
George Z Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5071720/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature, 2000, 407, 361-364.	27.8	1,313
2	Carbon nanotube and conducting polymer composites for supercapacitors. Progress in Natural Science: Materials International, 2008, 18, 777-788.	4.4	647
3	Electrochemical Capacitance of a Nanoporous Composite of Carbon Nanotubes and Polypyrrole. Chemistry of Materials, 2002, 14, 1610-1613.	6.7	554
4	Carbon Nanotube and Polypyrrole Composites: Coating and Doping. Advanced Materials, 2000, 12, 522-526.	21.0	529
5	Supercapacitor and supercapattery as emerging electrochemical energy stores. International Materials Reviews, 2017, 62, 173-202.	19.3	518
6	Produced water treatment technologies. International Journal of Low-Carbon Technologies, 2014, 9, 157-177.	2.6	468
7	Redox Electrolytes in Supercapacitors. Journal of the Electrochemical Society, 2015, 162, A5054-A5059.	2.9	394
8	A comparative study on electrochemical co-deposition and capacitance of composite films of conducting polymers and carbon nanotubes. Electrochimica Acta, 2007, 53, 525-537.	5.2	339
9	Electrochemical Capacitance of Nanocomposite Films Formed by Coating Aligned Arrays of Carbon Nanotubes with Polypyrrole. Advanced Materials, 2002, 14, 382.	21.0	303
10	Synthesis and applications of MOF-derived porous nanostructures. Green Energy and Environment, 2017, 2, 218-245.	8.7	301
11	Nanoscale Microelectrochemical Cells on Carbon Nanotubes. Small, 2007, 3, 1513-1517.	10.0	285
12	Carbon nanotubes/titanium dioxide (CNTs/TiO2) nanocomposites prepared by conventional and novel surfactant wrapping sol–gel methods exhibiting enhanced photocatalytic activity. Applied Catalysis B: Environmental, 2009, 89, 503-509.	20.2	276
13	Understanding supercapacitors based on nano-hybrid materials with interfacial conjugation. Progress in Natural Science: Materials International, 2013, 23, 245-255.	4.4	245
14	Mechanisms of electrochemical recognition of cations, anions and neutral guest species by redox-active receptor molecules. Coordination Chemistry Reviews, 1999, 185-186, 3-36.	18.8	241
15	Capacitive and non-capacitive faradaic charge storage. Electrochimica Acta, 2016, 206, 464-478.	5.2	236
16	Electrochemical molecular recognition: pathways between complexation and signalling. Journal of the Chemical Society Dalton Transactions, 1999, , 1897-1910.	1.1	229
17	Electrolytes for electrochemical energy storage. Materials Chemistry Frontiers, 2017, 1, 584-618.	5.9	203
18	Redox deposition of manganese oxide on graphite for supercapacitors. Electrochemistry Communications, 2004, 6, 499-504.	4.7	193

#	Article	IF	CITATIONS
19	Electrochemical Preparation of Silicon and Its Alloys from Solid Oxides in Molten Calcium Chloride. Angewandte Chemie - International Edition, 2004, 43, 733-736.	13.8	188
20	Redox electrode materials for supercapatteries. Journal of Power Sources, 2016, 326, 604-612.	7.8	185
21	Direct electrolytic preparation of chromium powder. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2004, 35, 223-233.	2.1	184
22	Carbon nanotube/titanium dioxide (CNT/TiO2) core–shell nanocomposites with tailored shell thickness, CNT content and photocatalytic/photoelectrocatalytic properties. Applied Catalysis B: Environmental, 2011, 110, 50-57.	20.2	184
23	Synthesis and Characterization of Novel Acyclic, Macrocyclic, and Calix[4]arene Ruthenium(II) Bipyridyl Receptor Molecules That Recognize and Sense Anions. Inorganic Chemistry, 1996, 35, 5868-5879.	4.0	175
24	Electrochemical fabrication and capacitance of composite films of carbon nanotubes and polyaniline. Journal of Materials Chemistry, 2005, 15, 2297.	6.7	167
25	Theoretical specific capacitance based on charge storage mechanisms of conducting polymers: Comment on †Vertically oriented arrays of polyaniline nanorods and their super electrochemical properties'. Chemical Communications, 2011, 47, 4105.	4.1	159
26	Unequalisation of electrode capacitances for enhanced energy capacity in asymmetrical supercapacitors. Energy and Environmental Science, 2010, 3, 1499.	30.8	158
27	Cathodic deoxygenation of the alpha case on titanium and alloys in molten calcium chloride. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2001, 32, 1041-1052.	2.1	156
28	Electrochemically Driven Three-Phase Interlines into Insulator Compounds: Electroreduction of Solid SiO2 in Molten CaCl2. ChemPhysChem, 2006, 7, 1750-1758.	2.1	155
29	Achieving high electrode specific capacitance with materials of low mass specific capacitance: Potentiostatically grown thick micro-nanoporous PEDOT films. Electrochemistry Communications, 2007, 9, 83-88.	4.7	152
30	Spectroscopic and electrochemical studies of charge transfer in modified electrodes. Faraday Discussions of the Chemical Society, 1989, 88, 247.	2.2	143
31	Ionic Liquid-Based Electrolytes for Supercapacitor and Supercapattery. Frontiers in Chemistry, 2019, 7, 272.	3.6	140
32	Photo-electro-catalysis enhancement on carbon nanotubes/titanium dioxide (CNTs/TiO2) composite prepared by a novel surfactant wrapping sol–gel method. Applied Catalysis B: Environmental, 2008, 85, 17-23.	20.2	139
33	Electrochemistry at Conductor/Insulator/Electrolyte Three-Phase Interlines:Â A Thin Layer Model. Journal of Physical Chemistry B, 2005, 109, 14043-14051.	2.6	138
34	Toward optimisation of electrolytic reduction of solid chromium oxide to chromium powder in molten chloride salts. Electrochimica Acta, 2004, 49, 2195-2208.	5.2	135
35	Manganese oxide based materials for supercapacitors. Energy Materials, 2008, 3, 186-200.	0.1	129
36	Selective electrochemical recognition of the dihydrogen phosphate anion in the presence of hydrogen sulfate and chloride ions by new neutral ferrocene anion receptors. Journal of the Chemical Society Chemical Communications, 1993, , 1834.	2.0	126

#	Article	IF	CITATIONS
37	Indirect electrochemical reduction of carbon dioxide to carbon nanopowders in molten alkali carbonates: Process variables and product properties. Carbon, 2014, 73, 163-174.	10.3	122

Structure and Ionic-Transport Properties of Lithium-Containing Garnets Li3Ln3Te2O12(Ln = Y, Pr, Nd,) Tj ETQq0 0 0 $_{6.7}^{0}$ BT /Overlock 10 Transport Properties of Lithium-Containing Garnets Li3Ln3Te2O12(Ln = Y, Pr, Nd,) Tj ETQq0 0 0 $_{6.7}^{0}$ BT /Overlock 10 Transport Properties of Lithium-Containing Garnets Li3Ln3Te2O12(Ln = Y, Pr, Nd,) Tj ETQq0 0 0 $_{6.7}^{0}$ BT /Overlock 10 Transport Properties of Lithium-Containing Garnets Li3Ln3Te2O12(Ln = Y, Pr, Nd,) Tj ETQq0 0 0 $_{6.7}^{0}$ BT /Overlock 10 Transport Properties of Lithium-Containing Garnets Li3Ln3Te2O12(Ln = Y, Pr, Nd,) Tj ETQq0 0 0 $_{6.7}^{0}$ BT /Overlock 10 Transport Properties of Lithium-Containing Garnets Li3Ln3Te2O12(Ln = Y, Pr, Nd,) Tj ETQq0 0 0 $_{6.7}^{0}$ BT /Overlock 10 Transport Properties of Lithium-Containing Garnets Li3Ln3Te2O12(Ln = Y, Pr, Nd,) Tj ETQq0 0 0 $_{6.7}^{0}$ BT /Overlock 10 Transport Properties of Lithium-Containing Garnets Li3Ln3Te2O12(Ln = Y, Pr, Nd,) Tj ETQq0 0 0 $_{6.7}^{0}$ BT /Overlock 10 Transport Properties of Lithium-Containing Garnets Li3Ln3Te2O12(Ln = Y, Pr, Nd,) Tj ETQq0 0 0 $_{6.7}^{0}$ BT /Overlock 10 Transport Properties of Lithium-Containing Garnets Li3Ln3Te2O12(Ln = Y, Pr, Nd,) Tj ETQq0 0 $_{6.7}^{0}$ BT /Overlock 10 Transport Properties of Lithium-Containing Garnets Li3Ln3Te2O12(Ln = Y, Pr, Nd,) Tj ETQq0 0 $_{6.7}^{0}$ BT /Overlock 10 Transport Properties of Lithium-Containing Garnets Li3Ln3Te2O12(Ln = Y, Pr, Nd,) Tj ETQq0 0 $_{6.7}^{0}$ BT /Overlock 10 Transport Properties of Lithium-Containing Garnets Li3Ln3Te2O12(Ln = Y, Pr, Nd,) Tj ETQq0 0 $_{6.7}^{0}$ BT /Overlock 10 Transport Properties of Lithium-Containing Garnets Li3Ln3Te2O12(Ln = Y, Pr, Nd,) Tj ETQq0 0 $_{6.7}^{0}$ BT /Overlock 10 Transport Properties of Lithium-Containing Garnets Li3Ln3Te2O12(Ln = Y, Pr, Nd,) Tj ETQq0 0 $_{6.7}^{0}$ BT /Overlock 10 Properties of Lithium-Containing Garnets Li3Ln3Te2O12(Ln = Y, Properties Containing Garnets Li3Ln3Te2O12(Ln = Y, Properties Containing Garnets Li3Ln3Te2O12(Ln = Y, Properties Containing Garnet

39	Switching on Fast Lithium Ion Conductivity in Garnets: The Structure and Transport Properties of Li _{3+<i>x</i>} Nd ₃ Te _{2â°<i>x</i>} Sb _{<i>x</i>} O ₁₂ . Chemistry of Materials, 2008, 20, 2360-2369.	6.7	118
40	Supercapatteries as High-Performance Electrochemical Energy Storage Devices. Electrochemical Energy Reviews, 2020, 3, 271-285.	25.5	118
41	Cell voltage versus electrode potential range in aqueous supercapacitors. Scientific Reports, 2015, 5, 9854.	3.3	117
42	"Perovskitization―Assisted Electrochemical Reduction of Solid TiO2 in Molten CaCl2. Angewandte Chemie - International Edition, 2006, 45, 428-432.	13.8	115
43	1.9 V aqueous carbon–carbon supercapacitors with unequal electrode capacitances. Electrochimica Acta, 2012, 86, 248-254.	5.2	113
44	Voltammetric Studies of the Oxygen-Titanium Binary System in Molten Calcium Chloride. Journal of the Electrochemical Society, 2002, 149, E455.	2.9	112
45	Extraction of titanium from different titania precursors by the FFC Cambridge process. Journal of Alloys and Compounds, 2006, 420, 37-45.	5.5	111
46	Distinct element modelling of cubic particle packing and flow. Powder Technology, 2008, 186, 224-240.	4.2	110
47	Individual and Bipolarly Stacked Asymmetrical Aqueous Supercapacitors of CNTs/SnO[sub 2] and CNTs/MnO[sub 2] Nanocomposites. Journal of the Electrochemical Society, 2009, 156, A846.	2.9	110
48	Carbon electrodeposition in molten salts: electrode reactions and applications. RSC Advances, 2014, 4, 35808-35817.	3.6	110
49	Reduction of titanium and other metal oxides using electrodeoxidation. Materials Science and Technology, 2004, 20, 295-300.	1.6	95
50	The measurement of specific capacitances of conducting polymers using the quartz crystal microbalance. Journal of Electroanalytical Chemistry, 2008, 612, 140-146.	3.8	94
51	Advances on transition metal oxides catalysts for formaldehyde oxidation: A review. Catalysis Reviews - Science and Engineering, 2017, 59, 189-233.	12.9	93
52	Solid state reactions: an electrochemical approach in molten salts. Annual Reports on the Progress of Chemistry Section C, 2008, 104, 189.	4.4	92
53	A low resistance boron-doped carbon nanotube–polystyrene composite. Journal of Materials Chemistry, 2001, 11, 2482-2488.	6.7	89
54	Electrochemical Metallization of Solid Terbium Oxide. Angewandte Chemie - International Edition, 2006, 45, 2384-2388.	13.8	87

#	Article	IF	CITATIONS
55	New Ionophoric Calix[4]diquinones:  Coordination Chemistry, Electrochemistry, and X-ray Crystal Structures. Inorganic Chemistry, 1997, 36, 5880-5893.	4.0	86
56	Carbon nanotube stabilised emulsions for electrochemical synthesis of porous nanocomposite coatings of poly[3,4-ethylene-dioxythiophene]. Chemical Communications, 2006, , 4629.	4.1	86
57	Rationalisation and optimisation of solid state electro-reduction of SiO2 to Si in molten CaCl2 in accordance with dynamic three-phase interlines based voltammetry. Journal of Electroanalytical Chemistry, 2010, 639, 130-140.	3.8	86
58	Molecular level one-step activation of agar to activated carbon for high performance supercapacitors. Carbon, 2018, 132, 573-579.	10.3	85
59	Metallic Cavity Electrodes for Investigation of Powders. Journal of the Electrochemical Society, 2005, 152, E328.	2.9	83
60	Three-Phase Interlines Electrochemically Driven into Insulator Compounds: A Penetration Model and Its Verification by Electroreduction of Solid AgCl. Chemistry - A European Journal, 2007, 13, 604-612.	3.3	82
61	Electrolysis of solid metal sulfide to metal and sulfur in molten NaCl–KCl. Electrochemistry Communications, 2011, 13, 1492-1495.	4.7	82
62	Electrochemical Production of Sustainable Hydrocarbon Fuels from CO ₂ Co-electrolysis in Eutectic Molten Melts. ACS Sustainable Chemistry and Engineering, 2020, 8, 12877-12890.	6.7	82
63	Lower-rim ferrocenyl substituted calixarenes: New electrochemical sensors for anions. Polyhedron, 1998, 17, 405-412.	2.2	80
64	Thin Pellets:  Fast Electrochemical Preparation of Capacitor Tantalum Powders. Chemistry of Materials, 2007, 19, 153-160.	6.7	80
65	A quartz sealed Ag/AgCl reference electrode for CaCl2 based molten salts. Journal of Electroanalytical Chemistry, 2005, 579, 321-328.	3.8	79
66	Electro-deposition and re-oxidation of carbon in carbonate-containing molten salts. Faraday Discussions, 2014, 172, 105-116.	3.2	78
67	The effect of variable operating parameters for hydrocarbon fuel formation from CO2 by molten salts electrolysis. Journal of CO2 Utilization, 2020, 40, 101193.	6.8	77
68	Studies of deposition of and charge storage in polypyrrole–chloride and polypyrrole–carbon nanotube composites with an electrochemical quartz crystal microbalance. Journal of Electroanalytical Chemistry, 2004, 568, 135-142.	3.8	76
69	Electrochemical study of different membrane materials for the fabrication of stable, reproducible and reusable reference electrode. Journal of Energy Chemistry, 2020, 49, 33-41.	12.9	76
70	Chloride ion enhanced thermal stability of carbon dioxide captured by monoethanolamine in hydroxyl imidazolium based ionic liquids. Energy and Environmental Science, 2011, 4, 2125.	30.8	75
71	Nitrogen-doped graphene guided formation of monodisperse microspheres of LiFePO ₄ nanoplates as the positive electrode material of lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 12065-12072.	10.3	75
72	Thermo-solvatochromism of chloro-nickel complexes in 1-hydroxyalkyl-3-methyl-imidazolium cation based ionic liquids. Green Chemistry, 2008, 10, 296.	9.0	74

#	Article	IF	CITATIONS
73	Polypyrrole/TiO2 nanotube arrays with coaxial heterogeneous structure as sulfur hosts for lithium sulfur batteries. Journal of Power Sources, 2016, 327, 447-456.	7.8	74
74	Anion recognition by novel ruthenium(II) bipyridyl calix[4]arene receptor molecules. Journal of the Chemical Society Chemical Communications, 1994, , 1269.	2.0	73
75	Transition metal cation and phosphate anion electrochemical recognition in water by new polyaza ferrocene macrocyclic ligands. Inorganica Chimica Acta, 1996, 246, 143-150.	2.4	73
76	Up-scalable and controllable electrolytic production of photo-responsive nanostructured silicon. Journal of Materials Chemistry A, 2013, 1, 10243.	10.3	72
77	Review—recent advances in non-aqueous liquid electrolytes containing fluorinated compounds for high energy density lithium-ion batteries. Energy Storage Materials, 2021, 38, 542-570.	18.0	72
78	Electrolytic conversion of graphite to carbon nanotubes in fused salts. Journal of Electroanalytical Chemistry, 1998, 446, 1-6.	3.8	70
79	Electrochemical investigation of novel reference electrode Ni/Ni(OH)â,, in comparison with silver and platinum inert quasi-reference electrodes for electrolysis in eutectic molten hydroxide. International Journal of Hydrogen Energy, 2019, 44, 27224-27236.	7.1	70
80	Nanocomposites of manganese oxides and carbon nanotubes for aqueous supercapacitor stacks. Electrochimica Acta, 2010, 55, 7447-7453.	5.2	69
81	Nanostructured materials for the construction of asymmetrical supercapacitors. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2010, 224, 479-503.	1.4	69
82	Controlling the nanostructure of electrochemically grown nanoporous composites of carbon nanotubes and conducting polymers. Composites Science and Technology, 2004, 64, 2325-2331.	7.8	68
83	Morphology, structure and growth of WS2 nanotubes. Journal of Materials Chemistry, 2000, 10, 2570-2577.	6.7	67
84	A Direct Electrochemical Route from Ilmenite to Hydrogen-Storage Ferrotitanium Alloys. Chemistry - A European Journal, 2006, 12, 5075-5081.	3.3	66
85	Electro-reduction of cuprous chloride powder to copper nanoparticles in an ionic liquid. Electrochemistry Communications, 2007, 9, 1374-1381.	4.7	65
86	Electrolysis of solid MoS2 in molten CaCl2 for Mo extraction without CO2 emission. Electrochemistry Communications, 2007, 9, 1951-1957.	4.7	65
87	Diester-calix[4]arenediquinone complexation and electrochemical recognition of group 1 and 2, ammonium and alkyl ammonium guest cations Tetrahedron, 1994, 50, 931-940.	1.9	60
88	Bis(calix[4]diquinone) Receptors:Â Cesium- and Rubidium-Selective Redox-Active Ionophores. Journal of the American Chemical Society, 2003, 125, 5774-5785.	13.7	60
89	Mechanisms and Designs of Asymmetrical Electrochemical Capacitors. Electrochimica Acta, 2017, 247, 344-357.	5.2	60
90	Design and optimization of electrochemical cell potential for hydrogen gas production. Journal of Energy Chemistry, 2021, 52, 421-427.	12.9	60

#	Article	IF	CITATIONS
91	Title is missing!. Journal of Applied Electrochemistry, 2001, 31, 155-164.	2.9	59
92	A direct electrochemical route from oxide precursors to the terbium–nickel intermetallic compound TbNi5. Electrochimica Acta, 2006, 51, 5785-5793.	5.2	59
93	Solarâ€ŧhermochromism of Pseudocrystalline Nanodroplets of Ionic Liquid–Ni ^{II} Complexes Immobilized inside Translucent Microporous PVDF Films. Advanced Materials, 2009, 21, 776-780.	21.0	59
94	Fe-Filled Carbon Nanotubes:  Nano-electromagnetic Inductors. Chemistry of Materials, 2002, 14, 4505-4508.	6.7	58
95	Metalâ€ŧoâ€Oxide Molar Volume Ratio: The Overlooked Barrier to Solid‣tate Electroreduction and a "Green―Bypass through Recyclable NH ₄ HCO ₃ . Angewandte Chemie - International Edition, 2010, 49, 3203-3206.	13.8	56
96	Enhancing hydrogen production from steam electrolysis in molten hydroxides via selection of non-precious metal electrodes. International Journal of Hydrogen Energy, 2020, 45, 28260-28271.	7.1	56
97	Electrochemical Synthesis of LiTiO2and LiTi2O4in Molten LiCl. Chemistry of Materials, 2004, 16, 4324-4329.	6.7	55
98	Fluorinated Electrolytes for Li-Ion Batteries: The Lithium Difluoro(oxalato)borate Additive for Stabilizing the Solid Electrolyte Interphase. ACS Omega, 2017, 2, 8741-8750.	3.5	55
99	High energy supercapattery with an ionic liquid solution of LiClO ₄ . Faraday Discussions, 2016, 190, 231-240.	3.2	54
100	Unusual anodic behaviour of chloride ion in 1-butyl-3-methylimidazolium hexafluorophosphate. Electrochemistry Communications, 2005, 7, 685-691.	4.7	53
101	Electrochemical Methods to Enhance the Capacitance in Activated Carbon/Polyaniline Composites. Journal of the Electrochemical Society, 2008, 155, A672.	2.9	53
102	Development of the Fray-Farthing-Chen Cambridge Process: Towards the Sustainable Production of Titanium and Its Alloys. Jom, 2018, 70, 129-137.	1.9	52
103	Electrochemical investigation of lithium intercalation into graphite from molten lithium chloride. Journal of Electroanalytical Chemistry, 2002, 530, 16-22.	3.8	51
104	Smart solar concentrators for building integrated photovoltaic façades. Solar Energy, 2016, 133, 111-118.	6.1	51
105	Electrochemical Conversion of Oxide Precursors to Consolidated Zr and Zrâ^2.5Nb Tubes. Chemistry of Materials, 2008, 20, 7274-7280.	6.7	50
106	More affordable electrolytic LaNi5-type hydrogen storage powders. Chemical Communications, 2007, , 2515.	4.1	48
107	More sustainable electricity generation in hot and dry fuel cells with a novel hybrid membrane of Nafion/nano-silica/hydroxyl ionic liquid. Applied Energy, 2016, 175, 451-458.	10.1	48
108	Influences of ions and temperature on performance of carbon nano-particulates in supercapacitors with neutral aqueous electrolytes. Particuology, 2014, 15, 9-17.	3.6	47

#	Article	IF	CITATIONS
109	Titanium carbide nanocube core induced interfacial growth of crystalline polypyrrole/polyvinyl alcohol lamellar shell for wide-temperature range supercapacitors. Journal of Power Sources, 2015, 274, 1118-1125.	7.8	47
110	Electrochemical Fabrication of Nickel Manganese Gallium Alloy Powder. Advanced Engineering Materials, 2003, 5, 650-653.	3.5	45
111	Electrodeposition of Nonconducting Polymers: Roles of Carbon Nanotubes in the Process and Products. ACS Nano, 2010, 4, 4274-4282.	14.6	45
112	Mixed-Phase WxMoyCzS2Nanotubes. Chemistry of Materials, 2000, 12, 3541-3546.	6.7	44
113	Electrolytic reduction of mixed solid oxides in molten salts for energy efficient production of the TiNi alloy. Science Bulletin, 2006, 51, 2535-2540.	1.7	44
114	Interfacial Synthesis: Amphiphilic Monomers Assisted Ultrarefining of Mesoporous Manganese Oxide Nanoparticles and the Electrochemical Implications. ACS Applied Materials & Interfaces, 2011, 3, 3120-3129.	8.0	44
115	Study on the reduction of highly porous TiO2 precursors and thin TiO2 layers by the FFC-Cambridge process. Journal of Materials Science, 2007, 42, 7494-7501.	3.7	43
116	A feasibility study of scaling-up the electrolytic production of carbon nanotubes in molten salts. Electrochimica Acta, 2002, 48, 91-102.	5.2	42
117	A study of the film formation kinetics on zinc in different acidic corrosion inhibitor solutions by quartz crystal microbalance. Corrosion Science, 2005, 47, 2157-2172.	6.6	42
118	Electrolytic synthesis of TbFe2 from Tb4O7 and Fe2O3 powders in molten CaCl2. Journal of Electroanalytical Chemistry, 2006, 589, 139-147.	3.8	42
119	Electrolytic, TEM and Raman studies on the production of carbon nanotubes in molten NaCl. Carbon, 2003, 41, 1127-1141.	10.3	41
120	Cross-linked Ni(OH) ₂ /CuCo ₂ S ₄ /Ni networks as binder-free electrodes for high performance supercapatteries. Nanoscale, 2018, 10, 20526-20532.	5.6	41
121	Circuit elements in carbon nanotube-polymer composites. Carbon, 2004, 42, 1707-1712.	10.3	39
122	Computer-aided control of electrolysis of solid Nb2O5 in molten CaCl2. Physical Chemistry Chemical Physics, 2008, 10, 1809.	2.8	39
123	Cyclic Voltammetry of ZrO[sub 2] Powder in the Metallic Cavity Electrode in Molten CaCl[sub 2]. Journal of the Electrochemical Society, 2010, 157, F1.	2.9	39
124	Utilisation of Carbon Dioxide for Electro-Carburisation of Mild Steel in Molten Carbonate Salts. Journal of the Electrochemical Society, 2011, 158, H1117.	2.9	39
125	Electrochemical recognition of group 1 and 2 metal cations by redox-active ionophores. Inorganica Chimica Acta, 1994, 225, 137-144.	2.4	38
126	Electrochemical response to anions in acetonitrile by neutral molecular receptors containing ferrocene, amide and amine moieties. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 97.	1.7	38

#	Article	IF	CITATIONS
127	Current progress on catalytic oxidation of toluene: a review. Environmental Science and Pollution Research, 2021, 28, 62030-62060.	5.3	38
128	Roles of Cationic and Elemental Calcium in the Electro-Reduction of Solid Metal Oxides in Molten Calcium Chloride. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2007, 62, 292-302.	1.5	37
129	Preparation of Mo nanopowders through electroreduction of solid MoS ₂ in molten KCl–NaCl. Physical Chemistry Chemical Physics, 2014, 16, 19514-19521.	2.8	37
130	Oxidation Decomposition Mechanism of Fluoroethylene Carbonateâ€Based Electrolytes for Highâ€Voltage Lithium Ion Batteries: A DFT Calculation and Experimental Study. ChemistrySelect, 2017, 2, 7353-7361.	1.5	36
131	Nanoporous Versus Nanoparticulate Carbonâ€Based Materials for Capacitive Charge Storage. Energy and Environmental Materials, 2020, 3, 247-264.	12.8	36
132	ELECTROCHEMICAL INVESTIGATION OF THE FORMATION OF CARBON NANOTUBES IN MOLTEN SALTS. High Temperature Material Processes, 1998, 2, 459-469.	0.6	35
133	Linear and non-linear pseudocapacitances with or without diffusion control. Progress in Natural Science: Materials International, 2021, 31, 792-800.	4.4	35
134	Niobium based intermetallics as a source of high-current/high magnetic field superconductors. Physica C: Superconductivity and Its Applications, 2002, 372-376, 1315-1320.	1.2	34
135	Superconducting Nb3Sn intermetallics made by electrochemical reduction of Nb2O5–SnO2 oxides. Physica C: Superconductivity and Its Applications, 2003, 387, 242-246.	1.2	34
136	Direct and low energy electrolytic co-reduction of mixed oxides to zirconium-based multi-phase hydrogen storage alloys in molten salts. Journal of Materials Chemistry, 2009, 19, 2803.	6.7	34
137	20 V stack of aqueous supercapacitors with carbon (â^'), titanium bipolar plates and CNTâ€polypyrrole composite (+). AICHE Journal, 2012, 58, 974-983.	3.6	34
138	A sunlight assisted dual purpose photoelectrochemical cell for low voltage removal of heavy metals and organic pollutants in wastewater. Chemical Engineering Journal, 2014, 244, 411-421.	12.7	34
139	Near-Net-Shape Production of Hollow Titanium Alloy Components via Electrochemical Reduction of Metal Oxide Precursors in Molten Salts. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2013, 44, 272-282.	2.1	32
140	A Co9S8 microsphere and N-doped carbon nanotube composite host material for lithium-sulfur batteries. Journal of Alloys and Compounds, 2020, 826, 154201.	5.5	32
141	Interactions of molten salts with cathode products in the FFC Cambridge Process. International Journal of Minerals, Metallurgy and Materials, 2020, 27, 1572-1587.	4.9	32
142	Phase-Tunable Fabrication of Consolidated ($\hat{l}\pm+\hat{l}^2$)-TiZr Alloys for Biomedical Applications through Molten Salt Electrolysis of Solid Oxides. Chemistry of Materials, 2009, 21, 5187-5195.	6.7	31
143	From Electrochemical Capacitors to Supercapatteries. Green, 2012, 2, 41-54.	0.4	31
144	Silicon prepared by electro-reduction in molten salts as new energy materials. Journal of Energy Chemistry, 2020, 47, 46-61.	12.9	31

#	Article	IF	CITATIONS
145	Cyclic voltammetry of electroactive and insulative compounds in solid state: A revisit of AgCl in aqueous solutions assisted by metallic cavity electrode and chemically modified electrode. Journal of Electroanalytical Chemistry, 2009, 627, 28-40.	3.8	30
146	Physicochemical and Electrochemical Properties of 1,1,2,2â€Tetrafluoroethylâ€2,2,3,3â€Tetrafluoropropyl Ether as a Co‧olvent for Highâ€Voltage Lithiumâ€Ion Electrolytes. ChemElectroChem, 2019, 6, 3747-3755.	3.4	28
147	A comparative study of anodic oxidation of bromide and chloride ions on platinum electrodes in 1-butyl-3-methylimidazolium hexafluorophosphate. Journal of Electroanalytical Chemistry, 2013, 688, 371-378.	3.8	27
148	Investigation of electrochemical reduction of GeO2 to Ge in molten CaCl2-NaCl. Electrochimica Acta, 2014, 147, 352-359.	5.2	27
149	Optimal Utilization of Combined Double Layer and Nernstian Charging of Activated Carbon Electrodes in Aqueous Halide Supercapattery through Capacitance Unequalization. Journal of the Electrochemical Society, 2018, 165, A4067-A4076.	2.9	27
150	New Precursors Derived Activated Carbon and Graphene for Aqueous Supercapacitors with Unequal Electrode Capacitances. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, 36, 1904025-0.	4.9	27
151	Cesium- and Rubidium-Selective Redox-Active Bis(calix[4]diquinone) Ionophores. Angewandte Chemie - International Edition, 2001, 40, 2265-2268.	13.8	26
152	Fe-filled carbon nanotube-polystyrene: RCL composites. Chemical Physics Letters, 2002, 366, 42-50.	2.6	26
153	Correlation of energy storage performance of supercapacitor with iso -propanol improved wettability of aqueous electrolyte on activated carbon electrodes of various apparent densities. Applied Energy, 2015, 159, 39-50.	10.1	26
154	Electrolysis of metal oxides in MgCl ₂ based molten salts with an inert graphite anode. Faraday Discussions, 2016, 190, 85-96.	3.2	26
155	Faradaic processes beyond Nernst's law: density functional theory assisted modelling of partial electron delocalisation and pseudocapacitance in graphene oxides. Chemical Communications, 2017, 53, 10414-10417.	4.1	26
156	Dental Resin Monomer Enables Unique NbO ₂ /Carbon Lithiumâ€ion Battery Negative Electrode with Exceptional Performance. Advanced Functional Materials, 2019, 29, 1904961.	14.9	26
157	Internally referenced analysis of charge-transfer reactions in a new ferrocenyl bithiophenic conducting polymer through cyclic voltammetry. Chemical Communications, 2008, , 6606.	4.1	25
158	Synthesis, Characterization, and Electrochemical Properties of Diruthenium Complexes Bridged by Anthraquinones. Organometallics, 2011, 30, 1830-1837.	2.3	25
159	A PRS model for accurate prediction of the optimal solid oxide cathode structure for the preparation of metals in molten chlorides. Electrochemistry Communications, 2013, 26, 33-36.	4.7	25
160	Supercapattery: Merit merge of capacitive and Nernstian charge storage mechanisms. Current Opinion in Electrochemistry, 2020, 21, 358-367.	4.8	25
161	A Robust Alumina Membrane Reference Electrode for High Temperature Molten Salts. Journal of the Electrochemical Society, 2012, 159, H740-H746.	2.9	24
162	Organoaqueous calcium chloride electrolytes for capacitive charge storage in carbon nanotubes at sub-zero-temperatures. Chemical Communications, 2015, 51, 10819-10822.	4.1	24

#	Article	IF	CITATIONS
163	Improvement of the glass-forming ability of Zr55Cu30Al10Ni5 and Cu47Ti34Zr11Ni8 alloys by electro-deoxidation of the melts. Scripta Materialia, 2006, 55, 87-90.	5.2	23
164	Electrochemical fabrication of porous Sn/SnSb negative electrodes from mixed SnO2–Sb2O3. Electrochemistry Communications, 2014, 38, 36-39.	4.7	23
165	Highly Efficient Sulfonic/Carboxylic Dualâ€Acid Synergistic Catalysis for Esterification Enabled by Sulfurâ€Rich Graphene Oxide. ChemSusChem, 2017, 10, 3352-3357.	6.8	21
166	Lithium Bis(fluorosulfony)imideâ€Lithium Hexafluorophosphate Binaryâ€Salt Electrolytes for Lithiumâ€Ion Batteries: Aluminum Corrosion Behaviors and Electrochemical Properties. ChemistrySelect, 2018, 3, 1954-1960.	1.5	21
167	Microfluidic fabrication of porous polydimethylsiloxane microparticles for the treatment of toluene-contaminated water. Microfluidics and Nanofluidics, 2018, 22, 1.	2.2	21
168	A morphological study of the FFC chromium and titanium powders. Institutions of Mining and Metallurgy Transactions Section C: Mineral Processing and Extractive Metallurgy, 2006, 115, 49-54.	0.6	20
169	Electrochemical manufacturing of nanocarbons from carbon dioxide in molten alkali metal carbonate salts: roles of alkali metal cations. Advances in Manufacturing, 2016, 4, 23-32.	6.1	20
170	Synergetic treatment of dye contaminated wastewater using microparticles functionalized with carbon nanotubes/titanium dioxide nanocomposites. RSC Advances, 2020, 10, 9210-9225.	3.6	20
171	Ferrocene Sensors. , 0, , 281-318.		19
172	Liquid diffusion of the instantaneously released oxygen ion in the electrolytic porous Fe from solid Fe2O3 in molten CaCl2. Electrochimica Acta, 2013, 107, 261-268.	5.2	19
173	The FFC Cambridge process and its relevance to valorisation of ilmenite and titanium-rich slag. Institutions of Mining and Metallurgy Transactions Section C: Mineral Processing and Extractive Metallurgy, 2015, 124, 96-105.	0.6	17
174	Rapid preparation of high electrochemical performance LiFePO4/C composite cathode material with an ultrasonic-intensified micro-impinging jetting reactor. Ultrasonics Sonochemistry, 2017, 39, 816-826.	8.2	17
175	Microfluidic formation of highly monodispersed multiple cored droplets using needleâ€based system in parallel mode. Electrophoresis, 2020, 41, 891-901.	2.4	17
176	Nano-channel-based physical and chemical synergic regulation for dendrite-free lithium plating. Nano Research, 2021, 14, 3585-3597.	10.4	17
177	A composite surface configuration towards improving cycling stability of Li-rich layered oxide materials. Journal of Materials Chemistry A, 2021, 9, 24426-24437.	10.3	17
178	Asymmetrical complexation and simultaneous electrochemical recognition of two different group 2 metal cations by a 1,1′-ferrocene-bis(methylene aza-18-crown-6) receptor. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 4331-4333.	1.7	16
179	Highly-dispersed nickel nanoparticles decorated titanium dioxide nanotube array for enhanced solar light absorption. Applied Surface Science, 2019, 464, 716-724.	6.1	16
180	Polymer Composites with Functionalized Carbon Nanotube and Graphene. , 2019, , 211-248.		16

#	Article	IF	CITATIONS
181	Mechanisms and Product Options of Magnesiothermic Reduction of Silica to Silicon for Lithium-Ion Battery Applications. Frontiers in Energy Research, 2021, 9, .	2.3	16
182	Rheological study and printability investigation of titania inks for Direct Ink Writing process. Ceramics International, 2021, 47, 12020-12027.	4.8	16
183	Eight-electron oxidation of borohydride at potentials negative to reversible hydrogen electrode. Journal of Power Sources, 2008, 185, 892-894.	7.8	15
184	Affordable electrolytic ferrotitanium alloys with marine engineering potentials. Journal of Alloys and Compounds, 2009, 482, 320-327.	5.5	15
185	Esterification of fatty acids from waste cooking oil to biodiesel over a sulfonated resin/PVA composite. Catalysis Science and Technology, 2016, 6, 5590-5598.	4.1	15
186	A Rechargeable Highâ€Temperature Molten Salt Iron–Oxygen Battery. ChemSusChem, 2018, 11, 1880-1886.	6.8	15
187	Controllable synthesis of (NH4)Fe2(PO4)2(OH)·2H2O using two-step route: Ultrasonic-intensified impinging stream pre-treatment followed by hydrothermal treatment. Ultrasonics Sonochemistry, 2018, 42, 452-463.	8.2	15
188	Highly efficient photoanodes based on cascade structural semiconductors of Cu ₂ Se/CdSe/TiO ₂ : a multifaceted approach to achieving microstructural and compositional control. Journal of Materials Chemistry A, 2016, 4, 1336-1344.	10.3	14
189	Mechanoâ€Fenton–Piranha Oxidation of Carbon Nanotubes for Energy Application. Advanced Sustainable Systems, 2019, 3, 1900065.	5.3	14
190	New Bis- and Tris-Ferrocenoyl and Tris-Benzoyl Lower-rim Substituted Calix[5]arene Esters: Synthesis, Electrochemistry and X-ray Crystal Structures. Supramolecular Chemistry, 1996, 7, 241-255.	1.2	13
191	Intramolecular Electrostatics: Coulomb's Law at Sub-Nanometers. ChemPhysChem, 2004, 5, 1623-1629.	2.1	13
192	Tuning the maximum absorption wavelengths of phthalocyanine derivatives. Journal of Porphyrins and Phthalocyanines, 2005, 09, 32-39.	0.8	13
193	Developing energy efficient lignin biomass processing – towards understanding mediator behaviour in ionic liquids. Faraday Discussions, 2016, 190, 127-145.	3.2	13
194	Voltammetric Studies of Through-Space and Through-Bond Electrostatic Interactions in Alkyl Linked Ferrocene and Benzoaza-15-crown-5 Receptor Molecules in Acetonitrile. Journal of Physical Chemistry B, 2005, 109, 10658-10667.	2.6	12
195	An Asymmetrical Supercapacitor Based on CNTs/SnO2 and CNTs/MnO2 Nanocomposites Working at 1.7 V in Aqueous Electrolyte. ECS Transactions, 2008, 16, 153-162.	0.5	12
196	Influences of graphite anode area on electrolysis of solid metal oxides in molten salts. Journal of Solid State Electrochemistry, 2014, 18, 3317-3325.	2.5	12
197	Yttria-Stabilized Zirconia Aided Electrochemical Investigation on Ferric Ions in Mixed Molten Calcium and Sodium Chlorides. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2018, 49, 2794-2808.	2.1	12
198	Electrochemical removal of oxygen for processing glass-forming alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 240-243.	5.6	11

#	Article	IF	CITATIONS
199	A Golden Episode Continues Fenton's Colorful Story. Angewandte Chemie - International Edition, 2010, 49, 5413-5415.	13.8	11
200	Carbon electrodes for energy storage: general discussion. Faraday Discussions, 2014, 172, 239-260.	3.2	11
201	Sustainable Conversion of Carbon Dioxide into Diverse Hydrocarbon Fuels via Molten Salt Electrolysis. ACS Sustainable Chemistry and Engineering, 2020, 8, 19178-19188.	6.7	11
202	Quasi-solid-state electrolyte for rechargeable high-temperature molten salt iron-air battery. Energy Storage Materials, 2021, 35, 142-147.	18.0	10
203	Achieving low voltage half electrolysis with a supercapacitor electrode. Energy and Environmental Science, 2014, 7, 1018-1022.	30.8	9
204	Cryo-solvatochromism in ionic liquids. RSC Advances, 2014, 4, 40281-40285.	3.6	9
205	Bipolarly stacked electrolyser for energy and space efficient fabrication of supercapacitor electrodes. Journal of Power Sources, 2016, 307, 208-213.	7.8	9
206	Environmental assessment of the near-net-shape electrochemical metallisation process and the Kroll-electron beam melting process for titanium manufacture. Green Chemistry, 2020, 22, 1952-1967.	9.0	9
207	Invention and fundamentals of the FFC Cambridge Process. , 2020, , 227-286.		9
208	Honeycombed activated carbon with greatly increased specific surface by direct activation of glucose for supercapacitors. Journal of Alloys and Compounds, 2021, 883, 160907.	5.5	9
209	Research Progress and Perspectives on High Voltage, Flame Retardant Electrolytes for Lithium-Ion Batteries. Acta Chimica Sinica, 2017, 75, 1183.	1.4	9
210	Synthesis and Electrochemical Polymerisation of Calix[4]pyrroles Containing <i>N</i> -substituted Pyrrole Moieties. Supramolecular Chemistry, 2001, 13, 557-563.	1.2	8
211	Magnesia-stabilised zirconia solid electrolyte assisted electrochemical investigation of iron ions in a SiO ₂ –CaO–MgO–Al ₂ O ₃ molten slag at 1723 K. Physical Chemistry Chemical Physics, 2017, 19, 15876-15890.	2.8	8
212	Fundamental Consideration for Electrochemical Engineering of Supercapattery. Journal of the Brazilian Chemical Society, 0, , .	0.6	8
213	Environmental and energy gains from using molten magnesium–sodium–potassium chlorides for electro-metallisation of refractory metal oxides. Progress in Natural Science: Materials International, 2015, 25, 650-653.	4.4	7
214	Highlights from liquid salts for energy and materials – Faraday Discussion, Ningbo, China, 11–13 May 2016. Chemical Communications, 2016, 52, 12538-12554.	4.1	7
215	Effect of the Changed Electrolytic Cell on the Current Efficiency in FFC Cambridge Process. Materials Transactions, 2017, 58, 322-325.	1.2	7
216	Effects of Pore Widening vs Oxygenation on Capacitance of Activated Carbon in Aqueous Sodium Sulfate Electrolyte. Journal of the Electrochemical Society, 2020, 167, 040524.	2.9	7

#	Article	IF	CITATIONS
217	Carbon-emcoating architecture boosts lithium storage of Nb2O5. Science China Materials, 2021, 64, 1071-1086.	6.3	7
218	Processing Nanomaterials in Molten Salts: Partially Electrometallized TiO ₂ as Pt Support for Enhanced Catalytic Oxidation of CO and CH ₃ OH. Chemistry - A European Journal, 2011, 17, 8562-8567.	3.3	6
219	Electrochemical Preparation of Fine Powders of Nickel-Boron Alloys in Molten Chlorides for Magnetic Hydrogenation Catalysts. Journal of the Electrochemical Society, 2015, 162, H271-H277.	2.9	6
220	A novel "holey-LFP / graphene / holey-LFP―sandwich nanostructure with significantly improved rate capability for lithium storage. Electrochimica Acta, 2019, 320, 134566.	5.2	6
221	Perspective—Redox Ionic Liquid Electrolytes for Supercapattery. Journal of the Electrochemical Society, 2022, 169, 030529.	2.9	6
222	Forming metal powders by electrolysis. , 2013, , 19-41.		5
223	Enhanced Performance of Silicon Negative Electrodes Composited with Titanium Carbide Based MXenes for Lithium-Ion Batteries. Nanoenergy Advances, 2022, 2, 165-196.	7.7	5
224	The Effect of Cooling Rate in Molten Salt Electro-Carburisation Process. Advanced Materials Research, 0, 576, 264-267.	0.3	4
225	The many faces of carbon in electrochemistry: general discussion. Faraday Discussions, 2014, 172, 117-137.	3.2	4
226	Improvements of energy conversion and storage: general discussion. Faraday Discussions, 2016, 190, 291-306.	3.2	4
227	Inter-Particle Electronic and Ionic Modifications of the Ternary Ni-Co-Mn Oxide for Efficient and Stable Lithium Storage. Journal of the Electrochemical Society, 2019, 166, A3162-A3167.	2.9	4
228	Synthesis and performance optimisation of spray coated Cu2ZnSnS4 absorbing layers from single-source xanthate precursors. Thin Solid Films, 2019, 690, 137530.	1.8	4
229	Assessment of toxicity reduction in ZnS substituted CdS:P3HT bulk heterojunction solar cells fabricated using a single-source precursor deposition. Sustainable Energy and Fuels, 2019, 3, 948-955.	4.9	4
230	Controllable synthesis of hierarchical micro/nano structured FePO4 particles under synergistic effects of ultrasound irradiation and impinging stream. Advanced Powder Technology, 2020, 31, 4292-4300.	4.1	4
231	High Yield and Packing Density Activated Carbon by One-Step Molecular Level Activation of Hydrophilic Pomelo Peel for Supercapacitors. Journal of the Electrochemical Society, 2021, 168, 060521.	2.9	4
232	Electrochemical Considerations in Supercapacitors with Nanocomposites. ECS Transactions, 2010, 33, 107-116.	0.5	3
233	Assessing the accuracy of loss estimation methods for supercapacitor energy storage devices operating under constant power cycling. , 2014, , .		3
234	Charge Storage Properties of Aqueous Halide Supercapatteries with Activated Carbon and Graphene Nanoplatelets as Active Electrode Materials. Energy and Environmental Materials, 2021, 4, 481-491.	12.8	3

#	Article	IF	CITATIONS
235	Indirect electrosynthesis of ammonia from nitrogen and water by a magnesium chloride cycle at atmospheric pressure. Cell Reports Physical Science, 2021, 2, 100425.	5.6	3
236	Advanced Extractive Electrometallurgy. , 2017, , 801-834.		3
237	Enhancement of photoconversion efficiency and light harvesting ability of TiO2 nanotube-arrays with Cu2ZnSnS4. International Journal of Hydrogen Energy, 2022, 47, 31003-31013.	7.1	3
238	The role of 1-octyl-3-methylimidazolium hexafluorophosphate in anticorrosion coating formula development. Journal of Saudi Chemical Society, 2022, 26, 101446.	5.2	3
239	The Effect of Nanotube Loading and Dispersion on the Three-Dimensional Nanostructure of Carbon Nanotube-Conducting Polymer Composite Films. Materials Research Society Symposia Proceedings, 2002, 739, 531.	0.1	2
240	Selecting the power electronic interface for a supercapattery based energy storage system. , 2009, , .		2
241	Cyclic Voltammetry of Solid TiO2 in Molten Alkali Chlorides. ECS Transactions, 2010, 33, 273-276.	0.5	2
242	Electrochemical Near-Net-Shape Production Via the FFC Cambridge Process Dedication to the Special Session for the 2012 Max Bredig Award. ECS Transactions, 2013, 50, 29-37.	0.5	2
243	(Invited) An Overview of the REFINE Project The Sustainable Reduction of Spent Fuel Vital in a Closed Loop Nuclear Energy Cycle. ECS Transactions, 2014, 64, 585-592.	0.5	2
244	Benefits to energy efficiency and environmental impact: general discussion. Faraday Discussions, 2016, 190, 161-204.	3.2	2
245	Cuprous oxide/titanium dioxide nanotube-array with coaxial heterogeneous structure synthesized by multiple-cycle chemical adsorption plus reduction method. RSC Advances, 2016, 6, 59160-59168.	3.6	2
246	Conducting Polymer Nanocomposite-Based Supercapacitors. Springer Series on Polymer and Composite Materials, 2017, , 269-304.	0.7	2
247	Anion-Binding-Induced Electrochemical Signal Transduction in Ferrocenylimidazolium: Combined Electrochemical Experimental and Theoretical Investigation. Molecules, 2019, 24, 238.	3.8	2
248	Doping and Electrochemical Capacitance of Carbon Nanotube-Polypyrrole Composite Films. Materials Research Society Symposia Proceedings, 2001, 703, 1.	0.1	1
249	Electrochemical Synthesis of LiTiO2 and LiTi2O4 in Molten LiCl ChemInform, 2005, 36, no.	0.0	1
250	Solid State Electro-Reduction in Liquid Salts. ECS Transactions, 2009, 16, 205-210.	0.5	1
251	Molten Salt Assisted Electrochemical Separation of Spent Fuel Surrogates by Partial Direct Reduction and Selective Anodic Dissolution. ECS Transactions, 2014, 64, 333-350.	0.5	1
252	Role of surface contaminants, functionalities, defects and electronic structure: general discussion. Faraday Discussions, 2014, 172, 365-395.	3.2	1

#	Article	IF	CITATIONS
253	Carbon electrode interfaces for synthesis, sensing and electrocatalysis: general discussion. Faraday Discussions, 2014, 172, 497-520.	3.2	1
254	Synthesis of Polydimethylsiloxane Microspheres Using Microfluidics for Treatment of Toluene in Wastewater. , 2018, , .		1
255	High Throughput Fabrication of Microdroplets Using Needle Based Microfluidic System. , 2019, , .		1