	127
14	Detection of <i>LacZ</i> â€Positive Cells in Living Tissue with Singleâ€Cell Resolution. Angewandte Chemie - International Edition, 2016, 55, 9620-9624.	13.8	107
15	A Target Cell–Specific Activatable Fluorescence Probe for In vivo Molecular Imaging of Cancer Based on a Self-Quenched Avidin-Rhodamine Conjugate. Cancer Research, 2007, 67, 2791-2799.	0.9	105
16	Design and Synthesis of an Enzyme Activity-Based Labeling Molecule with Fluorescence Spectral Change. Journal of the American Chemical Society, 2006, 128, 15946-15947.	13.7	104
17	Selective Ablation of βâ€Galactosidaseâ€Expressing Cells with a Rationally Designed Activatable Photosensitizer. Angewandte Chemie - International Edition, 2014, 53, 6772-6775.	13.8	102
18	Arrayed lipid bilayer chambers allow single-molecule analysis of membrane transporter activity. Nature Communications, 2014, 5, 4519.	12.8	101

#	Article	IF	Citations
19	Rapid intraoperative visualization of breast lesions with \hat{l}^3 -glutamyl hydroxymethyl rhodamine green. Scientific Reports, 2015, 5, 12080.	3.3	89
20	Boron Dipyrromethene As a Fluorescent Caging Group for Single-Photon Uncaging with Long-Wavelength Visible Light. ACS Chemical Biology, 2014, 9, 2242-2246.	3.4	87
21	Acidicâ€pHâ€Activatable Fluorescence Probes for Visualizing Exocytosis Dynamics. Angewandte Chemie - International Edition, 2014, 53, 6085-6089.	13.8	82
22	Silicon Rhodamine-Based Near-Infrared Fluorescent Probe for Î ³ -Glutamyltransferase. Bioconjugate Chemistry, 2018, 29, 241-244.	3.6	72
23	Fluorescence Detection of Prostate Cancer by an Activatable Fluorescence Probe for PSMA Carboxypeptidase Activity. Journal of the American Chemical Society, 2019, 141, 10409-10416.	13.7	69
24	γâ€Glutamyltranspeptidase (GGT)â€Activatable Fluorescence Probe for Durable Tumor Imaging. Angewandte Chemie - International Edition, 2021, 60, 2125-2129.	13.8	69
25	Rapid and sensitive detection of early esophageal squamous cell carcinoma with fluorescence probe targeting dipeptidylpeptidase IV. Scientific Reports, 2016, 6, 26399.	3.3	65
26	Multicolor Activatable Raman Probes for Simultaneous Detection of Plural Enzyme Activities. Journal of the American Chemical Society, 2020, 142, 20701-20707.	13.7	64
27	A Reversible Fluorescent Probe for Realâ€Time Liveâ€Cell Imaging and Quantification of Endogenous Hydropolysulfides. Angewandte Chemie - International Edition, 2018, 57, 9346-9350.	13.8	60
28	In Vivo Spectral Fluorescence Imaging of Submillimeter Peritoneal Cancer Implants Using a Lectin-Targeted Optical Agent. Neoplasia, 2006, 8, 607-IN2.	5. 3	59
29	Development of a Sensitive Bioluminogenic Probe for Imaging Highly Reactive Oxygen Species in Living Rats. Angewandte Chemie - International Edition, 2015, 54, 14768-14771.	13.8	57
30	IL- $1\hat{1}^2$ Induces Pathologically Activated Osteoclasts Bearing Extremely High Levels of Resorbing Activity: A Possible Pathological Subpopulation of Osteoclasts, Accompanied by Suppressed Expression of Kindlin-3 and Talin-1. Journal of Immunology, 2018, 200, 218-228.	0.8	57
31	Establishment of Molecular Design Strategy To Obtain Activatable Fluorescent Probes for Carboxypeptidases. Journal of the American Chemical Society, 2018, 140, 1767-1773.	13.7	55
32	<i>In Vivo</i> Imaging of Intraperitoneally Disseminated Tumors in Model Mice by Using Activatable Fluorescent Small-Molecular Probes for Activity of Cathepsins. Bioconjugate Chemistry, 2014, 25, 1838-1846.	3.6	54
33	A green-light-emitting, spontaneously blinking fluorophore based on intramolecular spirocyclization for dual-colour super-resolution imaging. Chemical Communications, 2018, 54, 102-105.	4.1	54
34	Asymmetric Rhodamineâ€Based Fluorescent Probe for Multicolour In Vivo Imaging. Chemistry - A European Journal, 2016, 22, 1696-1703.	3.3	51
35	Activatable Photosensitizer for Targeted Ablation of <i>lacZ</i> Positive Cells with Single-Cell Resolution. ACS Central Science, 2019, 5, 1676-1681.	11.3	50
36	Intraoperative imaging of hepatic cancers using \hat{l}^3 -glutamyltranspeptidase-specific fluorophore enabling real-time identification and estimation of recurrence. Scientific Reports, 2017, 7, 3542.	3.3	46

#	Article	IF	CITATIONS
37	Novel Hexosaminidase-Targeting Fluorescence Probe for Visualizing Human Colorectal Cancer. Bioconjugate Chemistry, 2016, 27, 973-981.	3.6	44
38	Quantitating intracellular oxygen tension in vivo by phosphorescence lifetime measurement. Scientific Reports, 2016, 5, 17838.	3.3	43
39	Spontaneously Blinking Fluorophores Based on Nucleophilic Addition/Dissociation of Intracellular Glutathione for Live-Cell Super-resolution Imaging. Journal of the American Chemical Society, 2020, 142, 9625-9633.	13.7	40
40	Redâ€Shifted Fluorogenic Substrate for Detection of <i>lac</i> Zâ€Positive Cells in Living Tissue with Singleâ€Cell Resolution. Angewandte Chemie - International Edition, 2018, 57, 15702-15706.	13.8	38
41	A guide to use photocontrollable fluorescent proteins and synthetic smart fluorophores for nanoscopy. Microscopy (Oxford, England), 2015, 64, 263-277.	1.5	37
42	Photoacoustic Tomography of Human Hepatic Malignancies Using Intraoperative Indocyanine Green Fluorescence Imaging. PLoS ONE, 2014, 9, e112667.	2.5	36
43	Rapid Cancer Fluorescence Imaging Using A \hat{I}^3 -Glutamyltranspeptidase-Specific Probe For Primary Lung Cancer. Translational Oncology, 2016, 9, 203-210.	3.7	33
44	An Activatable Photosensitizer Targeted to γâ€Glutamyltranspeptidase. Angewandte Chemie, 2017, 129, 10554-10558.	2.0	33
45	A Pilot Study of Fluorescent Imaging of Colorectal Tumors Using a γ-Glutamyl-Transpeptidase-Activatable Fluorescent Probe. Digestion, 2015, 91, 70-76.	2.3	32
46	Rapid and Accurate Visualization of Breast Tumors with a Fluorescent Probe Targeting \hat{l}_{\pm} -Mannosidase 2C1. ACS Central Science, 2020, 6, 2217-2227.	11.3	30
47	Systemically Injectable Enzyme‣oaded Polyion Complex Vesicles as In Vivo Nanoreactors Functioning in Tumors. Angewandte Chemie, 2016, 128, 570-575.	2.0	28
48	Fluorescent imaging of superficial head and neck squamous cell carcinoma using a \hat{I}^3 -glutamyltranspeptidase-activated targeting agent: a pilot study. BMC Cancer, 2016, 16, 411.	2.6	28
49	Activatable fluorescent probes for hydrolase enzymes based on coumarin–hemicyanine hybrid fluorophores with large Stokes shifts. Chemical Communications, 2020, 56, 5617-5620.	4.1	28
50	Oral cancer intraoperative detection by topically spraying a \hat{I}^3 -glutamyl transpeptidase-activated fluorescent probe. Oral Oncology, 2016, 54, e16-e18.	1.5	26
51	Development of an Activatable Fluorescent Probe for Prostate Cancer Imaging. Bioconjugate Chemistry, 2017, 28, 2069-2076.	3.6	26
52	Pancreatic Compression during Lymph Node Dissection in Laparoscopic Gastrectomy: Possible Cause of Pancreatic Leakage. Journal of Gastric Cancer, 2018, 18, 134.	2.5	26
53	Recent Progress in Small Spirocyclic, Xanthene-Based Fluorescent Probes. Molecules, 2020, 25, 5964.	3.8	26
54	Red Fluorescence Probe Targeted to Dipeptidylpeptidase-IV for Highly Sensitive Detection of Esophageal Cancer. Bioconjugate Chemistry, 2019, 30, 1055-1060.	3.6	25

#	Article	IF	CITATIONS
55	A highly sensitive, cell-membrane-permeable fluorescent probe for glutathione. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4363-4366.	2.2	24
56	Design of spontaneously blinking fluorophores for live-cell super-resolution imaging based on quantum-chemical calculations. Chemical Communications, 2020, 56, 13173-13176.	4.1	24
57	Rapid diagnosis of lymph node metastasis in breast cancer using a new fluorescent method with \hat{i}^3 -glutamyl hydroxymethyl rhodamine green. Scientific Reports, 2016, 6, 27525.	3.3	22
58	Covalent Self-Labeling of Tagged Proteins with Chemical Fluorescent Dyes in BY-2 Cells and Arabidopsis Seedlings. Plant Cell, 2020, 32, 3081-3094.	6.6	22
59	A Novel Topical Fluorescent Probe for Detection of Glioblastoma. Clinical Cancer Research, 2021, 27, 3936-3947.	7.0	20
60	Intraoperative Visualization of Pancreatic Juice Leaking FromÂtheÂPancreatic Stump in a Swine Model. Gastroenterology, 2015, 149, 1334-1336.	1.3	18
61	Rapid and sensitive fluorescent imaging of tiny tumors in vivo and in clinical specimens. Current Opinion in Chemical Biology, 2016, 33, 9-15.	6.1	18
62	Development of enzyme-activated photosensitizer based on intramolecular electron transfer. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 4320-4323.	2.2	17
63	Discovery of Cell-Type-Specific and Disease-Related Enzymatic Activity Changes via Global Evaluation of Peptide Metabolism. Journal of the American Chemical Society, 2017, 139, 3465-3472.	13.7	17
64	Factors affecting the uncaging efficiency of 500â€nm light-activatable BODIPY caging group. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 1-5.	2.2	17
65	\hat{l}^2 -Galactosidase is a target enzyme for detecting peritoneal metastasis of gastric cancer. Scientific Reports, 2021, 11, 10664.	3.3	17
66	Molecular probes for fluorescence image-guided cancer surgery. Current Opinion in Chemical Biology, 2022, 67, 102112.	6.1	17
67	Molecular design strategy of fluorogenic probes based on quantum chemical prediction of intramolecular spirocyclization. Communications Chemistry, 2020, 3, .	4.5	16
68	Detection of <i>LacZ</i> â€Positive Cells in Living Tissue with Singleâ€Cell Resolution. Angewandte Chemie, 2016, 128, 9772-9776.	2.0	15
69	Rapid detection of metastatic lymph nodes of colorectal cancer with a gamma-glutamyl transpeptidase-activatable fluorescence probe. Scientific Reports, 2018, 8, 17781.	3.3	15
70	Near-infrared imaging in fission yeast using a genetically encoded phycocyanobilin biosynthesis system. Journal of Cell Science, 2021, 134, .	2.0	15
71	Torque Generation Mechanism of F1-ATPase upon NTP Binding. Biophysical Journal, 2014, 107, 156-164.	0.5	14
72	Feasibility of Using an Enzymatically Activatable Fluorescence Probe for the Rapid Evaluation of Pancreatic Tissue Obtained Using Endoscopic Ultrasound-Guided Fine Needle Aspiration: a Pilot Study. Molecular Imaging and Biology, 2016, 18, 463-471.	2.6	14

#	Article	IF	Citations
73	Development of a fluorescent probe library enabling efficient screening of tumour-imaging probes based on discovery of biomarker enzymatic activities. Chemical Science, 2022, 13, 4474-4481.	7.4	14
74	A novel sialidase-activatable fluorescence probe with improved stability for the sensitive detection of sialidase. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126860.	2.2	13
75	γâ€Glutamyltranspeptidase (GGT)â€Activatable Fluorescence Probe for Durable Tumor Imaging. Angewandte Chemie, 2021, 133, 2153-2157.	2.0	13
76	Rapid detection of superficial head and neck squamous cell carcinoma by topically spraying fluorescent probe targeting dipeptidyl peptidaseâ€IV. Head and Neck, 2018, 40, 1466-1475.	2.0	12
77	Detection of early adenocarcinoma of the esophagogastric junction by spraying an enzyme-activatable fluorescent probe targeting Dipeptidyl peptidase-IV. BMC Cancer, 2020, 20, 64.	2.6	12
78	Photoactivatable fluorophores for durable labelling of individual cells. Chemical Communications, 2021, 57, 5802-5805.	4.1	12
79	Rapid detection of papillary thyroid carcinoma by fluorescence imaging using a î ³ -glutamyltranspeptidase-specific probe: a pilot study. Thyroid Research, 2018, 11, 16.	1.5	11
80	A novel method for rapid detection of a Helicobacter pylori infection using a î³-glutamyltranspeptidase-activatable fluorescent probe. Scientific Reports, 2019, 9, 9467.	3.3	11
81	Discovery of an F-actin–binding small molecule serving as a fluorescent probe and a scaffold for functional probes. Science Advances, 2021, 7, eabg8585.	10.3	10
82	Confocal Bioluminescence Imaging for Living Tissues with a Caged Substrate of Luciferin. Analytical Chemistry, 2016, 88, 6231-6238.	6.5	9
83	A Reversible Fluorescent Probe for Realâ€Time Liveâ€Cell Imaging and Quantification of Endogenous Hydropolysulfides. Angewandte Chemie, 2018, 130, 9490-9494.	2.0	9
84	A novel liver-specific fluorescent anti-cancer drug delivery system using indocyanine green. Scientific Reports, 2019, 9, 3044.	3.3	9
85	Fluorescence Probes for Imaging Basic Carboxypeptidase Activity in Living Cells with High Intracellular Retention. Analytical Chemistry, 2021, 93, 3470-3476.	6.5	9
86	High affinity receptor labeling based on basic leucine zipper domain peptides conjugated with pH-sensitive fluorescent dye: Visualization of AMPA-type glutamate receptor endocytosis in living neurons. Neuropharmacology, 2016, 100, 66-75.	4.1	8
87	A versatile toolbox for investigating biological processes based on quinone methide chemistry: From self-immolative linkers to self-immobilizing agents. Bioorganic and Medicinal Chemistry, 2021, 44, 116281.	3.0	8
88	Redâ€Shifted Fluorogenic Substrate for Detection of lac Zâ€Positive Cells in Living Tissue with Singleâ€Cell Resolution. Angewandte Chemie, 2018, 130, 15928-15932.	2.0	7
89	Hybrid cell reactor system from Escherichia coli protoplast cells and arrayed lipid bilayer chamber device. Scientific Reports, 2018, 8, 11757.	3.3	7
90	Cryogenic Fluorescence Localization Microscopy of Spectrally Selected Individual FRET Pairs in a Water Matrix. Journal of Physical Chemistry B, 2018, 122, 6906-6911.	2.6	7

#	Article	IF	CITATIONS
91	Highly sensitive fluorescence imaging of cancer with avidin-protease probe conjugate. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 126663.	2.2	7
92	Spray Fluorescent Probes for Fluorescence-Guided Neurosurgery. Frontiers in Oncology, 2019, 9, 727.	2.8	7
93	Fluorescence Imaging Using Enzyme-Activatable Probes for Real-Time Identification of Pancreatic Cancer. Frontiers in Oncology, 2021, 11, 714527.	2.8	7
94	Rapid and Sensitive Detection of Cancer Cells with Activatable Fluorescent Probes for Enzyme Activity. Methods in Molecular Biology, 2021, 2274, 193-206.	0.9	6
95	Rapid Visualization of Deeply Located Tumors <i>In Vivo</i> by Intravenous Administration of a Î ³ -Glutamyltranspeptidase-Activated Fluorescent Probe. Bioconjugate Chemistry, 2022, 33, 523-529.	3.6	6
96	Rapid imaging of lung cancer using a red fluorescent probe to detect dipeptidyl peptidase 4 and puromycin-sensitive aminopeptidase activities. Scientific Reports, 2022, 12, .	3.3	4
97	Companion Diagnosis for Retinal Neuroprotective Treatment by Real-Time Imaging of Calpain Activation Using a Novel Fluorescent Probe. Bioconjugate Chemistry, 2020, 31, 2241-2251.	3.6	3
98	Rapid fluorescence imaging of human hepatocellular carcinoma using the \hat{l}^2 -galactosidase-activatable fluorescence probe SPiDER- \hat{l}^2 Gal. Scientific Reports, 2021, 11, 17946.	3.3	3
99	Rapid visualization of mammary gland tumor lesions of dogs using the enzyme-activated fluorogenic probe; \hat{l}^3 -glutamyl hydroxymethyl rhodamine green. Journal of Veterinary Medical Science, 2022, 84, 593-599.	0.9	3
100	Éছglutamyl hydroxymethyl rhodamine green fluorescence as a prognostic indicator for lung cancer. General Thoracic and Cardiovascular Surgery, 2020, 68, 1418-1424.	0.9	2
101	Neural and behavioral control in <i>Caenorhabditis elegans</i> by a yellow-lightâ€"activatable caged compound. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	2
102	Photoacoustic imaging of small organic molecule-based photoacoustic probe in subcutaneous tumor using P(VDF-TrFE) acoustic sensor. , 2015, , .		1
103	Onâ€Site Monitoring of Postoperative Bile Leakage Using Bilirubinâ€Inducible Fluorescent Protein. World Journal of Surgery, 2020, 44, 4245-4253.	1.6	1
104	Single-Molecule Localization Microscopy Propelled by Small Organic Fluorophores with Blinking Properties. Neuromethods, 2020, , 203-227.	0.3	1
105	Development of Spontaneously Blinking Fluorophores for Super-Resolution Imaging. Seibutsu Butsuri, 2015, 55, 031-033.	0.1	0
106	SURG-11. PATHOLOGICAL INVESTIGATION OF NOVEL SPRAY-TYPE FLUORESCENT PROBES FOR BRAIN TUMORS. Neuro-Oncology, 2018, 20, vi252-vi253.	1.2	0
107	BOT-03 INVESTIGATION OF NOVEL SPRAY TYPE FLUORESCENT PROBE FOR GLIOBLASTOMA DETECTION. Neuro-Oncology Advances, 2019, 1, ii12-ii12.	0.7	0