Jahar Bhattacharya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5071267/publications.pdf

Version: 2024-02-01

97 6,988 39
papers citations h-index

102 102 102 9361 all docs docs citations times ranked citing authors

64

g-index

#	Article	IF	CITATIONS
1	Mitochondrial transfer from bone-marrow–derived stromal cells to pulmonary alveoli protects against acute lung injury. Nature Medicine, 2012, 18, 759-765.	15.2	1,164
2	Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nature Biotechnology, 2014, 32, 84-91.	9.4	497
3	Future Research Directions in Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2003, 167, 1027-1035.	2.5	489
4	A three-dimensional model of human lung development and disease from pluripotent stem cells. Nature Cell Biology, 2017, 19, 542-549.	4.6	467
5	Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity. Nature, 2014, 506, 503-506.	13.7	349
6	Concentration-dependent inhibition of angiogenesis by mesenchymal stem cells. Blood, 2009, 113, 4197-4205.	0.6	298
7	Regulatory T Cells Promote Macrophage Efferocytosis during Inflammation Resolution. Immunity, 2018, 49, 666-677.e6.	6.6	270
8	Regulation and Repair of the Alveolar-Capillary Barrier in Acute Lung Injury. Annual Review of Physiology, 2013, 75, 593-615.	5.6	266
9	Mechanisms regulating endothelial cell barrier function. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L419-L422.	1.3	206
10	Mitochondria in lung biology and pathology: more than just a powerhouse. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 306, L962-L974.	1.3	158
11	Connexin 43 mediates spread of Ca2+ -dependent proinflammatory responses in lung capillaries. Journal of Clinical Investigation, 2006, 116, 2193-2200.	3.9	142
12	Pulmonary vascular endothelium: the orchestra conductor in respiratory diseases. European Respiratory Journal, 2018, 51, 1700745.	3.1	136
13	[Ca ²⁺] _i oscillations regulate type II cell exocytosis in the pulmonary alveolus. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L5-L13.	1.3	130
14	Pressure is proinflammatory in lung venular capillaries. Journal of Clinical Investigation, 1999, 104, 495-502.	3.9	128
15	Mechano-oxidative coupling by mitochondria induces proinflammatory responses in lung venular capillaries. Journal of Clinical Investigation, 2003, 111, 691-699.	3.9	120
16	Alveolar expansion imaged by optical sectioning microscopy. Journal of Applied Physiology, 2007, 103, 1037-1044.	1.2	111
17	Micromechanics of Alveolar Edema. American Journal of Respiratory Cell and Molecular Biology, 2011, 44, 34-39.	1.4	108
18	Red blood cells induce hypoxic lung inflammation. Blood, 2008, 111, 5205-5214.	0.6	101

#	Article	IF	Citations
19	Migration of Fibrocytes in Fibrogenic Liver Injury. American Journal of Pathology, 2011, 179, 189-198.	1.9	97
20	Ca ²⁺ Waves in Lung Capillary Endothelium. Circulation Research, 1996, 79, 898-908.	2.0	94
21	A novel signaling mechanism between gas and blood compartments of the lung. Journal of Clinical Investigation, 2000, 105, 905-913.	3.9	93
22	Activation of TNFR1 ectodomain shedding by mitochondrial Ca2+ determines the severity of inflammation in mouse lung microvessels. Journal of Clinical Investigation, 2011, 121, 1986-1999.	3.9	89
23	Strategic Plan for Lung Vascular Research. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 1554-1562.	2.5	73
24	Endothelial Barrier Strengthening by Activation of Focal Adhesion Kinase. Journal of Biological Chemistry, 2003, 278, 13342-13349.	1.6	72
25	Intercellular mitochondrial transfer: bioenergetic crosstalk between cells. Current Opinion in Genetics and Development, 2016, 38, 97-101.	1.5	70
26	Macrophage-epithelial interactions in pulmonary alveoli. Seminars in Immunopathology, 2016, 38, 461-469.	2.8	69
27	Soluble Ligands of the αvβ4 Integrin Mediate Enhanced Tyrosine Phosphorylation of Multiple Proteins in Adherent Bovine Pulmonary Artery Endothelial Cells. Journal of Biological Chemistry, 1995, 270, 16781-16787.	1.6	67
28	Ongoing angiogenesis in blood vessels of the abdominal aortic aneurysm. Experimental and Molecular Medicine, 2004, 36, 524-533.	3.2	66
29	Pressure-induced endothelial Ca2+ oscillations in lung capillaries. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 282, L917-L923.	1.3	64
30	When Cells Become Organelle Donors. Physiology, 2013, 28, 414-422.	1.6	64
31	Chloride-Dependent Secretion of Alveolar Wall Liquid Determined by Optical-Sectioning Microscopy. American Journal of Respiratory Cell and Molecular Biology, 2007, 36, 688-696.	1.4	61
32	Real-time lung microscopy. Journal of Applied Physiology, 2007, 102, 1255-1264.	1.2	60
33	Live Imaging of the Lung. Annual Review of Physiology, 2014, 76, 431-445.	5 . 6	59
34	Atomic force microscope elastography reveals phenotypic differences in alveolar cell stiffness. Journal of Applied Physiology, 2008, 105, 652-661.	1.2	57
35	Mitochondrial Reactive Oxygen Species Regulate Spatial Profile of Proinflammatory Responses in Lung Venular Capillaries. Journal of Immunology, 2002, 169, 7078-7086.	0.4	55
36	Hyperosmolarity enhances the lung capillary barrier. Journal of Clinical Investigation, 2003, 112, 1541-1549.	3.9	54

#	Article	IF	CITATIONS
37	Modulation of the NLRP3 inflammasome by Sars-CoV-2 Envelope protein. Scientific Reports, 2021, 11, 24432.	1.6	51
38	Ligation of Endothelial \hat{l}_{\pm} (sub>v \hat{l}^{2} (sub>3Integrin Increases Capillary Hydraulic Conductivity of Rat Lung. Circulation Research, 1995, 77, 651-659.	2.0	50
39	High Tidal Volume Ventilation Induces Proinflammatory Signaling in Rat Lung Endothelium. American Journal of Respiratory Cell and Molecular Biology, 2003, 28, 218-224.	1.4	44
40	Disruption of staphylococcal aggregation protects against lethal lung injury. Journal of Clinical Investigation, 2018, 128, 1074-1086.	3.9	39
41	α v β 3 Integrin Induces Tyrosine Phosphorylation–Dependent Ca 2+ Influx in Pulmonary Endothelial Cells. Circulation Research, 2000, 86, 456-462.	2.0	35
42	Inhibition of Acid-induced Lung Injury by Hyperosmolar Sucrose in Rats. American Journal of Respiratory and Critical Care Medicine, 2005, 172, 1002-1007.	2.5	34
43	Pulmonary surfactant and drug delivery: Vehiculization, release and targeting of surfactant/tacrolimus formulations. Journal of Controlled Release, 2021, 329, 205-222.	4.8	34
44	Molecular programs of fibrotic change in aging human lung. Nature Communications, 2021, 12, 6309.	5.8	33
45	Paracrine purinergic signaling determines lung endothelial nitric oxide production. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 296, L901-L910.	1.3	30
46	Cell Therapy for Lung Diseases. Report from an NIH–NHLBI Workshop, November 13–14, 2012. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 370-375.	2.5	29
47	Pressure-induced leukocyte margination in lung postcapillary venules. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 289, L407-L412.	1.3	28
48	Hypercapnia attenuates ventilatorâ€induced lung injury via a disintegrin and metalloproteaseâ€17. Journal of Physiology, 2014, 592, 4507-4521.	1.3	24
49	Erythrocytes Induce Proinflammatory Endothelial Activation in Hypoxia. American Journal of Respiratory Cell and Molecular Biology, 2013, 48, 78-86.	1.4	23
50	F-actin scaffold stabilizes lamellar bodies during surfactant secretion. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 306, L50-L57.	1.3	23
51	Microvascular pressures in the isolated, perfused dog lung: Comparison between theory and measurement. Microvascular Research, 1982, 23, 67-76.	1.1	13
52	Platelets induce endothelial tissue factor expression in a mouse model of acid-induced lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 302, L1209-L1220.	1.3	13
53	Interpreting the lung microvascular filtration coefficient. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L9-L10.	1.3	11
54	Cadherin selectivity filter regulates endothelial sieving properties. Nature Communications, 2012, 3, 1099.	5.8	11

#	Article	IF	CITATIONS
55	FACTORS AFFECTING LUNG MICROVASCULAR PRESSURE. Annals of the New York Academy of Sciences, 1982, 384, 107-114.	1.8	10
56	ITF1697, a Stable Lys-Pro-Containing Peptide, Inhibits Weibel-Palade Body Exocytosis Induced by Ischemia/Reperfusion and Pressure Elevation. Molecular Medicine, 2007, 13, 615-624.	1.9	8
57	Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2004, 170, 928-929.	2.5	7
58	Localized Acid Instillation by a Wedgedâ€Catheter Method Reveals a Role for Vascular Gap Junctions in Spatial Expansion of Acid Injury. Anatomical Record, 2011, 294, 1585-1591.	0.8	7
59	Actin fence therapy with exogenous V12Rac1 protects against acute lung injury. JCI Insight, 2021, 6, .	2.3	7
60	Gene Therapy for Pulmonary Edema. American Journal of Respiratory Cell and Molecular Biology, 2000, 22, 640-641.	1.4	4
61	Lung capillaries raise the hypoxia alarm. Journal of Clinical Investigation, 2012, 122, 3845-3847.	3.9	3
62	PREVALENCE AND RISK FACTORS OF LEFT VENTRICULAR DIASTOLIC DYSFUNCTION IN COPD PATIENTS. Chest, 2005, 128, 263S.	0.4	2
63	Higher estimate of lung microvascular fluid production. Acta Physiologica, 2006, 188, 75-75.	1.8	2
64	ATP induces alveolar/capillary cross talk in the lung. FASEB Journal, 2006, 20, LB40.	0.2	0
65	Capillary Ca ²⁺ increase induces venular Pâ€selectin expression in lung. FASEB Journal, 2006, 20, A752.	0.2	O
66	Ca 2+ communication through connexin 43 in lung capillaries. FASEB Journal, 2006, 20, A275.	0.2	0
67	Hyperosmolar sucrose protects against acidâ€induced lung injury in awake rats. FASEB Journal, 2006, 20, LB40.	0.2	O
68	Mitochondrial ROS regulate surfactant secretion in pulmonary alveoli. FASEB Journal, 2006, 20, .	0.2	0
69	Lung endothelial barrier restoration by interactions of βâ€catenin and focal adhesion kinase. FASEB Journal, 2006, 20, A752.	0.2	0
70	Red blood cells induce lung inflammation in hypoxia. FASEB Journal, 2007, 21, A1204.	0.2	0
71	Bone marrow stromal cells cause collapse of neocapillary networks in vitro. FASEB Journal, 2007, 21, A1427.	0.2	O
72	Hyperosmolar sucrose treatment of acidâ€induced lung injury in FRNKâ€transfected mice. FASEB Journal, 2007, 21, A555.	0.2	0

#	Article	IF	Citations
73	Impaired mitochondrial Ca2+ dynamics in lipopolysaccharideâ€ŧreated lungs. FASEB Journal, 2007, 21, A550.	0.2	0
74	Tissue conduction of acidâ€induced lung injury. FASEB Journal, 2007, 21, A555.	0.2	0
75	Quantification of lung microvascular permeability by twoâ€photon microscopy. FASEB Journal, 2007, 21, A554.	0.2	0
76	Profile of Eâ€cadherin mobility in the endothelial junction. FASEB Journal, 2008, 22, 964.33.	0.2	0
77	Focal actin tethering regulates Eâ€cadherin mobility in lung microvascular endothelial cells. FASEB Journal, 2009, 23, 964.5.	0.2	0
78	Lung microvascular mitochondria regulate TNFαâ€induced TNFR1 shedding. FASEB Journal, 2009, 23, 1023.6.	0.2	0
79	Mitochondria determine TNFα receptor distribution in lung microvessels. FASEB Journal, 2009, 23, 594.20.	0.2	0
80	Red blood cellâ€induced proinflammatory lung endothelial signaling in hypoxia. FASEB Journal, 2009, 23, 1023.4.	0.2	0
81	Endothelial TNFR1 shedding by mitochondria. FASEB Journal, 2010, 24, 777.9.	0.2	0
82	TNFR1 shedding by mitochondrial RISP in lung microvascular endothelium. FASEB Journal, 2010, 24, 797.8.	0.2	0
83	Actin tethering in endothelial junctions. FASEB Journal, 2010, 24, 598.10.	0.2	0
84	Eâ€cadherin ectodomains determine protein sieving properties of the endothelial barrier. FASEB Journal, 2011, 25, 1101.4.	0.2	0
85	Alveolar acid transiently permeabilizes the alveolar epithelium in mouse lungs. FASEB Journal, 2011, 25, 865.7.	0.2	0
86	Motility of alveolar mitochondria. FASEB Journal, 2011, 25, 865.8.	0.2	0
87	Intracellular delivery of activated focal adhesion kinase ―a novel therapeutic strategy for acute lung injury. FASEB Journal, 2011, 25, 1101.6.	0.2	0
88	First detection of Ca 2+ responses in alveolar macrophages in situ. FASEB Journal, 2012, 26, 1063.16.	0.2	0
89	Cadherin ectodomains and cadherinâ€actin linkages regulate the endothelial barrier. FASEB Journal, 2012, 26, 1063.3.	0.2	0
90	First determination of ATP in alveolar epithelium in situ , effect of mesenchymal stem cells. FASEB Journal, 2012, 26, 1063.15.	0.2	0

#	Article	IF	CITATIONS
91	Cellâ€specific expression of alveolar TNFR1. FASEB Journal, 2012, 26, 1063.14.	0.2	O
92	Synchronized activation of alveolar macrophages determined by live alveolar imaging. FASEB Journal, 2013, 27, 914.5.	0.2	0
93	A Potential Role for Regulatory T Cells in Apoptotic Cell Clearance by Macrophages in a Murine Model of Acute Lung Injury. FASEB Journal, 2015, 29, 148.3.	0.2	0
94	Intravascular Delivery of TATâ€conjugated Focal Adhesion Kinase Protects against Acute Lung Injury. FASEB Journal, 2019, 33, 846.2.	0.2	0
95	Optical Determination of Ageâ€Related Changes in Subpleural Collagen of Live Human Lungs. FASEB Journal, 2020, 34, 1-1.	0.2	0
96	Oxidative Crosstalk with Venular Capillary Mitochondria Mediates Barrier Failure in Acute Lung Injury. FASEB Journal, 2022, 36, .	0.2	0
97	Alveolar Responses to Influenza Lung Infection Determined by Confocal Imaging of Live Lungs. FASEB Journal, 2022, 36, .	0.2	0