John Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/507106/publications.pdf

Version: 2024-02-01

589 papers 51,303 citations

101 h-index 206 g-index

597 all docs

597 docs citations

597 times ranked

42077 citing authors

#	Article	IF	CITATIONS
1	Fundamentals, On-Going Advances and Challenges of Electrochemical Carbon Dioxide Reduction. Electrochemical Energy Reviews, 2022, 5, 82-111.	25.5	17
2	Developing better ceramic membranes for water and wastewater Treatment: Where microstructure integrates with chemistry and functionalities. Chemical Engineering Journal, 2022, 428, 130456.	12.7	49
3	Nanoframes of Co ₃ O ₄ –Mo ₂ N Heterointerfaces Enable Highâ€Performance Bifunctionality toward Both Electrocatalytic HER and OER. Advanced Functional Materials, 2022, 32, 2107382.	14.9	153
4	"Porous and Yet Dense―Electrodes for Highâ€Volumetricâ€Performance Electrochemical Capacitors: Principles, Advances, and Challenges. Advanced Science, 2022, 9, e2103953.	11.2	9
5	Evolution from Leadâ€Based to Leadâ€Free Piezoelectrics: Engineering of Lattices, Domains, Boundaries, and Defects Leading to Giant Response. Advanced Materials, 2022, 34, e2106845.	21.0	54
6	One-step synthesis of nitrogen-doped carbon quantum dots for paper-based electrochemiluminescence detection of Cu2+ ions. Microchemical Journal, 2022, 174, 107057.	4.5	16
7	Quenchâ€Induced Surface Engineering Boosts Alkaline Freshwater and Seawater Oxygen Evolution Reaction of Porous NiCo ₂ O ₄ Nanowires. Small, 2022, 18, e2106187.	10.0	38
8	Swapping Catalytic Active Sites from Cationic Ni to Anionic S in Nickel Sulfide Enables More Efficient Alkaline Hydrogen Generation. Advanced Energy Materials, 2022, 12, .	19.5	55
9	Nurturing the marriages of single atoms with atomic clusters and nanoparticles for better heterogeneous electrocatalysis., 2022, 1, 51-87.		114
10	Large-Scale Epitaxial Growth of Ultralong Stripe BiFeO3 Films and Anisotropic Optical Properties. ACS Applied Materials & Samp; Interfaces, 2022, , .	8.0	1
11	Two-step pyrolysis of Mn MIL-100 MOF into MnO nanoclusters/carbon and the effect of N-doping. Journal of Materials Chemistry A, 2022, 10, 8172-8177.	10.3	7
12	Single metal atoms catalystsâ€"Promising candidates for next generation energy storage and conversion devices. EcoMat, 2022, 4, .	11.9	28
13	<scp>Threeâ€dimensional</scp> knotting of <scp>W₁₇O₄₇</scp> @ <scp>PEDOT</scp> : <scp>PSS</scp> nanowires enables <scp>highâ€performance</scp> flexible cathode for dualâ€functional electrochromic and electrochemical device. InformaÄnÃ-MateriÃ:lv. 2022, 4	17. 3	26
14	One-pot hydrothermal synthesis of fluorescent carbon quantum dots with tunable emission color for application in electroluminescence detection of dopamine. Biosensors and Bioelectronics: X, 2022, 10, 100141.	1.7	3
15	Zincophilic 3D ZnOHF nanowire arrays with ordered and continuous Zn2+ Ion modulation layer enable long-term stable Zn metal anodes. Energy Storage Materials, 2022, 50, 435-443.	18.0	28
16	Quench-tailored Al-doped V2O5 nanomaterials for efficient aqueous zinc-ion batteries. Journal of Energy Chemistry, 2022, 70, 52-58.	12.9	46
17	Degradable Cross-Linked Collagen Fiber/MXene Composite Aerogels as a High-Performing Sensitive Pressure Sensor. ACS Sustainable Chemistry and Engineering, 2022, 10, 1408-1418.	6.7	38
18	Hierarchically porous interlayer for highly permeable and fouling-resistant ceramic membranes in water treatment. Separation and Purification Technology, 2022, 293, 121092.	7.9	10

#	Article	IF	CITATIONS
19	Freestanding Metal–Organic Frameworks and Their Derivatives: An Emerging Platform for Electrochemical Energy Storage and Conversion. Chemical Reviews, 2022, 122, 10087-10125.	47.7	126
20	Aggregation-Induced Luminescence Based UiO-66: Highly Selective Fast-Response Styrene Detection. ACS Applied Materials & Detection and Selective Fast-Response Styrene Detection. ACS Applied Materials & Detection and Selective Fast-Response Styrene Detection. ACS Applied Materials & Detection and Selective Fast-Response Styrene Detection. ACS Applied Materials & Detection and Selective Fast-Response Styrene Detection. ACS Applied Materials & Detection and Selective Fast-Response Styrene Detection. ACS Applied Materials & Detection and Selective Fast-Response Styrene Selective Fast-Response Styrene Selective Fast-Response Selective Fast-Response Selective Fast-Response Selective Fast-Response Selective Fast-Response Fast-Res	8.0	13
21	Wafer-scale solution-processed 2D material analog resistive memory array for memory-based computing. Nature Communications, 2022, 13, .	12.8	60
22	3D spray-coated gradient profile ceramic membranes enables improved filtration performance in aerobic submerged membrane bioreactor. Water Research, 2022, 220, 118661.	11.3	4
23	Melded ceramic membranes: A novel fabrication method for ultrathin alumina membranes of high performance. Journal of the American Ceramic Society, 2022, 105, 6554-6569.	3.8	3
24	Direct ink writing of programmable functional siliconeâ€based composites for 4D printing applications. , 2022, 1, 507-516.		25
25	Origin of giant electric-field-induced strain in faulted alkali niobate films. Nature Communications, 2022, 13, .	12.8	11
26	Electrospun Nanofibers for New Generation Flexible Energy Storage. Energy and Environmental Materials, 2021, 4, 502-521.	12.8	57
27	In-situ surface self-reconstruction in ternary transition metal dichalcogenide nanorod arrays enables efficient electrocatalytic oxygen evolution. Journal of Energy Chemistry, 2021, 55, 10-16.	12.9	28
28	Binder-free 3D printing of covalent organic framework (COF) monoliths for CO2 adsorption. Chemical Engineering Journal, 2021, 403, 126333.	12.7	78
29	Fiber-in-tube and particle-in-tube hierarchical nanostructures enable high energy density of MnO2-based asymmetric supercapacitors. Journal of Colloid and Interface Science, 2021, 582, 543-551.	9.4	20
30	Efficient Hydrogen Evolution of Oxidized Niâ€N ₃ Defective Sites for Alkaline Freshwater and Seawater Electrolysis. Advanced Materials, 2021, 33, e2003846.	21.0	198
31	Design strategies for MOF-derived porous functional materials: Preserving surfaces and nurturing pores. Journal of Materiomics, 2021, 7, 440-459.	5.7	62
32	Ultrathin TiO2 microfiltration membranes supported on a holey intermediate layer to raise filtration performance. Journal of the European Ceramic Society, 2021, 41, 1622-1628.	5.7	11
33	Direct Pyrolysis of a Manganese‶riazolate Metal–Organic Framework into Air‧table Manganese Nitride Nanoparticles. Advanced Science, 2021, 8, 2003212.	11.2	13
34	Unravelling V ₆ O ₁₃ Diffusion Pathways <i>via</i> CO ₂ Modification for High-Performance Zinc Ion Battery Cathode. ACS Nano, 2021, 15, 1273-1281.	14.6	67
35	Design and Manufacture of 3D-Printed Batteries. Joule, 2021, 5, 89-114.	24.0	137
36	Activating inverse spinel NiCo2O4 embedded in N-doped carbon nanofibers via Fe substitution for bifunctional oxygen electrocatalysis. Materials Today Physics, 2021, 17, 100353.	6.0	29

#	Article	IF	Citations
37	Efficient Water Splitting System Enabled by Multifunctional Platinumâ€Free Electrocatalysts. Advanced Functional Materials, 2021, 31, 2009853.	14.9	41
38	Engineering the Coordination Environment of Single Cobalt Atoms for Efficient Oxygen Reduction and Hydrogen Evolution Reactions. ACS Catalysis, 2021, 11, 4498-4509.	11.2	94
39	Fabrication of 3D-Printed Ceramic Structures for Portable Solar Desalination Devices. ACS Applied Materials & Samp; Interfaces, 2021, 13, 23220-23229.	8.0	42
40	Dynamic Surface Chemistry of Catalysts in Oxygen Evolution Reaction. Small Science, 2021, 1, 2100011.	9.9	59
41	Aqueous Rechargeable Multivalent Metalâ€lon Batteries: Advances and Challenges. Advanced Energy Materials, 2021, 11, 2100608.	19.5	122
42	Alkali-deficiency driven charged out-of-phase boundaries for giant electromechanical response. Nature Communications, 2021, 12, 2841.	12.8	19
43	Overcoming the Trade-off between Water Permeation and Mechanical Strength of Ceramic Membrane Supports by Interfacial Engineering. ACS Applied Materials & Supports by Interfaces, 2021, 13, 29199-29211.	8.0	26
44	Ceramic-Polymer Composite Membranes for Water and Wastewater Treatment: Bridging the Big Gap between Ceramics and Polymers. Molecules, 2021, 26, 3331.	3.8	26
45	Synergizing aliovalent doping and interface in heterostructured NiV nitride@oxyhydroxide core-shell nanosheet arrays enables efficient oxygen evolution. Nano Energy, 2021, 85, 105961.	16.0	55
46	Quasiâ€Paired Pt Atomic Sites on Mo ₂ C Promoting Selective Fourâ€Electron Oxygen Reduction. Advanced Science, 2021, 8, e2101344.	11.2	29
47	Black Phosphorus@Ti ₃ C ₂ T _{<i>x</i>} MXene Composites with Engineered Chemical Bonds for Commercial-Level Capacitive Energy Storage. ACS Nano, 2021, 15, 12975-12987.	14.6	70
48	Ultrahigh piezoelectric coefficients of Li-doped (K,Na)NbO3 nanorod arrays with manipulated O-T phase boundary: Towards energy harvesting and self-powered human movement monitoring. Nano Energy, 2021, 86, 106072.	16.0	15
49	Recent progress in self-supported nanoarrays with diverse substrates for water splitting and beyond. Materials Today Nano, 2021, 15, 100120.	4.6	11
50	Recent progress, developing strategies, theoretical insights, and perspectives towardsAhigh-performance copper single atom electrocatalysts. Materials Today Energy, 2021, 21, 100761.	4.7	8
51	Squaraine organic crystals with strong dipole effect toward stable lithium-organic batteries. Energy Storage Materials, 2021, 41, 240-247.	18.0	16
52	Large-area multifunctional electro-chromic-chemical device made of W17O47 nanowires by Zn2+ ion intercalation. Nano Energy, 2021, 89, 106356.	16.0	33
53	Unlocking the synergy of interface and oxygen vacancy by core-shell nickel phosphide@oxyhydroxide nanosheets arrays for accelerating alkaline oxygen evolution kinetics. Chemical Engineering Journal, 2021, 425, 131491.	12.7	25
54	Manipulating Interfaces of Electrocatalysts Down to Atomic Scales: Fundamentals, Strategies, and Electrocatalytic Applications. Small Methods, 2021, 5, e2001010.	8.6	35

#	Article	IF	CITATIONS
55	Solar-Driven Gas-Phase Moisture to Hydrogen with Zero Bias. ACS Nano, 2021, 15, 19119-19127.	14.6	16
56	Fabrication of (NH4)2V3O8 nanoparticles encapsulated in amorphous carbon for high capacity electrodes in aqueous zinc ion batteries. Chemical Engineering Journal, 2020, 382, 122844.	12.7	164
57	Chemical-grafting of graphene oxide quantum dots (GOQDs) onto ceramic microfiltration membranes for enhanced water permeability and anti-organic fouling potential. Applied Surface Science, 2020, 502, 144128.	6.1	50
58	3D-printed electrodes for lithium metal batteries with high areal capacity and high-rate capability. Energy Storage Materials, 2020, 24, 336-342.	18.0	105
59	Oneâ€dimensional and twoâ€dimensional synergized nanostructures for highâ€performing energy storage and conversion. InformaÄnÃ-Materiály, 2020, 2, 3-32.	17.3	206
60	All-in-one stretchable coaxial-fiber strain sensor integrated with high-performing supercapacitor. Energy Storage Materials, 2020, 25, 124-130.	18.0	100
61	Effect of gradient profile in ceramic membranes on filtration characteristics: Implications for membrane development. Journal of Membrane Science, 2020, 595, 117576.	8.2	42
62	Low-loss and temperature-stable negative permittivity in La0.5Sr0.5MnO3 ceramics. Journal of the European Ceramic Society, 2020, 40, 1917-1921.	5.7	38
63	Hollow structure engineering of FeCo alloy nanoparticles electrospun in nitrogen-doped carbon enables high performance flexible all-solid-state zinc–air batteries. Sustainable Energy and Fuels, 2020, 4, 1747-1753.	4.9	36
64	Combinational Design of Electronic Structure and Nanoarray Architecture Achieves a Lowâ€Overpotential Oxygen Electrode for Aprotic Lithium–Oxygen Batteries. Small Methods, 2020, 4, 1900619.	8.6	15
65	Stitching of Zn ₃ (OH) ₂ V ₂ O ₇ ·2H ₂ O 2D Nanosheets by 1D Carbon Nanotubes Boosts Ultrahigh Rate for Wearable Quasi-Solid-State Zinc-Ion Batteries. ACS Nano, 2020, 14, 842-853.	14.6	183
66	Three Dimensionally Free-Formable Graphene Foam with Designed Structures for Energy and Environmental Applications. ACS Nano, 2020, 14, 937-947.	14.6	101
67	Cage-confinement pyrolysis route to size-controlled molybdenum-based oxygen electrode catalysts: From isolated atoms to clusters and nanoparticles. Nano Energy, 2020, 67, 104288.	16.0	93
68	Strain stabilized nickel hydroxide nanoribbons for efficient water splitting. Energy and Environmental Science, 2020, 13, 229-237.	30.8	78
69	A sacrificial Zn strategy enables anchoring of metal single atoms on the exposed surface of holey 2D molybdenum carbide nanosheets for efficient electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 3071-3082.	10.3	48
70	Highly permeable Al 2 O 3 microfiltration membranes with holey interior structure achieved through sacrificial C particles. Journal of the American Ceramic Society, 2020, 103, 3361-3372.	3.8	11
71	Hydrogenated TiO2 membrane with photocatalytically enhanced anti-fouling for ultrafiltration of surface water. Applied Catalysis B: Environmental, 2020, 264, 118528.	20.2	37
72	Alumina double-layered ultrafiltration membranes with enhanced water flux. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 587, 124324.	4.7	9

#	Article	IF	Citations
73	Recent Progress in Twoâ€Dimensional Layered Double Hydroxides and Their Derivatives for Supercapacitors. ChemSusChem, 2020, 13, 1226-1254.	6.8	94
74	Interfacial diffusion assisted chemical deposition (ID-CD) for confined surface modification of alumina microfiltration membranes toward high-flux and anti-fouling. Separation and Purification Technology, 2020, 235, 116177.	7.9	27
75	MOF-derived manganese oxide/carbon nanocomposites with raised capacitance for stable asymmetric supercapacitor. RSC Advances, 2020, 10, 34403-34412.	3.6	24
76	Nanohollow Carbon for Rechargeable Batteries: Ongoing Progresses and Challenges. Nano-Micro Letters, 2020, 12, 183.	27.0	45
77	Flexible quasi-solid-state aqueous Zn-based batteries: rational electrode designs for high-performance and mechanical flexibility. Materials Today Energy, 2020, 18, 100523.	4.7	42
78	Synergizing in-grown Ni3N/Ni heterostructured core and ultrathin Ni3N surface shell enables self-adaptive surface reconfiguration and efficient oxygen evolution reaction. Nano Energy, 2020, 78, 105355.	16.0	126
79	Flexible supercapacitor of high areal performance with vanadium/cobalt oxides on carbon nanofibers as a binder-free membrane electrode. Chemical Engineering Journal, 2020, 402, 126294.	12.7	67
80	Porous NiCo2S4/FeOOH nanowire arrays with rich sulfide/hydroxide interfaces enable high OER activity. Nano Energy, 2020, 78, 105230.	16.0	121
81	Phosphorusâ€Based Electrocatalysts: Black Phosphorus, Metal Phosphides, and Phosphates. Advanced Materials Interfaces, 2020, 7, 2000676.	3.7	35
82	Encapsulating Oxygenâ€Deficient TiNb ₂₄ O ₆₂ Microspheres by Nâ€Doped Carbon Nanolayer Boosts Capacity and Stability of Lithiumâ€lon Battery. Batteries and Supercaps, 2020, 3, 1360-1369.	4.7	10
83	Manipulating unidirectional fluid transportation to drive sustainable solar water extraction and brine-drenching induced energy generation. Energy and Environmental Science, 2020, 13, 4891-4902.	30.8	162
84	Key issues facing electrospun carbon nanofibers in energy applications: on-going approaches and challenges. Nanoscale, 2020, 12, 13225-13248.	5.6	63
85	Bifunctional Oxygen Electrocatalyst of Mesoporous Ni/NiO Nanosheets for Flexible Rechargeable Zn–Air Batteries. Nano-Micro Letters, 2020, 12, 68.	27.0	103
86	Potential-Dependent Phase Transition and Mo-Enriched Surface Reconstruction of Î ³ -CoOOH in a Heterostructured Co-Mo ₂ C Precatalyst Enable Water Oxidation. ACS Catalysis, 2020, 10, 4411-4419.	11.2	174
87	Surface nitridation of nickel-cobalt alloy nanocactoids raises the performance of water oxidation and splitting. Applied Catalysis B: Environmental, 2020, 270, 118889.	20.2	95
88	Zn ²⁺ Preâ€Intercalation Stabilizes the Tunnel Structure of MnO ₂ Nanowires and Enables Zincâ€Ion Hybrid Supercapacitor of Batteryâ€Level Energy Density. Small, 2020, 16, e2000091.	10.0	139
89	MnO2 as an effective sintering aid for difficult-to-sinter LiTaO3-based ceramics: Densification and dielectric properties. Journal of Alloys and Compounds, 2020, 829, 154546.	5 . 5	9
90	Electrochemiluminescence Detection of Sunset Yellow by Graphene Quantum Dots. Frontiers in Chemistry, 2020, 8, 505.	3.6	13

#	Article	IF	Citations
91	Surface engineered alumina microfiltration membranes based on rationally constructed core-shell particles. Journal of the European Ceramic Society, 2020, 40, 5951-5958.	5.7	20
92	Synergizing Mo Single Atoms and Mo ₂ C Nanoparticles on CNTs Synchronizes Selectivity and Activity of Electrocatalytic N ₂ Reduction to Ammonia. Advanced Materials, 2020, 32, e2002177.	21.0	190
93	NH $<$ sub $>$ 4 $<$ sub $>$ V $<$ sub $>$ 3 $<$ sub $>$ O $<$ sub $>$ 8 $<$ sub $>$ Â $<$ 0.5H $<$ sub $>$ 2 $<$ sub $>$ O nanobelts with intercalated water molecules as a high performance zinc ion battery cathode. Materials Chemistry Frontiers, 2020, 4, 1434-1443.	5.9	81
94	Freezeâ€dried graphene oxide modified with trimethylhexamethylene in the mix solvent for improved antiâ€corrosion property of epoxy. Journal of Applied Polymer Science, 2020, 137, 49139.	2.6	3
95	Single atom catalysts: a surface heterocompound perspective. Nanoscale Horizons, 2020, 5, 757-764.	8.0	39
96	Overcoming the Limits of the Interfacial Dzyaloshinskii–Moriya Interaction by Antiferromagnetic Order in Multiferroic Heterostructures. Advanced Materials, 2020, 32, e1904415.	21.0	34
97	Quasi-solid-state fiber-shaped aqueous energy storage devices: recent advances and prospects. Journal of Materials Chemistry A, 2020, 8, 6406-6433.	10.3	47
98	Single Atom Electrocatalysis: Heterogeneous Single Atom Electrocatalysis, Where "Singles―Are "Married―(Adv. Energy Mater. 9/2020). Advanced Energy Materials, 2020, 10, 2070037.	19.5	5
99	A negative-feedback loop maintains optimal chemokine concentrations for directional cell migration. Nature Cell Biology, 2020, 22, 266-273.	10.3	40
100	Epsilon-negative BaTiO3/Cu composites with high thermal conductivity and yet low electrical conductivity. Journal of Materiomics, 2020, 6, 145-151.	5.7	58
101	Heterogeneous Single Atom Electrocatalysis, Where "Singles―Are "Married― Advanced Energy Materials, 2020, 10, 1903181.	19.5	113
102	Assembling of Bi atoms on TiO ₂ nanorods boosts photoelectrochemical water splitting of semiconductors. Nanoscale, 2020, 12, 4302-4308.	5.6	49
103	Recent advances and future perspectives for graphene oxide reinforced epoxy resins. Materials Today Communications, 2020, 23, 100883.	1.9	53
104	Interfacial dielectric layer as an origin of polarization fatigue in ferroelectric capacitors. Scientific Reports, 2020, 10, 7310.	3.3	19
105	Water Permeation through Conical Nanopores: Complex Interplay between Surface Roughness and Chemistry. Advanced Theory and Simulations, 2020, 3, 2000025.	2.8	6
106	3D-printed surface-patterned ceramic membrane with enhanced performance in crossflow filtration. Journal of Membrane Science, 2020, 606, 118138.	8.2	53
107	Metal–Organic Frameworks (MOFs)-boosted filtration membrane technology for water sustainability. APL Materials, 2020, 8, .	5.1	54
108	Robust pure copper framework by extrusion 3D printing for advanced lithium metal anodes. Journal of Materials Chemistry A, 2020, 8, 9058-9067.	10.3	51

#	Article	IF	Citations
109	Lithiophilic polymer interphase anchored on laser-punched 3D holey Cu matrix enables uniform lithium nucleation leading to super-stable lithium metal anodes. Energy Storage Materials, 2020, 29, 84-91.	18.0	64
110	(Ni,Co)Se ₂ /NiCoâ€LDH Core/Shell Structural Electrode with the Cactusâ€Like (Ni,Co)Se ₂ Core for Asymmetric Supercapacitors. Small, 2019, 15, e1803895.	10.0	203
111	Decorating Co/CoNx nanoparticles in nitrogen-doped carbon nanoarrays for flexible and rechargeable zinc-air batteries. Energy Storage Materials, 2019, 16, 243-250.	18.0	244
112	In situ electrochemical oxidation of electrodeposited Ni-based nanostructure promotes alkaline hydrogen production. Nanotechnology, 2019, 30, 474001.	2.6	5
113	Rice husk-derived Mn ₃ O ₄ /manganese silicate/C nanostructured composites for high-performance hybrid supercapacitors. Inorganic Chemistry Frontiers, 2019, 6, 2788-2800.	6.0	56
114	Designing Energy Materials via Atomic-resolution Microscopy and Spectroscopy. Microscopy and Microanalysis, 2019, 25, 1998-1999.	0.4	1
115	Electronic-reconstruction-enhanced hydrogen evolution catalysis in oxide polymorphs. Nature Communications, 2019, 10, 3149.	12.8	42
116	CuCo ₂ S ₄ Nanosheets@Nâ€Doped Carbon Nanofibers by Sulfurization at Room Temperature as Bifunctional Electrocatalysts in Flexible Quasiâ€Solidâ€State Znâ€"Air Batteries. Advanced Science, 2019, 6, 1900628.	11.2	123
117	Significant Role of Al in Ternary Layered Double Hydroxides for Enhancing Electrochemical Performance of Flexible Asymmetric Supercapacitor. Advanced Functional Materials, 2019, 29, 1903879.	14.9	228
118	In situ coupled amorphous cobalt nitride with nitrogen-doped graphene aerogel as a trifunctional electrocatalyst towards Zn-air battery deriven full water splitting. Applied Catalysis B: Environmental, 2019, 259, 118100.	20.2	120
119	Copper Single Atoms Anchored in Porous Nitrogen-Doped Carbon as Efficient pH-Universal Catalysts for the Nitrogen Reduction Reaction. ACS Catalysis, 2019, 9, 10166-10173.	11.2	284
120	Heterogeneous ZIF-L membranes with improved hydrophilicity and anti-bacterial adhesion for potential application in water treatment. RSC Advances, 2019, 9, 1591-1601.	3.6	51
121	Room-temperature H2 gasochromic behavior of Pd-modified MoO3 nanowire labels. Materials Chemistry and Physics, 2019, 227, 111-116.	4.0	21
122	Ceramic-based membranes for water and wastewater treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 578, 123513.	4.7	179
123	Enlarged Interlayer Spacing in Cobalt–Manganese Layered Double Hydroxide Guiding Transformation to Layered Structure for High Supercapacitance. ACS Applied Materials & Interfaces, 2019, 11, 23236-23243.	8.0	85
124	Microstructural Origins of High Piezoelectric Performance: A Pathway to Practical Leadâ€Free Materials. Advanced Functional Materials, 2019, 29, 1902911.	14.9	58
125	3D-Printing of Pure Metal–Organic Framework Monoliths. , 2019, 1, 147-153.		80
126	All-solid-state sponge-like squeezable zinc-air battery. Energy Storage Materials, 2019, 23, 375-382.	18.0	47

#	Article	IF	CITATIONS
127	Guided Assembly of Microporous/Mesoporous Manganese Phosphates by Bifunctional Organophosphonic Acid Etching and Templating. Advanced Materials, 2019, 31, e1901124.	21.0	15
128	Strong Charge Transfer at 2H–1T Phase Boundary of MoS ₂ for Superb Highâ€Performance Energy Storage. Small, 2019, 15, e1900131.	10.0	53
129	Cu and Co nanoparticle-Co-decorated N-doped graphene nanosheets: a high efficiency bifunctional electrocatalyst for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2019, 7, 12851-12858.	10.3	50
130	Enhancing water permeation through alumina membranes by changing from cylindrical to conical nanopores. Nanoscale, 2019, 11, 9869-9878.	5 . 6	25
131	Conformal dispersed cobalt nanoparticles in hollow carbon nanotube arrays for flexible Zn-air and Al-air batteries. Chemical Engineering Journal, 2019, 369, 988-995.	12.7	121
132	Nanowires versus nanosheets – Effects of NiCo2O4 nanostructures on ceramic membrane permeability and fouling potential. Separation and Purification Technology, 2019, 215, 644-651.	7.9	13
133	Rational Design of Holey 2D Nonlayered Transition Metal Carbide/Nitride Heterostructure Nanosheets for Highly Efficient Water Oxidation. Advanced Energy Materials, 2019, 9, 1803768.	19.5	204
134	Atomic-Scale Control of Magnetism at the Titanite-Manganite Interfaces. Nano Letters, 2019, 19, 3057-3065.	9.1	13
135	High-performance B4C–TiB2–SiC composites with tuneable properties fabricated by reactive hot pressing. Journal of the European Ceramic Society, 2019, 39, 2995-3002.	5.7	55
136	Twinned Tungsten Carbonitride Nanocrystals Boost Hydrogen Evolution Activity and Stability. Small, 2019, 15, e1900248.	10.0	57
137	Hierarchical Microâ€Nano Sheet Arrays of Nickel–Cobalt Double Hydroxides for Highâ€Rate Ni–Zn Batteries. Advanced Science, 2019, 6, 1802002.	11.2	202
138	Z-scheme carbon-bridged Bi2O3/TiO2 nanotube arrays to boost photoelectrochemical detection performance. Applied Catalysis B: Environmental, 2019, 248, 255-263.	20.2	85
139	Photosynthetic apparatus of Rhodobacter sphaeroides exhibits prolonged charge storage. Nature Communications, 2019, 10, 902.	12.8	40
140	A theoretical study of permeability enhancement for ultrafiltration ceramic membranes with conical pores and slippage. Physics of Fluids, 2019, 31, .	4.0	12
141	Polymorphism in M(H $<$ sub $>$ 2 $<$ /sub $>$ PO $<$ sub $>$ 2 $<$ /sub $>$) $<$ sub $>$ 3 $<$ /sub $>$ (M = V, Al, Ga) compounds with the perovskite-related ReO $<$ sub $>$ 3 $<$ /sub $>$ structure. Chemical Communications, 2019, 55, 2964-2967.	4.1	15
142	Phospho-oxynitride Layer Protected Cobalt Phosphonitride Nanowire Arrays for High-Rate and Stable Supercapacitors. ACS Applied Energy Materials, 2019, 2, 616-626.	5.1	16
143	Flexible and Wearable All-Solid-State Al–Air Battery Based on Iron Carbide Encapsulated in Electrospun Porous Carbon Nanofibers. ACS Applied Materials & Interfaces, 2019, 11, 1988-1995.	8.0	56
144	Heterojunction engineering of MoSe2/MoS2 with electronic modulation towards synergetic hydrogen evolution reaction and supercapacitance performance. Chemical Engineering Journal, 2019, 359, 1419-1426.	12.7	160

#	Article	IF	CITATIONS
145	3Dâ€Printed MOFâ€Derived Hierarchically Porous Frameworks for Practical Highâ€Energy Density Li–O ₂ Batteries. Advanced Functional Materials, 2019, 29, 1806658.	14.9	197
146	Stretchable fiber-shaped lithium metal anode. Energy Storage Materials, 2019, 22, 179-184.	18.0	65
147	Free-Standing Black Phosphorus Thin Films for Flexible Quasi-Solid-State Micro-Supercapacitors with High Volumetric Power and Energy Density. ACS Applied Materials & Samp; Interfaces, 2019, 11, 5938-5946.	8.0	31
148	Allâ€Solidâ€State Fiber Supercapacitors with Ultrahigh Volumetric Energy Density and Outstanding Flexibility. Advanced Energy Materials, 2019, 9, 1802753.	19.5	197
149	Bimetallic Nickel Cobalt Sulfide as Efficient Electrocatalyst for Zn–Air Battery and Water Splitting. Nano-Micro Letters, 2019, 11, 2.	27.0	179
150	2D carbide nanomeshes and their assembling into 3D microflowers for efficient water splitting. Applied Catalysis B: Environmental, 2019, 243, 678-685.	20.2	116
151	NiFe Layered Double-Hydroxide Nanosheets on a Cactuslike (Ni,Co)Se ₂ Support for Water Oxidation. ACS Applied Nano Materials, 2019, 2, 325-333.	5.0	20
152	Metal–organic framework-derived integrated nanoarrays for overall water splitting. Journal of Materials Chemistry A, 2018, 6, 9009-9018.	10.3	74
153	Facile Synthesis of Chitosan-Coated Silica Nanocapsules via Interfacial Condensation Approach for Sustained Release of Vanillin. Industrial & Engineering Chemistry Research, 2018, 57, 6171-6179.	3.7	29
154	In Situ Grown Epitaxial Heterojunction Exhibits Highâ€Performance Electrocatalytic Water Splitting. Advanced Materials, 2018, 30, e1705516.	21.0	375
155	Selfâ€Powered Waterâ€Splitting Devices by Core–Shell NiFe@Nâ€Graphiteâ€Based Zn–Air Batteries. Advance Functional Materials, 2018, 28, 1706928.	ed 14.9	155
156	TMD-based highly efficient electrocatalysts developed by combined computational and experimental approaches. Chemical Society Reviews, 2018, 47, 4332-4356.	38.1	232
157	Hollow Mo-doped CoP nanoarrays for efficient overall water splitting. Nano Energy, 2018, 48, 73-80.	16.0	608
158	Control of Synaptic Plasticity Learning of Ferroelectric Tunnel Memristor by Nanoscale Interface Engineering. ACS Applied Materials & Samp; Interfaces, 2018, 10, 12862-12869.	8.0	109
159	MOF-derived nanohybrids for electrocatalysis and energy storage: current status and perspectives. Chemical Communications, 2018, 54, 5268-5288.	4.1	237
160	Hypophosphite hybrid perovskites: a platform for unconventional tilts and shifts. Chemical Communications, 2018, 54, 3751-3754.	4.1	48
161	Cactusâ€Like NiCoP/NiCoâ€OH 3D Architecture with Tunable Composition for Highâ€Performance Electrochemical Capacitors. Advanced Functional Materials, 2018, 28, 1800036.	14.9	274
162	Ultrafine Molybdenum Carbide Nanocrystals Confined in Carbon Foams via a Colloidâ€Confinement Route for Efficient Hydrogen Production. Small Methods, 2018, 2, 1700396.	8.6	83

#	Article	IF	Citations
163	2D Metal–Organic Frameworks Derived Nanocarbon Arrays for Substrate Enhancement in Flexible Supercapacitors. Small, 2018, 14, e1702641.	10.0	80
164	Activation of the MoSe ₂ basal plane and Se-edge by B doping for enhanced hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 510-515.	10.3	110
165	Co/Zn bimetallic oxides derived from metal organic frameworks for high performance electrochemical energy storage. Electrochimica Acta, 2018, 291, 177-187.	5.2	60
166	Open hollow Co–Pt clusters embedded in carbon nanoflake arrays for highly efficient alkaline water splitting. Journal of Materials Chemistry A, 2018, 6, 20214-20223.	10.3	42
167	The Atomic Circus: Small Electron Beams Spotlight Advanced Materials Down to the Atomic Scale. Advanced Materials, 2018, 30, e1802402.	21.0	27
168	Ni-Doped Cobalt–Cobalt Nitride Heterostructure Arrays for High-Power Supercapacitors. ACS Energy Letters, 2018, 3, 2462-2469.	17.4	182
169	Exchange bias in tetragonal-like BiFeO 3 /Sr 2 FeMoO 6 bilayer. Journal of Magnetism and Magnetic Materials, 2018, 464, 156-160.	2.3	4
170	MOFâ€Derived Vertically Aligned Mesoporous Co ₃ O ₄ Nanowires for Ultrahigh Capacity Lithiumâ€Ion Batteries Anodes. Advanced Materials Interfaces, 2018, 5, 1800222.	3.7	58
171	A Highâ∈Rate and Stable Quasiâ∈Solidâ∈State Zincâ∈lon Battery with Novel 2D Layered Zinc Orthovanadate Array. Advanced Materials, 2018, 30, e1803181.	21.0	571
172	Transition-metal-doped NiSe2 nanosheets towards efficient hydrogen evolution reactions. Nano Research, 2018, 11, 6051-6061.	10.4	72
173	Manganeseâ€Oxideâ€Based Electrode Materials for Energy Storage Applications: How Close Are We to the Theoretical Capacitance?. Advanced Materials, 2018, 30, e1802569.	21.0	94
174	Single Co Atoms Anchored in Porous N-Doped Carbon for Efficient Zincâ ⁻ 'Air Battery Cathodes. ACS Catalysis, 2018, 8, 8961-8969.	11.2	364
175	Integrated Hierarchical Carbon Flake Arrays with Hollow Pâ€Doped CoSe ₂ Nanoclusters as an Advanced Bifunctional Catalyst for Zn–Air Batteries. Advanced Functional Materials, 2018, 28, 1804846.	14.9	192
176	Anosmin1 Shuttles Fgf to Facilitate Its Diffusion, Increase Its Local Concentration, and Induce Sensory Organs. Developmental Cell, 2018, 46, 751-766.e12.	7.0	26
177	Progress and prospects of aberration-corrected STEM for functional materials. Ultramicroscopy, 2018, 194, 182-192.	1.9	29
178	Direct observation of room-temperature out-of-plane ferroelectricity and tunneling electroresistance at the two-dimensional limit. Nature Communications, 2018, 9, 3319.	12.8	81
179	Nanodiamond decorated graphene oxide and the reinforcement to epoxy. Composites Science and Technology, 2018, 165, 9-17.	7.8	26
180	Mixed Xâ€Site Formate–Hypophosphite Hybrid Perovskites. Chemistry - A European Journal, 2018, 24, 11309-11313.	3.3	19

#	Article	IF	Citations
181	Cobalt oxide and N-doped carbon nanosheets derived from a single two-dimensional metal–organic framework precursor and their application in flexible asymmetric supercapacitors. Nanoscale Horizons, 2017, 2, 99-105.	8.0	227
182	Rational Design of Metalâ€Organic Framework Derived Hollow NiCo ₂ O ₄ Arrays for Flexible Supercapacitor and Electrocatalysis. Advanced Energy Materials, 2017, 7, 1602391.	19.5	874
183	Extrusion printing of a designed three-dimensional YBa ₂ Cu ₃ O _{7â^2x} superconductor with milled precursor powder. Journal of Materials Chemistry C, 2017, 5, 3382-3389.	5.5	13
184	Hydrazine reduction of LaNiO ₃ for active materials in supercapacitors. Journal of the American Ceramic Society, 2017, 100, 4629-4637.	3.8	21
185	Controllable MnCo ₂ S ₄ nanostructures for high performance hybrid supercapacitors. Journal of Materials Chemistry A, 2017, 5, 7494-7506.	10.3	198
186	Hollow Co ₃ O ₄ Nanosphere Embedded in Carbon Arrays for Stable and Flexible Solidâ€State Zincâ€"Air Batteries. Advanced Materials, 2017, 29, 1704117.	21.0	407
187	Metal Phosphides and Phosphatesâ€based Electrodes for Electrochemical Supercapacitors. Small, 2017, 13, 1701530.	10.0	318
188	Revealing the hydrothermal crystallization mechanism of ilmenite-type sodium niobate microplates: the roles of potassium ions. CrystEngComm, 2017, 19, 5966-5972.	2.6	6
189	Nanoflakes of Ni–Co LDH and Bi ₂ O ₃ Assembled in 3D Carbon Fiber Network for High-Performance Aqueous Rechargeable Ni/Bi Battery. ACS Applied Materials & Diterfaces, 2017, 9, 26008-26015.	8.0	71
190	Controllable structure transitions of Mn ₃ O ₄ nanomaterials and their effects on electrochemical properties. Nanoscale Horizons, 2017, 2, 326-332.	8.0	25
191	Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications. Journal of Materials Chemistry C, 2017, 5, 11992-12022.	5.5	732
192	Metal–organic framework derived hollow CoS ₂ nanotube arrays: an efficient bifunctional electrocatalyst for overall water splitting. Nanoscale Horizons, 2017, 2, 342-348.	8.0	247
193	Sulfur-doped cobalt phosphide nanotube arrays for highly stable hybrid supercapacitor. Nano Energy, 2017, 39, 162-171.	16.0	273
194	Growth of centimeter-sized [(CH ₃) ₂][Mn(HCOO) ₃] hybrid formate perovskite single crystals and Raman evidence of pressure-induced phase transitions. New Journal of Chemistry, 2017, 41, 151-159.	2.8	31
195	Nickel and Lanthanum Hydroxide Nanocomposites with Much Improved Electrochemical Performance for Supercapacitors. Journal of the American Ceramic Society, 2017, 100, 247-256.	3.8	11
196	Surfaceâ€Chargeâ€Mediated Formation of Hâ€TiO ₂ @Ni(OH) ₂ Heterostructures for Highâ€Performance Supercapacitors. Advanced Materials, 2017, 29, 1604164.	21.0	203
197	Ferroelectric HfO ₂ -based materials for next-generation ferroelectric memories. Journal of Advanced Dielectrics, 2016, 06, 1630003.	2.4	163
198	pHâ€Activatable MnOâ€Based Fluorescence and Magnetic Resonance Bimodal Nanoprobe for Cancer Imaging. Advanced Healthcare Materials, 2016, 5, 721-729.	7.6	40

#	Article	IF	Citations
199	Ferroelectricity and ferroelectric resistive switching in sputtered Hf0.5Zr0.5O2 thin films. Applied Physics Letters, 2016, 108, .	3.3	57
200	Ferroelectricity emerging in strained (111)-textured ZrO2 thin films. Applied Physics Letters, 2016, 108, .	3.3	44
201	Tunneling electroresistance effect in ultrathin BiFeO3-based ferroelectric tunneling junctions. Applied Physics Letters, 2016, 109, .	3.3	9
202	A metastable cubic phase of sodium niobate nanoparticles stabilized by chemically bonded solvent molecules. Physical Chemistry Chemical Physics, 2016, 18, 33171-33179.	2.8	16
203	Microwave – assisted hydrothermal synthesis of nanocrystal β-Ni(OH) ₂ for supercapacitor applications. CrystEngComm, 2016, 18, 3256-3264.	2.6	42
204	The growth of nickel-manganese and cobalt-manganese layered double hydroxides on reduced graphene oxide for supercapacitor. Electrochimica Acta, 2016, 206, 108-115.	5.2	259
205	Hollow Casein-Based Polymeric Nanospheres for Opaque Coatings. ACS Applied Materials & Eamp; Interfaces, 2016, 8, 11739-11748.	8.0	20
206	Relaxivity and toxicological properties of manganese oxide nanoparticles for MRI applications. RSC Advances, 2016, 6, 45462-45474.	3.6	41
207	Hybrid Fe ₂ O ₃ Nanoparticle Clusters/rGO Paper as an Effective Negative Electrode for Flexible Supercapacitors. Chemistry of Materials, 2016, 28, 7296-7303.	6.7	95
208	Multiferroic bismuth ferrite-based materials for multifunctional applications: Ceramic bulks, thin films and nanostructures. Progress in Materials Science, 2016, 84, 335-402.	32.8	478
209	Fabrication of YBa2Cu3O7â^'x (YBCO) superconductor bulk structures by extrusion freeforming. Ceramics International, 2016, 42, 15836-15842.	4.8	24
210	Recent Development of Advanced Electrode Materials by Atomic Layer Deposition for Electrochemical Energy Storage. Advanced Science, 2016, 3, 1500405.	11.2	93
211	A Flexible Quasiâ€Solidâ€State Nickel–Zinc Battery with High Energy and Power Densities Based on 3D Electrode Design. Advanced Materials, 2016, 28, 8732-8739.	21.0	479
212	Highâ€Performance Flexible Solidâ€State Ni/Fe Battery Consisting of Metal Oxides Coated Carbon Cloth/Carbon Nanofiber Electrodes. Advanced Energy Materials, 2016, 6, 1601034.	19.5	262
213	Probing the Microporous Structure of Silica Shell Via Aggregationâ€Induced Emission in Au(I)â€Thiolate@SiO ₂ Nanoparticle. Small, 2016, 12, 6537-6541.	10.0	36
214	Composites, Nanocomposites and Hybrid Materials., 2016,, 21-36.		1
215	Solar Energy and Energy Storage Materials and Devices Research in Singapore. , 2016, , 113-156.		0
216	Confined Fe ₂ O ₃ Nanoparticles on Graphite Foam as Highâ€Rate and Stable Lithiumâ€Ion Battery Anode. Particle and Particle Systems Characterization, 2016, 33, 487-492.	2.3	29

#	Article	IF	Citations
217	Controlled growth of a metal–organic framework on gold nanoparticles. CrystEngComm, 2016, 18, 5262-5266.	2.6	23
218	Graphene-based materials for supercapacitor electrodes $\hat{a} \in \text{``A review. Journal of Materiomics, 2016, 2, }$ 37-54.	5.7	620
219	3D Graphene-Nickel Hydroxide Hydrogel Electrode for High-Performance Supercapacitor. Electrochimica Acta, 2016, 196, 653-660.	5.2	83
220	Bendable graphene/conducting polymer hybrid films for freestanding electrodes with high volumetric capacitances. RSC Advances, 2016, 6, 2951-2957.	3.6	19
221	3D TiO2@Ni(OH)2 Core-shell Arrays with Tunable Nanostructure for Hybrid Supercapacitor Application. Scientific Reports, 2015, 5, 13940.	3.3	68
222	Nanoscale phase mixture in uniaxial strained BiFeO3 (110) thin films. Journal of Applied Physics, 2015, 118, .	2.5	6
223	Flexible Asymmetric Supercapacitor Based on Structureâ€Optimized Mn ₃ O ₄ /Reduced Graphene Oxide Nanohybrid Paper with High Energy and Power Density. Advanced Functional Materials, 2015, 25, 7291-7299.	14.9	146
224	A Hybrid Silica Nanoreactor Framework for Encapsulation of Hollow Manganese Oxide Nanoparticles of Superior T ₁ Magnetic Resonance Relaxivity. Advanced Functional Materials, 2015, 25, 5269-5276.	14.9	33
225	Health Promotion Board–Ministry of Health Clinical Practice Guidelines: Obesity. Singapore Medical Journal, 2015, 57, 292-300.	0.6	49
226	Atomic-layer-deposition alumina induced carbon on porous Ni _x Co _{1 â^' x} O nanonets for enhanced pseudocapacitive and Li-ion storage performance. Nanotechnology, 2015, 26, 014001.	2.6	21
227	Enhanced photovoltaic effects and switchable conduction behavior in BiFe0.6Sc0.4O3 thin films. Acta Materialia, 2015, 88, 83-90.	7.9	37
228	(K,Na)NbO ₃ Nanofiber-based Self-Powered Sensors for Accurate Detection of Dynamic Strain. ACS Applied Materials & Strain.	8.0	29
229	Stable Ferroelectric Perovskite Structure with Giant Axial Ratio and Polarization in Epitaxial BiFe _{0.6} Ga _{0.4} O ₃ Thin Films. ACS Applied Materials & Samp; Interfaces, 2015, 7, 2648-2653.	8.0	38
230	Atomic layer deposition of Co ₃ O ₄ on carbon nanotubes/carbon cloth for high-capacitance and ultrastable supercapacitor electrode. Nanotechnology, 2015, 26, 094001.	2.6	84
231	Activation of sucrose-derived carbon spheres for high-performance supercapacitor electrodes. RSC Advances, 2015, 5, 9307-9313.	3.6	7 3
232	3D Nanostructure of Carbon Nanotubes Decorated Co 3 O 4 Nanowire Arrays for High Performance Supercapacitor Electrode. Electrochimica Acta, 2015, 163, 9-15.	5.2	77
233	Ferroelectric polarization relaxation in Au/Cu2O/ZnO/BiFeO3/Pt heterostructure. Applied Physics Letters, 2015, 106, .	3.3	8
234	Perovskites for photovoltaics: a combined review of organic–inorganic halide perovskites and ferroelectric oxide perovskites. Journal of Materials Chemistry A, 2015, 3, 18809-18828.	10.3	232

#	Article	IF	Citations
235	Iron Oxide-Decorated Carbon for Supercapacitor Anodes with Ultrahigh Energy Density and Outstanding Cycling Stability. ACS Nano, 2015, 9, 5198-5207.	14.6	441
236	Ferroelectricity of CH ₃ NH ₃ Pbl ₃ Perovskite. Journal of Physical Chemistry Letters, 2015, 6, 1155-1161.	4.6	295
237	MnOx nanosheets for improved electrochemical performances through bilayer nano-architecting. Journal of Power Sources, 2015, 286, 394-399.	7.8	25
238	3D hierarchical SnO ₂ @Ni(OH) ₂ core–shell nanowire arrays on carbon cloth for energy storage application. Journal of Materials Chemistry A, 2015, 3, 9538-9542.	10.3	33
239	Structural and topological aspects of borophosphate glasses and their relation to physical properties. Journal of Chemical Physics, 2015, 142, 184503.	3.0	41
240	Conformally deposited NiO on a hierarchical carbon support for high-power and durable asymmetric supercapacitors. Journal of Materials Chemistry A, 2015, 3, 23283-23288.	10.3	103
241	Doping cobalt hydroxide nanowires for better supercapacitor performance. Acta Materialia, 2015, 84, 20-28.	7.9	30
242	Silica-based nanocapsules: synthesis, structure control and biomedical applications. Chemical Society Reviews, 2015, 44, 315-335.	38.1	205
243	Microstructural evolution of charged defects in the fatigue process of polycrystalline BiFeO3 thin films. Acta Materialia, 2015, 82, 190-197.	7.9	18
244	Photovoltaic effect in an indium-tin-oxide/ZnO/BiFeO3/Pt heterostructure. Applied Physics Letters, 2014, 105, .	3.3	85
245	A novel hollowed CoO-in-CoSnO ₃ nanostructure with enhanced lithium storage capabilities. Nanoscale, 2014, 6, 13824-13830.	5.6	52
246	Nanoparticle morphology and film-forming behavior of polyacrylate/ZnO nanocomposite. Composites Science and Technology, 2014, 98, 64-71.	7.8	40
247	Silica–F127 nanohybrid-encapsulated manganese oxide nanoparticles for optimized T ₁ magnetic resonance relaxivity. Nanoscale, 2014, 6, 293-299.	5.6	40
248	Hydrothermal growth and optical properties of Nb ₂ O ₅ nanorod arrays. Journal of Materials Chemistry C, 2014, 2, 8185-8190.	5.5	49
249	Effects of nitrogen doping on supercapacitor performance of a mesoporous carbon electrode produced by a hydrothermal soft-templating process. Journal of Materials Chemistry A, 2014, 2, 11753.	10.3	127
250	Polyacrylate/Surface-Modified ZnO Nanocomposite as Film-Forming Agent for Leather Finishing. International Journal of Polymeric Materials and Polymeric Biomaterials, 2014, 63, 809-814.	3.4	18
251	Intercalating graphene with clusters of Fe ₃ O ₄ nanocrystals for electrochemical supercapacitors. Materials Research Express, 2014, 1, 025015.	1.6	59
252	Mesocrystals as a class of multifunctional materials. CrystEngComm, 2014, 16, 5948-5967.	2.6	50

#	Article	lF	CITATIONS
253	Surfactant-modified chemically reduced graphene oxide for electrochemical supercapacitors. RSC Advances, 2014, 4, 26398-26406.	3.6	69
254	Origin of dielectric anomaly in double perovskite Ba2CoNbO6. Ceramics International, 2014, 40, 14607-14612.	4.8	4
255	Unit-cell determination of epitaxial thin films based on reciprocal-space vectors by high-resolution X-ray diffractometry. Journal of Applied Crystallography, 2014, 47, 402-413.	4.5	8
256	Structural Instability of Epitaxial (001) BiFeO3 Thin Films under Tensile Strain. Scientific Reports, 2014, 4, 4631.	3.3	27
257	Generation and Dynamics of an Endogenous, Self-Generated Signaling Gradient across a Migrating Tissue. Cell, 2013, 155, 674-687.	28.9	174
258	PEOlated Micelle/Silica as Dual-Layer Protection of Quantum Dots for Stable and Targeted Bioimaging. Chemistry of Materials, 2013, 25, 2976-2985.	6.7	63
259	From NH ₄ TiOF ₃ nanoparticles to NH ₄ TiOF ₃ mesocrystals: steric hindrance versus hydrophobic attraction of F127 molecules. CrystEngComm, 2013, 15, 791-801.	2.6	20
260	Tuning the porous texture and specific surface area of nanoporous carbons for supercapacitor electrodes by adjusting the hydrothermal synthesis temperature. Journal of Materials Chemistry A, 2013, 1, 12962.	10.3	42
261	Uniaxial strain-induced ferroelectric phase with a giant axial ratio in a (110) BiFeO <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn></mml:mn></mml:msub></mml:math> thin film. Physical Review B, 2013, 87, .	3.2	27
262	Charge defects-induced electrical properties in bismuth ferrite bilayered thin films. Materials Research Bulletin, 2013, 48, 2973-2977.	5.2	10
263	Hollow Carbon Nanoparticles of Tunable Size and Wall Thickness by Hydrothermal Treatment of î±-Cyclodextrin Templated by F127 Block Copolymers. Chemistry of Materials, 2013, 25, 704-710.	6.7	103
264	Dielectric dispersion and impedance spectroscopy of B3+-doped Ba(Ti0.9Sn0.1)O3 ceramics. Ceramics International, 2013, 39, S145-S148.	4.8	5
265	Synthesis of Au-SiO ₂ Asymmetric Clusters and Their Application in ZnO Nanosheet-Based Dye-Sensitized Solar Cells. ACS Applied Materials & Solar Cells.	8.0	23
266	Hollow spheres of nanocarbon and their manganese dioxide hybrids derived fromÂsoft template for supercapacitor application. Journal of Power Sources, 2013, 240, 713-720.	7.8	73
267	Ferroelectricity and dipole-dipole interactions in NH4TiOF3 mesocrystals. Applied Physics Letters, 2013, 102, 232903.	3.3	5
268	A giant polarization value of Zn and Mn co-modified bismuth ferrite thin films. Applied Physics Letters, 2013, 102, .	3.3	46
269	Cobalt monoxide-doped porous graphitic carbon microspheres for supercapacitor application. Scientific Reports, 2013, 3, 2925.	3.3	46
270	$(1\hat{A}\hat{a}^*\hat{A}x)Ba0.2Ti0.8$	>)< 3.8	scp> <scp>O< 28</scp>

#	Article	IF	Citations
271	Optical Properties of 0.95 BiFeO $<$ sub $>3<$ sub $>-RTiO<$ sub $>3<$ sub $>$ (R = Mg, Pb, Ba, Ca and Sr) Thin Films. Integrated Ferroelectrics, 2012, 139, 1-6.	0.7	O
272	Ultraviolet photovoltaic effect in BiFeO3/Nb-SrTiO3 heterostructure. Journal of Applied Physics, 2012, 112, .	2.5	11
273	Origin of the enhanced polarization in La and Mg co-substituted BiFeO3 thin film during the fatigue process. Applied Physics Letters, 2012, 100, .	3.3	34
274	Preparation and characterization of multiferroic CoFe2O4/Bi0.97Ce0.03FeO3 coaxial nanotubes. Applied Physics A: Materials Science and Processing, 2012, 108, 829-834.	2.3	6
275	Effect of bilayer structure and a SrRuO3 buffer layer on ferroelectric properties of BiFeO3 thin films. Applied Physics A: Materials Science and Processing, 2012, 109, 57-61.	2.3	9
276	PEO surface-decorated silica nanocapsules and their application in in vivo imaging of zebrafish. RSC Advances, 2012, 2, 12392.	3.6	9
277	A Method to Improve Electrical Properties of BiFeO < sub>3 < /sub> Thin Films. ACS Applied Materials & amp; Interfaces, 2012, 4, 1182-1185.	8.0	49
278	Manipulating the Formation of NH ₄ TiOF ₃ Mesocrystals: Effects of Temperature, Surfactant, and pH. Crystal Growth and Design, 2012, 12, 2625-2633.	3.0	23
279	High optical performance and practicality of active plasmonic devices based on rhombohedral BiFeO ₃ . Laser and Photonics Reviews, 2012, 6, 684-689.	8.7	20
280	Multiferroic and fatigue behavior of BiFe _{0.95} Mn _{0.05} O ₃ BiFe _{0.90} La _{0.10} Fe _{0.85 bilayered thin films. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59, 14-20.}	iZn	<syb>0.15</syb>
281	Sonochemical synthesis and liquid crystal assembly of PS-b-PEO–titania aggregates. Chemical Communications, 2012, 48, 8538.	4.1	10
282	Negative capacitance induced by redistribution of oxygen vacancies in the fatigued BiFeO3-based thin film. Applied Physics Letters, 2012, 101, 022904.	3.3	11
283	<scp><scp>ZnO</scp></scp> Nanosheets Derived from Surfactantâ€Directed Process: Growth Mechanism, and Application in Dyeâ€Sensitized Solar Cells. Journal of the American Ceramic Society, 2012, 95, 1241-1246.	3.8	22
284	(Ba, Ca)(Ti, Zr)O3-BiFeO3 lead-free piezoelectric ceramics. Current Applied Physics, 2012, 12, 534-538.	2.4	52
285	Silica-shell cross-linked micelles encapsulating fluorescent conjugated polymers for targeted cellular imaging. Biomaterials, 2012, 33, 237-246.	11.4	54
286	Sintering temperature-induced electrical properties of (Ba0.90Ca0.10)(Ti0.85Zr0.15)O3 lead-free ceramics. Materials Research Bulletin, 2012, 47, 1281-1284.	5.2	81
287	Kinetic study of solid phase crystallisation of expanding thermal plasma deposited a-Si:H. Thin Solid Films, 2012, 520, 5820-5825.	1.8	5
288	Composition and poling condition-induced electrical behavior of (Ba0.85Ca0.15)(Ti1â^'xZrx)O3 lead-free piezoelectric ceramics. Journal of the European Ceramic Society, 2012, 32, 891-898.	5.7	197

#	Article	IF	Citations
289	Origin of a Tetragonal BiFeO ₃ Phase with a Giant <i>>c</i> / <i>a</i> Ratio on SrTiO ₃ Substrates. Advanced Functional Materials, 2012, 22, 937-942.	14.9	61
290	Multiferroic and fatigue behavior of silicon-based bismuth ferrite sandwiched structure. Journal of Materials Chemistry, 2011, 21, 7308.	6.7	17
291	Leakage mechanism of cation -modified BiFeO3 thin film. AIP Advances, 2011, 1, .	1.3	70
292	Thickness-Dependent Magnetic Properties of Bismuth Ferrite Thin Films. Electrochemical and Solid-State Letters, 2011, 14, G57.	2.2	5
293	Migration Kinetics of Oxygen Vacancies in Mn-Modified BiFeO ₃ Thin Films. ACS Applied Materials & Samp; Interfaces, 2011, 3, 2504-2511.	8.0	64
294	Synthesis of monodispersed SnO2@C composite hollow spheres for lithium ion battery anode applications. Journal of Materials Chemistry, 2011, 21, 17448.	6.7	64
295	Tunable photoluminescence induced by thermal reduction in rare earth doped glasses. Journal of Materials Chemistry, 2011, 21, 6614.	6.7	22
296	Formation and Anisotropic Dissolution Behavior of NH ₄ TiOF ₃ Mesocrystals. Crystal Growth and Design, 2011, 11, 2905-2912.	3.0	23
297	Ferroelectric Behavior in Bismuth Ferrite Thin Films of Different Thickness. ACS Applied Materials & Lamp; Interfaces, 2011, 3, 3261-3263.	8.0	52
298	Near-infrared emission from Eu–Yb doped silicate glasses subjected to thermal reduction. Applied Physics Letters, 2011, 98, .	3.3	41
299	Hybrid Titania Microspheres of Novel Superstructures Templated by Block Copolymers. Chemistry of Materials, 2011, 23, 2745-2752.	6.7	15
300	BiFeO3/Zn1â^'xMnxO bilayered thin films. Applied Surface Science, 2011, 258, 1390-1394.	6.1	11
301	Bismuth ferrite bilayered thin films of different constituent layer thicknesses. Journal of Alloys and Compounds, 2011, 509, 7742-7748.	5. 5	0
302	Compositionally graded bismuth ferrite thin films. Journal of Alloys and Compounds, 2011, 509, L319-L323.	5 . 5	4
303	Effect of dwell time during sintering on piezoelectric properties of (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 lead-free ceramics. Journal of Alloys and Compounds, 2011, 509, L359-L361.	5 . 5	107
304	Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate. Chemical Communications, 2011, 47, 11615.	4.1	529
305	Oxygen-vacancy-mediated negative differential resistance in La and Mg co-substituted BiFeO3 thin film. Journal of Applied Physics, 2011, 110, 124102.	2.5	13
306	0.90(Na0.5Bi0.5TiO3)-0.06BaTiO3-0.04K0.5Na0.5NbO3 Ferroelectric Thin Films Derived from Chemical Solutions. Journal of the American Ceramic Society, 2011, 94, 1331-1335.	3.8	31

#	Article	IF	CITATIONS
307	Large ZnO Mesocrystals of Hexagonal Columnar Morphology Derived from Liquid Crystal Templates. Journal of the American Ceramic Society, 2011, 94, 3267-3275.	3.8	14
308	Effect of <scp>(Bi,Gd)FeO₃</scp> Layer Thickness on the Microstructure and Electrical Properties of <scp>BiFeO₃</scp> Thin Films. Journal of the American Ceramic Society, 2011, 94, 4291-4298.	3.8	10
309	Role of room-temperature phase transition in the electrical properties of (Ba, Ca)(Ti, Zr)O3 ceramics. Scripta Materialia, 2011, 65, 771-774.	5.2	170
310	Resistive hysteresis in BiFeO3 thin films. Materials Research Bulletin, 2011, 46, 2183-2186.	5.2	20
311	Intrinsically fluorescent nitrogen-containing carbon nanoparticles synthesized by a hydrothermal process. Carbon, 2011, 49, 5207-5212.	10.3	156
312	Thin film bilayers of multiferroic bismuth ferrite on Pt–Si substrate. Physica Status Solidi - Rapid Research Letters, 2011, 5, 83-85.	2.4	4
313	Effect of oxygen content during sputtering on the electrical properties of bismuth ferrite thin films. Physica Status Solidi - Rapid Research Letters, 2011, 5, 190-192.	2.4	7
314	Leakage behaviors of ferroelectric (Bi3.15Nd0.85)Ti3O12 thin film derived from RF sputtering. Applied Physics A: Materials Science and Processing, 2011, 105, 997-1001.	2.3	4
315	Effective control of polarity in Bi _{0.9} La _{0.1} FeO ₃ thin films by dopantâ€related internal bias. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 919-923.	1.8	0
316	Mutual Ferromagnetic–Ferroelectric Coupling in Multiferroic Copperâ€Doped ZnO. Advanced Materials, 2011, 23, 1635-1640.	21.0	96
317	Silica Nanocapsules of Fluorescent Conjugated Polymers and Superparamagnetic Nanocrystals for Dualâ€Mode Cellular Imaging. Chemistry - A European Journal, 2011, 17, 6696-6706.	3.3	28
318	Mn4+:BiFeO3/Zn2+:BiFeO3 bilayered thin films of (111) orientation. Applied Surface Science, 2011, 257, 7226-7230.	6.1	18
319	Combined effects of bilayer structure and ion substitutions on bismuth ferrite thin films. Journal of Applied Physics, 2011, 109, .	2.5	11
320	Valence-driven electrical behavior of manganese-modified bismuth ferrite thin films. Journal of Applied Physics, 2011, 109, 124118.	2.5	28
321	Impedance spectroscopy of bilayered bismuth ferrite thin films. Journal of Applied Physics, 2011, 110, .	2.5	38
322	Highly (111)-Orientated BiFeO ₃ Thin Film Deposited on La _{0.67} Sr _{0.33} MnO ₃ Buffered Pt/TiO ₂ /SiO ₂ /Si (100) Substrate. Journal of the Electrochemical Society, 2011, 159, G11-G14.	2.9	15
323	Growth rate induced monoclinic to tetragonal phase transition in epitaxial BiFeO3 (001) thin films. Applied Physics Letters, 2011, 98, 102902.	3.3	40
324	BiFeO3 thin films of (1 1 1)-orientation deposited on SrRuO3 buffered Pt/TiO2/SiO2/Si(1 0 0) substrates. Acta Materialia, 2010, 58, 1688-1697.	7.9	141

#	Article	IF	CITATIONS
325	Microstructure and texture development in single layered and heterolayered PZT thin films. Journal of Materials Science, 2010, 45, 6187-6199.	3.7	9
326	Synthesis of PEOlated Fe ₃ O ₄ @SiO ₂ Nanoparticles via Bioinspired Silification for Magnetic Resonance Imaging. Advanced Functional Materials, 2010, 20, 722-731.	14.9	132
327	The effects of ethyl cellulose on PV performance of DSSC made of nanostructured ZnO pastes. Thin Solid Films, 2010, 518, e68-e71.	1.8	30
328	Co-sensitization of TiO2 by PbS quantum dots and dye N719 in dye-sensitized solar cells. Thin Solid Films, 2010, 518, e54-e56.	1.8	59
329	Pre-curing of supramolecular-templated mesoporous TiO2 films for dye-sensitized solar cells. Thin Solid Films, 2010, 518, e34-e37.	1.8	4
330	Ferroelastic domain wall dynamics in ferroelectric bilayers. Acta Materialia, 2010, 58, 5316-5325.	7.9	30
331	Impedance study of giant dielectric permittivity in BaFe0.5Nb0.5O3 perovskite ceramic. Current Applied Physics, 2010, 10, 21-25.	2.4	141
332	Highly efficient dyeâ€sensitized solar cells using phenothiazine derivative organic dyes. Progress in Photovoltaics: Research and Applications, 2010, 18, 573-581.	8.1	48
333	Evaporationâ€Induced Alignment of Cylindrical Mesopores in TiO ₂ Thin Films. Journal of the American Ceramic Society, 2010, 93, 365-369.	3.8	7
334	BiFeO ₃ Thin Films Deposited on LaNiO ₃ â€Buffered SiO ₂ /Si Substrate. Journal of the American Ceramic Society, 2010, 93, 1422-1426.	3.8	16
335	Bilayered BiFe _{0.95} Mn _{0.05} O ₃ /Bi _{0.90} La _{0.10} FeO ₃ <td>ubz</td> <td>6</td>	ubz	6
336	Ferroelectric and Impedance Behavior of La―and Tiâ€Codoped BiFeO ₃ Thin Films. Journal of the American Ceramic Society, 2010, 93, 2795-2803.	3.8	142
337	Morphology, Optical, and Magnetic Properties of Zn _{1â^'<i>x</i>} Co _{<i>x</i>} O Nanorods Grown via a Wet Chemical Route. Journal of the American Ceramic Society, 2010, 93, 3798-3802.	3.8	21
338	Ordered mesoporous $\hat{l}\pm$ -MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nature Materials, 2010, 9, 146-151.	27.5	2,801
339	Multiferroic Behavior of Sn-Modified BiFeO[sub 3] Thin Films. Electrochemical and Solid-State Letters, 2010, 13, G83.	2.2	9
340	Fatigue and ferroelectric behavior of La and Zn comodified BiFeO3 thin films. Journal of Applied Physics, 2010, 108, .	2.5	23
341	Twinning rotation and ferroelectric behavior of epitaxial BiFeO3 (001) thin film. Applied Physics Letters, 2010, 96, .	3.3	37
342	Improved ferroelectric behavior in (110) oriented BiFeO3 thin films. Journal of Applied Physics, 2010, 107, 034103.	2.5	47

#	Article	IF	CITATIONS
343	Bipolar and unipolar electrical fatigue in ferroelectric lead zirconate titanate thin films: An experimental comparison study. Journal of Applied Physics, 2010, 108, .	2.5	30
344	Thickness-dependent twinning evolution and ferroelectric behavior of epitaxial <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml< td=""><td>ı>³²/mml:</td><td></td></mml<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	ı> ³² /mml:	
345	Effect of Zn Concentration on Multiferroic and Fatigue Behavior of Bi[sub 0.90]La[sub 0.10]Fe[sub 1â^'x]Zn[sub x]O[sub 3] Thin Films. Electrochemical and Solid-State Letters, 2010, 13, G105.	2.2	8
346	Resistive Hysteresis and Diodelike Behavior of BiFeO[sub 3]/ZnO Heterostructure. Electrochemical and Solid-State Letters, 2010, 13, G9.	2.2	19
347	ZnO as a buffer layer for growth of BiFeO3 thin films. Journal of Applied Physics, 2010, 108, .	2.5	42
348	Multiferroic, Optical, and Fatigue Behavior of BiFeO[sub 3] Thin Films with a Sintering Aid of CuO. Electrochemical and Solid-State Letters, 2010, 13, G68.	2.2	3
349	Unipolar and bipolar fatigue in antiferroelectric lead zirconate thin films and evidences for switching-induced charge injection inducing fatigue. Applied Physics Letters, 2010, 96, .	3.3	26
350	Diodelike and resistive hysteresis behavior of heterolayered BiFeO3/ZnO ferroelectric thin films. Journal of Applied Physics, 2010, 108, .	2.5	46
351	Improved Ferroelectric and Fatigue Behavior of Bi _{0.95} Mn _{0.05} O ₃ /BiFe _{0.95} Mn _{0.05} O ₃ Bilayered Thin Films. Journal of Physical Chemistry C, 2010, 114, 19318-19321.	s ap >	17
352	Multiferroic behavior of BiFeO3–RTiO3 (Mg, Sr, Ca, Ba, and Pb) thin films. Journal of Applied Physics, 2010, 108, 026101.	2.5	7
353	Multiferroic behavior and electrical conduction of BiFeO3 thin film deposited on quartz substrate. Journal of Alloys and Compounds, 2010, 507, L4-L7.	5.5	19
354	Oxygen-vacancy-related relaxation and scaling behaviors of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mrow> <mml:mrow> <mml:mrow> Physical Review B, 2010, 82, .</mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	<3.2 <mml:mn< td=""><td>>3.9</td></mml:mn<>	> 3.9
355	Designing Poly[(<i>R</i>)-3-hydroxybutyrate]-Based Polyurethane Block Copolymers for Electrospun Nanofiber Scaffolds with Improved Mechanical Properties and Enhanced Mineralization Capability. Journal of Physical Chemistry B, 2010, 114, 7489-7498.	2.6	40
356	Effect of manganese doping on the size effect of lead zirconate titanate thin films and the extrinsic nature of †dead layersâ€. Journal of Physics Condensed Matter, 2010, 22, 055901.	1.8	23
357	A new class of solid state ionic conductors for application in all solid state dye sensitized solar cells. Chemical Communications, 2010, 46, 2091.	4.1	48
358	Ferromagnetic, ferroelectric, and fatigue behavior of (111)-oriented BiFeO3/(Bi1/2Na1/2)TiO3 lead-free bilayered thin films. Applied Physics Letters, 2009, 94, .	3.3	106
359	Observation of a fifth-order optical nonlinearity in Bi0.9La0.1Fe0.98Mg0.02O3 ferroelectric thin films. Applied Physics Letters, 2009, 95, 041114.	3.3	20
360	Effects of SrRuO3 buffer layer thickness on multiferroic (Bi0.90La0.10)(Fe0.95Mn0.05)O3 thin films. Journal of Applied Physics, 2009, 106, .	2.5	65

#	Article	IF	Citations
361	Electrical behavior and oxygen vacancies in BiFeO3/[(Bi1/2Na1/2)0.94Ba0.06]TiO3 thin film. Applied Physics Letters, 2009, 95, .	3.3	59
362	Residual stress and magnetic behavior of multiferroic CoFe2O4/Pb(Zr0.52Ti0.48)O3 thin films. Journal of Applied Physics, 2009, 105, 084113.	2.5	18
363	Multiferroic behaviour and orientation dependence of lead-free (1) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 films. Journal Physics D: Applied Physics, 2009, 42, 195405.) 667 Td (á 2.8	i°' <i>x</i>)Bi 13
364	Modulated charged defects and conduction behaviour in doped BiFeO ₃ thin films. Journal Physics D: Applied Physics, 2009, 42, 162001.	2.8	31
365	Phase transitions and electrical behavior of lead-free (K0.50Na0.50)NbO3 thin film. Journal of Applied Physics, 2009, 106, .	2.5	45
366	Charged defects and their effects on electrical behavior in Bi1â^'xLaxFeO3 thin films. Journal of Applied Physics, 2009, 105, 016106.	2.5	38
367	Temperature-dependent electrical behavior of La0.7Sr0.3MnO3-buffered Bi0.9La0.1FeO3 thin films. Journal of Applied Physics, 2009, 106, .	2.5	14
368	Orientation dependence of ferroelectric behavior of BiFeO3 thin films. Journal of Applied Physics, 2009, 106, .	2.5	94
369	Labile Ferroelastic Nanodomains in Bilayered Ferroelectric Thin Films. Advanced Materials, 2009, 21, 3497-3502.	21.0	58
370	Heterolayered PZT thin films of different thicknesses and stacking sequence. Journal of Materials Science, 2009, 44, 5375-5382.	3.7	9
371	Formation and Evolution of Body entered Orthorhombic Mesophase in TiO ₂ Thin Films. Journal of the American Ceramic Society, 2009, 92, 1317-1321.	3.8	7
372	Hydrothermal Growth of Vertical ZnO Nanorods. Journal of the American Ceramic Society, 2009, 92, 1940-1945.	3.8	41
373	Enhanced Photocatalysis by Doping Cerium into Mesoporous Titania Thin Films. Journal of Physical Chemistry C, 2009, 113, 21406-21412.	3.1	92
374	Femtosecond third-order optical nonlinearity of BiFeO3. Optics Express, 2009, 17, 10970.	3.4	25
375	Ferroelectric Transistors with Nanowire Channel: Toward Nonvolatile Memory Applications. ACS Nano, 2009, 3, 700-706.	14.6	89
376	Highly efficient dye-sensitized solar cells of thick mesoporous titania films derived from supramolecular templating. Nanotechnology, 2009, 20, 505602.	2.6	14
377	Supramolecular-Templated Thick Mesoporous Titania Films for Dye-Sensitized Solar Cells: Effect of Morphology on Performance. ACS Applied Materials & Samp; Interfaces, 2009, 1, 2789-2795.	8.0	52
378	Multiferroic behavior and impedance spectroscopy of bilayered BiFeO3/CoFe2O4 thin films. Journal of Applied Physics, 2009, 105, .	2.5	80

#	Article	IF	Citations
379	Facile synthesis of hybrid silica nanocapsules by interfacial templating condensation and their application in fluorescence imaging. Chemical Communications, 2009, , 6240.	4.1	55
380	Multiferroic and Fatigue Behavior of (Bi[sub 0.90]La[sub 0.10])FeO[sub 3]/CoFe[sub 2]O[sub 4]/(Bi[sub) Tj ETQc C61.	10 0 0 rgB1 2.2	「/Overlock 11
381	Phase transition behaviors of $(Na1/2Bi1/2)1\hat{a}^{2}$ TiPb x O3 thin films. Journal of Electroceramics, 2008, 21, 336-339.	2.0	0
382	Bilayered Pb(Zr,Ti)O3/(Bi,Nd)4Ti3O12 thin films. Journal of Electroceramics, 2008, 21, 331-335.	2.0	0
383	Structure and electrical properties of (100)-oriented Pb(Zn1/3Nb2/3)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 thin films on La0.7Sr0.3MnO3 electrode by chemical solution deposition. Thin Solid Films, 2008, 516, 5057-5061.	1.8	7
384	Highly dispersed gold nanoparticles assembled in mesoporous titania films of cubic configuration. Microporous and Mesoporous Materials, 2008, 110, 242-249.	4.4	42
385	Multiferroic BiFeO3Thin Films Buffered by a SrRuO3Layer. Journal of the American Ceramic Society, 2008, 91, 463-466.	3.8	20
386	Effects of SRO Buffer Layer on Multiferroic BiFeO < sub > 3 < /sub > Thin Films. Journal of the American Ceramic Society, 2008, 91, 3240-3244.	3.8	46
387	CuO nanowires synthesized by thermal oxidation route. Journal of Alloys and Compounds, 2008, 454, 268-273.	5.5	200
388	Thickness and coupling effects in bilayered multiferroic CoFe2O4/Pb(Zr0.52Ti0.48)O3 thin films. Journal of Applied Physics, 2008, 103, .	2.5	55
389	The effects of anodization parameters on titania nanotube arrays and dye sensitized solar cells. Nanotechnology, 2008, 19, 405701.	2.6	49
390	RF SPUTTERED BISMUTH FERRITE THIN FILMS: EFFECT OF ANNEALING DURATION. Functional Materials Letters, 2008, 01, 221-224.	1.2	3
391	Electrical and magnetic properties of multiferroic BiFeO3/CoFe2O4 heterostructure. Journal of Applied Physics, 2008, 104, .	2.5	88
392	Ferroelectric and fatigue behavior of Pb(Zr0.52Ti0.48)O3â^•(Bi3.15Nd0.85)Ti3O12 bilayered thin films. Journal of Applied Physics, 2008, 103, 034102.	2.5	19
393	Ferroelectric transitions by Ca substitution in Pb0.7Nd0.2TiO3. Journal of Applied Physics, 2008, 103, 084114.	2.5	1
394	Structural and Optical Properties of Lead Titanate Nanowires Synthesized by Hydrothermal Method. Key Engineering Materials, 2007, 336-338, 2157-2159.	0.4	2
395	Ferroelectric domains and piezoelectricity in monocrystalline Pb(Zr,Ti)O3 nanowires. Applied Physics Letters, 2007, 90, 133107.	3.3	67
396	Giant strain in PbZr0.2Ti0.8O3 nanowires. Applied Physics Letters, 2007, 90, 052902.	3.3	62

#	Article	IF	Citations
397	Heterolayered Ferroelectric Pb(Zr,Ti)O < inf > 3 < / inf > /(Bi,Nd) < inf > 4 < / inf > Ti < inf > 3 < / inf > O < inf > 12 < / inf > Thin Films. Applications of Ferroelectrics, IEEE International Symposium on, 2007, , .	0.0	0
398	Multiferroic BiFeO3 thin films deposited on SrRuO3 buffer layer by rf sputtering. Journal of Applied Physics, 2007, 101, 054104.	2.5	66
399	Ferroelectric and dielectric behavior of heterolayered PZT thin films. Journal of Applied Physics, 2007, 102, .	2.5	30
400	Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO ₂ (Anatase) Nanoparticles. Journal of Physical Chemistry C, 2007, 111, 14925-14931.	3.1	3,863
401	From Well-Defined Carbon-Rich Precursors to Monodisperse Carbon Particles with Hierarchic Structures. Advanced Materials, 2007, 19, 1849-1853.	21.0	43
402	Gene delivery to the heart by magnetic nanobeads. Journal of Magnetism and Magnetic Materials, 2007, 311, 336-341.	2.3	22
403	Peculiar Dielectric Behaviors of (Na1/2Bi1/2)0.87Pb0.13TiO3Thin Films. Journal of the American Ceramic Society, 2007, 90, 111-115.	3.8	5
404	Photoluminescence and Raman scattering studies on PbTiO3 nanowires fabricated by hydrothermal method at low temperature. Applied Physics Letters, 2006, 88, 193120.	3.3	65
405	Ferroelectric crossovers triggered by isovalent A-site substitution in Pb0.7La0.2TiO3. Journal of Applied Physics, 2006, 100, 124101.	2.5	4
406	Substrate-Assisted Crystallization and Photocatalytic Properties of Mesoporous TiO2 Thin Films. Chemistry of Materials, 2006, 18, 2917-2923.	6.7	69
407	Diblock Copolymer Templated Nanohybrid Thin Films of Highly Ordered TiO2Nanoparticle Arrays in PMMA Matrix. Chemistry of Materials, 2006, 18, 5876-5889.	6.7	68
408	Enhancement of Magnetization and Curie Temperature in Sr2FeMoO6 by Ni Doping. Journal of the American Ceramic Society, 2006, 89, 672-674.	3.8	6
409	Ferroelectric and Dielectric Properties of Bilayered PMN–PT/BNdT Thin Films. Journal of the American Ceramic Society, 2006, 89, 2481-2485.	3.8	1
410	Pb(Zn1/3Ta2/3)O3-PbTiO3 Derived from Mechanical Activation. Journal of the American Ceramic Society, 2006, 89, 060623005134009-???.	3.8	0
411	Phase transition, ferroelectric behaviors and domain structures of (Na1/2Bi1/2)1â^'xTiPbxO3 thin films. Acta Materialia, 2006, 54, 1691-1698.	7.9	44
412	Dielectric anomalies of Pb0.7La0.2TiO3-based perovskite. Journal of Electroceramics, 2006, 16, 277-282.	2.0	1
413	Conducting perovskite LaNi0.6Co0.4O3 ceramics with glass additions. Journal of Electroceramics, 2006, 16, 313-319.	2.0	4
414	Effects of Ni doping on B-site ordering and magnetic behaviors of double perovskite Sr2FeMoO6. Journal of Electroceramics, 2006, 16, 351-355.	2.0	3

#	Article	IF	CITATIONS
415	Ferroelectric properties of heterolayered lead zirconate titanate thin films. Journal of Electroceramics, 2006, 16, 425-430.	2.0	10
416	Titania-PMMA nanohybrids of enhanced nanocrystallinity. Journal of Electroceramics, 2006, 16, 431-439.	2.0	30
417	Ferroelectric behaviors of sandwich structured PbZr0.52 Ti0.48O3/Pb(Mg1/3Ta2/3)0.7Ti0.3O3/PbZr0.52Ti0.48O3 thin film. Journal of Electroceramics, 2006, 16, 453-457.	2.0	0
418	Bilayered Pb(Zr,Ti)O3/(Bi,Nd)4Ti3O12 thin films. Journal of Electroceramics, 2006, 16, 459-462.	2.0	1
419	Ferroelectric properties of (Bi3.15 Nd 0.85)Ti 3 O 12 with decreasing film thickness. Journal of Electroceramics, 2006, 16, 477-481.	2.0	3
420	Mesophase configurations and optical properties of mesoporous TiO2 thin films. Journal of Electroceramics, 2006, 16, 499-502.	2.0	5
421	Structure and Optical Properties of 0.1BiFeO3-0.9SrBi2Nb2O9 Thin Films Using a Modified Sol-Gel Technique. Journal of Sol-Gel Science and Technology, 2006, 37, 27-30.	2.4	4
422	Fatigue behavior of heterostructured Pb(Zr,Ti)O3â^•(Bi,Nd)4Ti3O12 ferroelectric thin films. Applied Physics Letters, 2006, 89, 122905.	3.3	15
423	Thickness dependences of ferroelectric and dielectric properties in (Bi3.15Nd0.85)Ti3O12 thin films. Journal of Applied Physics, 2006, 99, 074103.	2.5	20
424	Ferroelectric and conductivity behavior of multilayered PbZr0.52Ti0.48O3 thin films. Journal of Applied Physics, 20 100, 034106.	0065	5
425	Electrocatalytic reduction of oxygen by a platinum nanoparticle/carbon nanotube composite electrode. Journal of Electroanalytical Chemistry, 2005, 577, 295-302.	3.8	130
426	Leakage current and charge carriers in (Na0.5Bi0.5)TiO3thin film. Journal Physics D: Applied Physics, 2005, 38, 642-648.	2.8	38
427	Effects of Excess Bi2O3 on the Ferroelectric Behavior of Nd-Doped Bi4Ti3O12 Thin Films. Journal of the American Ceramic Society, 2005, 88, 1037-1040.	3.8	12
428	Mechanically Activated Synthesis and Magnetoresistance of Nanocrystalline Double Perovskite Sr2FeMoO6. Journal of the American Ceramic Society, 2005, 88, 2635-2638.	3.8	5
429	Ferroelectric and Dielectric Properties of Pb(Mg1/3Ta2/3)0.7Ti0.3O3 Thin Films Derived from RF Magnetron Sputtering. Journal of the American Ceramic Society, 2005, 88, 2769-2774.	3.8	1
430	Phase Formation and Magnetoresistance of Double Perovskite Sr2FeMoO6. Journal of the American Ceramic Society, 2005, 88, 3279-3282.	3.8	3
431	The low-temperature synthesis of BiFeO3–SrBi2Nb2O9 complexes by sol-gel process. Materials Letters, 2005, 59, 912-915.	2.6	3
432	Gold-Cluster Sensors Formed Electrochemically at Boron-Doped-Diamond Electrodes: Detection of Dopamine in the Presence of Ascorbic Acid and Thiols. Advanced Functional Materials, 2005, 15, 639-647.	14.9	110

#	Article	IF	Citations
433	B-site ordering and magnetic behaviours in Ni-doped double perovskite Sr2FeMoO6. Journal Physics D: Applied Physics, 2005, 38, 4003-4008.	2.8	19
434	Layer Structured Calcium Bismuth Titanate by Mechanical Activation. Journal of Metastable and Nanocrystalline Materials, 2005, 23, 47-50.	0.1	1
435	Dieletric anomalies in Pb0.7(1â^'x)Ca0.7xLa0.2TiO3. Applied Physics Letters, 2005, 87, 072904.	3.3	0
436	Ferroelectric behaviors and charge carriers in Nd-doped Bi4Ti3O12 thin films. Journal of Applied Physics, 2005, 97, 034101.	2.5	28
437	Polarization behaviors of (Bi3.15Nd0.85)Ti3O12 thin films deposited by radio-frequency magnetron sputtering. Journal of Applied Physics, 2005, 98, 104106.	2.5	8
438	TRANSPARENT TiO2-PMMA NANOHYBRIDS OF HIGH NANOCRYSTALLINITY AND ENHANCED NONLINEAR OPTICAL PROPERTIES. Journal of Nonlinear Optical Physics and Materials, 2005, 14, 281-297.	1.8	9
439	In vitro bioactivity assessment of 70 (wt.)%SiO2–30 (wt.)%CaO bioactive glasses in simulated body fluid. Materials Letters, 2005, 59, 3267-3271.	2.6	36
440	Dielectric behaviors of Pb1â^'3x/2LaxTiO3 derived from mechanical activation. Journal of Applied Physics, 2004, 95, 4981-4988.	2.5	14
441	Ferroelectric properties and leakage current characteristics of radio-frequency-sputtered SrBi2(V0.1Nb0.9)2O9 thin films. Journal of Applied Physics, 2004, 96, 2181-2185.	2.5	15
442	Ferroelectric Behaviors of W-Doped SrBi2Ta2O9 Thin Films. Integrated Ferroelectrics, 2004, 62, 163-169.	0.7	3
443	Post-Sinter Annealing of Pb0.7La0.2TiO3 Derived from Mechanical Activation. Integrated Ferroelectrics, 2004, 62, 35-41.	0.7	0
444	The B-site order-disorder transformation in Pb(Sc _{1/2} Ta _{1/2})O ₃ triggered by mechanical activation. Journal of Materials Science, 2004, 39, 5267-5270.	3.7	4
445	Ferroelectric and electrical behavior of (Na0.5Bi0.5)TiO3 thin films. Applied Physics Letters, 2004, 85, 804-806.	3.3	126
446	Ferroelectric and dielectric properties of 0.6SrBi2Nb2O9–0.4BiFeO3 thin films. Thin Solid Films, 2004, 460, 1-6.	1.8	6
447	Effects of grain size on the dielectric properties and tunabilities of sol–gel derived Ba(Zr0.2Ti0.8)O3 ceramics. Solid State Communications, 2004, 131, 163-168.	1.9	252
448	0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 thin films derived from RF magnetron sputtering. Ceramics International, 2004, 30, 1539-1542.	4.8	15
449	Dielectric behaviors and phase separation in Pb(Ni1/2W1/2)O3–PbTiO3. Ceramics International, 2004, 30, 1361-1364.	4.8	3
450	Ferroelectric properties and leakage current mechanisms in SrBi2(V0.1Nb0.9)2O9 (SBVN) thin films. Ceramics International, 2004, 30, 1505-1508.	4.8	4

#	Article	IF	Citations
451	Ferroelectric Bi4–x Sm x Ti3 O12 Thin Films Fabricated by Pulsed Laser Deposition for Nv-RAM Applications. Integrated Ferroelectrics, 2004, 61, 123-127.	0.7	6
452	Controlling the crystallinity and nonlinear optical properties of transparent TiO2–PMMA nanohybrids. Journal of Materials Chemistry, 2004, 14, 2978-2987.	6.7	144
453	Synthesis and piezoresponse of highly ordered Pb(Zr0.53Ti0.47)O3 nanowire arrays. Applied Physics Letters, 2004, 85, 4190-4192.	3.3	151
454	Epitaxial BiFeO3 thin films on Si. Applied Physics Letters, 2004, 85, 2574-2576.	3.3	249
455	Layer structured calcium bismuth titanate by mechanical activation. Materials Letters, 2004, 58, 2032-2036.	2.6	23
456	Heterolayered lead zirconate titanate thin films of giant polarization. Journal of Applied Physics, 2004, 96, 5706-5711.	2.5	39
457	Multiferroic BaTiO3-CoFe2O4 Nanostructures. Science, 2004, 303, 661-663.	12.6	2,051
458	Structure characterization of BiFeO3–SrBi2Nb2O9 ceramics by mechanical activation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 99, 116-120.	3.5	11
459	Mechanical activation-induced sequential combination, morphotric segregation and order–disorder transformation in Pb-based relaxors. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 99, 63-69.	3.5	12
460	Effects of precursor solution pH value and substrate texture on orientation degree of sol–gel-derived bismuth titanate thin films. Physica Status Solidi A, 2003, 198, 282-288.	1.7	3
461	Unique Dielectric Behavior of 0.6Pb(Ni _{1/2} W _{1/2})O ₃ ·0.4PbTiO ₃ Derived from Mechanical Activation. Journal of the American Ceramic Society, 2003, 86, 791-794.	3.8	2
462	Ferroelectric Pb(Mg1/3Nb2/3)O3 thin films by PLD at varying oxygen pressures. Microelectronic Engineering, 2003, 66, 926-932.	2.4	8
463	Size effect on the ferroelectric phase transition in SrBi2Ta2O9 nanoparticles. Journal of Applied Physics, 2003, 94, 618-620.	2.5	77
464	Transparent nanohybrids of nanocrystalline TiO2 in PMMA with unique nonlinear optical behavior. Journal of Materials Chemistry, 2003, 13, 1475.	6.7	144
465	Ultrafast optical nonlinearity in poly(methylmethacrylate)-TiO2 nanocomposites. Applied Physics Letters, 2003, 82, 2691-2693.	3.3	109
466	Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures. Science, 2003, 299, 1719-1722.	12.6	5,548
467	B-site disordering in Pb(Sc1/2Ta1/2)O3 by mechanical activation. Applied Physics Letters, 2003, 82, 4773-4775.	3.3	21
468	Effects of mechanical activation on the formation of PbTiO3 from amorphous Pb–Ti–O precursor. Journal of Applied Physics, 2003, 93, 3470-3474.	2.5	14

#	Article	IF	Citations
469	Strontium–titanate-doped lead metaniobate ferroelectric thin films. Applied Physics Letters, 2002, 81, 877-879.	3.3	6
470	Evidence of lower valence state of vanadium on the dielectric relaxation of ferroelectric SrBi2(V0.1Nb0.9)2O9. Journal Physics D: Applied Physics, 2002, 35, 2254-2259.	2.8	10
471	A Monte Carlo simulation of B-site orderÂdisorder transformation in Pb(Sc1/2Ta1/2)O3triggered by mechanical activation. Journal of Physics Condensed Matter, 2002, 14, 8639-8653.	1.8	3
472	NiFe2O4 nanoparticles formed in situ in silica matrix by mechanical activation. Journal of Applied Physics, 2002, 91, 6015-6020.	2.5	165
473	Pb(Fe2/3W1/3)O3 by mechanical activation of coprecipitated Pb3Fe2O6 and WO3. Journal of Alloys and Compounds, 2002, 343, 156-163.	5.5	8
474	Comparative study on phase development of lead titanate powders. Materials Letters, 2002, 52, 304-312.	2.6	34
475	Dielectric relaxation in SrBi2(V0.1Nb0.9)2O9 layered perovskite ceramics. Materials Chemistry and Physics, 2002, 75, 50-55.	4.0	31
476	Synthesis of nanocrystalline \hat{I}^3 -Fe2O3 in silica matrix by mechanical crystallization from precursor at room temperature. Materials Chemistry and Physics, 2002, 75, 81-85.	4.0	16
477	Doping effects of BiFeO3 in layered perovskite SrBi2Nb2O9. Materials Chemistry and Physics, 2002, 75, 105-109.	4.0	5
478	Ferroelectric lead scandium tantalate from mechanical activation of mixed oxides. Materials Chemistry and Physics, 2002, 75, 157-160.	4.0	9
479	Nanocomposites of ZnFe2O4 in silica: synthesis, magnetic and optical properties. Materials Chemistry and Physics, 2002, 75, 181-185.	4.0	49
480	Mechanical activation-induced B site order–disorder transition in perovskite Pb(Mg1/3Nb2/3)O3–Pb(Mg1/2W1/2)O3. Materials Chemistry and Physics, 2002, 75, 211-215.	4.0	5
481	Nanocrystalline PbTiO3 powders from an amorphous Pb–Ti–O precursor by mechanical activation. Materials Chemistry and Physics, 2002, 75, 216-219.	4.0	13
482	High temperature piezoelectric strontium bismuth titanate from mechanical activation of mixed oxides. Materials Chemistry and Physics, 2002, 75, 131-135.	4.0	23
483	Functional ceramics of nanocrystallinity by mechanical activation. Solid State Ionics, 2002, 151, 403-412.	2.7	31
484	Nanosized Zincâ€Oxide Particles Derived from Mechanical Activation of Zn ₅ (NO ₃) ₂ (OH) ₈ ·2H ₂ O in Sodium Chloride. Journal of the American Ceramic Society, 2002, 85, 273-275.	3.8	10
485	Sequential Combination of Constituent Oxides in the Synthesis of Pb(Fe _{1/2} Nb _{1/2})O ₃ by Mechanical Activation. Journal of the American Ceramic Society, 2002, 85, 565-572.	3.8	28
486	Nanocrystalline Maghemite (γâ€Fe ₂ O ₃) in Silica by Mechanical Activation of Precursors. Journal of the American Ceramic Society, 2002, 85, 807-811.	3.8	13

#	Article	IF	CITATIONS
487	Bâ€Site Order–Disorder Transition in Pb(Mg _{1/3} Nb _{2/3})O ₃ –Pb(Mg _{1/2} W _{1/2})O _{Triggered by Mechanical Activation. Journal of the American Ceramic Society, 2002, 85, 833-838.}	·33./sub>	14
488	Bismuth Titanate from Mechanical Activation of a Chemically Coprecipitated Precursor. Journal of the American Ceramic Society, 2002, 85, 2660-2665.	3.8	30
489	Transparent magnetic composites of ZnFe2O4 nanoparticles in silica. Journal of Applied Physics, 2001, 90, 4169-4174.	2.5	50
490	Nanocrystalline Si3N4 with Si–C–N shell structure. Materials Letters, 2001, 49, 318-323.	2.6	12
491	Synthesis of Fe3O4 nanoparticles from emulsions. Journal of Materials Chemistry, 2001, 11, 1704-1709.	6.7	193
492	Mechanochemical synthesis of nanocrystalline hydroxyapatite from CaO and CaHPO4. Biomaterials, 2001, 22, 2705-2712.	11.4	217
493	Ultrafine zinc oxide powders prepared by precipitation/mechanical milling. Journal of Materials Science, 2001, 36, 3273-3276.	3.7	35
494	Synthesis of Pb(Mg _{1/3} Nb _{2/3})O ₃ in Excess Lead Oxide by Mechanical Activation. Journal of the American Ceramic Society, 2001, 84, 660-662.	3.8	31
495	Crystallization of Lead Niobate Glass by Mechanical Activation. Journal of the American Ceramic Society, 2001, 84, 2691-2695.	3.8	1
496	Nanocrystalline ferroelectric phases from mechanical activation of oxide compositions. Scripta Materialia, 2001, 44, 1803-1806.	5.2	1
497	Significant dielectric enhancement in 0.3BiFeO3–0.7SrBi2Nb2O9. Applied Physics Letters, 2001, 79, 2061-2063.	3.3	20
498	Cluster glass structure in nanohybrids of nonstoichiometric zinc ferrite in silica matrix. Applied Physics Letters, 2001, 79, 3167-3169.	3.3	8
499	Mechanochemical Synthesis of Hydroxyapatite from Calcium Oxide and Brushite. Journal of the American Ceramic Society, 2001, 84, 465-67.	3.8	33
500	Mechanicalâ€Activationâ€Triggered Gibbsiteâ€ŧoâ€Boehmite Transition and Activationâ€Derived Alumina Powders. Journal of the American Ceramic Society, 2001, 84, 1225-1230.	3.8	30
501	Mechanically Activating Nucleation and Growth of Complex Perovskites. Journal of Solid State Chemistry, 2000, 154, 321-328.	2.9	81
502	Nanocrystalline 0.54PZN–0.36PMN–0.1PT of perovskite structure by mechanical activation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 286, 96-100.	5.6	4
503	Seeding effect in the formation of Pb(Fe2/3W1/3)O3 via mechanical activation of mixed oxides. Solid State Ionics, 2000, 132, 55-61.	2.7	6
504	How different is mechanical activation from thermal activation? A case study with PZN and PZN-based relaxors. Solid State Ionics, 2000, 127, 169-175.	2.7	36

#	Article	IF	Citations
505	Phase stability and dielectric properties of (1â°'x)PFW+xPZN derived from mechanical activation. Solid State Ionics, 2000, 127, 285-293.	2.7	11
506	Mechanochemical Synthesis of 0.9 [0.6Pb(Zn _{1/3} Nb _{2/3})O ₃ ·0.4Pb(Mg _{1/3} Nb _{2/3} <td>>)@.ssub></td> <td>3⊲/sub>]Â∙0.</td>	>) @.s sub>	3⊲ /s ub>]Â∙0.
507	Effect of high-energy mechanical activation on the microstructure and electrical properties of ZnO-based varistors. Solid State Ionics, 2000, 132, 107-117.	2.7	37
508	Nanosized Barium Titanate Powder by Mechanical Activation. Journal of the American Ceramic Society, 2000, 83, 232-34.	3.8	57
509	Title is missing!. Catalysis Letters, 2000, 64, 179-184.	2.6	5
510	Raman and magnetization studies of barium ferrite powder prepared by water-in-oil microemulsion. Journal of Materials Research, 2000, 15, 483-487.	2.6	41
511	Ultrafine ferrite particles prepared by coprecipitation/mechanical milling. Materials Letters, 2000, 44, 19-22.	2.6	64
512	Synthesis of lead zirconate titanate from an amorphous precursor by mechanical activation. Journal of Alloys and Compounds, 2000, 308, 139-146.	5.5	24
513	Mechanical activation synthesis and dielectric properties of 0.48PFN–0.36PFW–0.16PZN from mixed oxides. Journal of Alloys and Compounds, 2000, 311, 181-187.	5.5	14
514	Stabilization of perovskite phase and dielectric properties of 0.95PZN–0.05BT derived from mechanical activation. Journal of Alloys and Compounds, 2000, 297, 92-98.	5.5	7
515	The effects of mechanical activation in synthesizing ultrafine barium ferrite powders from co-precipitated precursors. Journal of Materials Chemistry, 2000, 10, 1745-1749.	6.7	26
516	Mechanical Activationâ€Assisted Synthesis of Pb(Fe _{2/3} W _{1/3})O ₃ . Journal of the American Ceramic Society, 2000, 83, 1575-1580.	3.8	16
517	Fine Strontium Ferrite Powders from an Ethanolâ€Based Microemulsion. Journal of the American Ceramic Society, 2000, 83, 1049-1055.	3.8	58
518	A sol-gel derived 0.9Pb(Mg _{1/2} Nb _{2/3})O ₃ –0.1PbTiO ₃ ceramic. Journal of Materials Research, 1999, 14, 537-545.	2.6	10
519	Synthesis of single phase 0.9Pb[(Zn0.6Mg0.4)1/3Nb2/3O3]–0.1PbTiO3 by mechanically activating mixed oxides. Acta Materialia, 1999, 47, 2283-2291.	7.9	15
520	Effects of mechanical activation on the sintering and dielectric properties of oxide-derived PZT. Acta Materialia, 1999, 47, 2633-2639.	7.9	80
521	Synthesizing 0.9PZN–0.1BT by mechanically activating mixed oxides. Solid State Ionics, 1999, 120, 183-188.	2.7	8
522	Mechanochemical fabrication of single phase PMN of perovskite structure. Solid State Ionics, 1999, 124, 271-279.	2.7	37

#	Article	IF	Citations
523	Ultrafine Barium Titanate Powders via Microemulsion Processing Routes. Journal of the American Ceramic Society, 1999, 82, 873-881.	3.8	55
524	Mechanochemical Synthesis of Lead Zirconate Titanate from Mixed Oxides. Journal of the American Ceramic Society, 1999, 82, 1687-1692.	3.8	154
525	Preparation and characterisation of ultrafine lead titanate (PbTiO3) powders. Journal of Materials Science, 1999, 34, 1943-1952.	3.7	27
526	Lead zirconate titanate-barium titanate by mechanical activation of mixed oxides. Applied Physics A: Materials Science and Processing, 1999, 69, 433-436.	2.3	20
527	Improving the magnetic properties of hydrothermally synthesized barium ferrite. Journal of Magnetism and Magnetic Materials, 1999, 195, 452-459.	2.3	172
528	NiFe2O4 ultrafine particles prepared by co-precipitation/mechanical alloying. Journal of Magnetism and Magnetic Materials, 1999, 205, 249-254.	2.3	170
529	Mechanochemical Synthesis of 0.9 Pb(Mg1/3Nb2/3)O3-0.1 PbTiO3from Mixed Oxides. Advanced Materials, 1999, 11, 210-213.	21.0	37
530	Nanosized hydroxyapatite powders from microemulsions and emulsions stabilized by a biodegradable surfactant. Journal of Materials Chemistry, 1999, 9, 1635-1639.	6.7	75
531	Fabricating densified hydroxyapatite ceramics from a precipitated precursor. Materials Letters, 1999, 38, 208-213.	2.6	35
532	Mechanochemical synthesis of nanosized lead titanate powders from mixed oxides. Materials Letters, 1999, 39, 364-369.	2.6	44
533	Synthesis and Characterization of Silicaâ^'Copper Oxide Composite Derived from Microemulsion Processing. Langmuir, 1999, 15, 3056-3061.	3.5	22
534	Formation of Nanocrystalline Hydroxyapatite in Nonionic Surfactant Emulsions. Langmuir, 1999, 15, 7472-7477.	3.5	97
535	An α–Fe ₂ O ₃ powder of nanosized particles via precursor dispersion. Journal of Materials Research, 1999, 14, 3355-3362.	2.6	21
536	lon-Containing Membranes from Microemulsion Polymerization. Langmuir, 1999, 15, 3202-3205.	3.5	14
537	Lead Zirconate Titanate Via Reaction Sintering of Hydroxide Precursors. Journal of Materials Research, 1999, 14, 1503-1509.	2.6	6
538	Mechanochemically Synthesized Lead Magnesium Niobate. Journal of the American Ceramic Society, 1999, 82, 1358-1360.	3.8	45
539	Synthesizing Nanocrystalline Pb(Zn1/3Nb2/3)O3 Powders from Mixed Oxides. Journal of the American Ceramic Society, 1999, 82, 477-479.	3.8	98
540	Processing and Characterization of Microemulsionâ€Derived Lead Magnesium Niobate. Journal of the American Ceramic Society, 1999, 82, 529-536.	3.8	17

#	Article	IF	Citations
541	Inducing Crystallization in an Amorphous Lead Zirconate Titanate Precursor by Mechanical Activation. Journal of the American Ceramic Society, 1999, 82, 1641-1643.	3.8	14
542	Low temperature synthesis of PZT powders via microemulsion processing. Materials Research Bulletin, 1998, 33, 1045-1055.	5.2	16
543	An ultrafine barium ferrite powder of high coercivity from water-in-oil microemulsion. Journal of Magnetism and Magnetic Materials, 1998, 184, 344-354.	2.3	145
544	A Bicontinuous Microemulsion Route to Zinc Oxide Powder. Ceramics International, 1998, 24, 205-209.	4.8	39
545	Synthesis and characterization of ultrafine lead zirconate powders. Ceramics International, 1998, 24, 507-513.	4.8	17
546	Dramatic effect of a small amount of MgO addition on the sintering of Al2O3-5 vol% SiC nanocomposite. Materials Letters, 1998, 33, 273-277.	2.6	41
547	Synthesis of lead zirconate powders via a polyaniline-mediated microemulsion processing route. Materials Letters, 1998, 36, 179-185.	2.6	12
548	Formation and characterization of lead magnesium niobate synthesized from the molten salt of potassium chlorate. Journal of Alloys and Compounds, 1998, 274, 110-117.	5.5	18
549	Synthesis and dielectric characterisation of lead magnesium niobate from precipitation and freeze-drying methods. Journal of Materials Chemistry, 1998, 8, 2239-2244.	6.7	10
550	Effects of Chemical Species on the Crystallization Behavior of a Solâ€Derived Zirconia Precursor. Journal of the American Ceramic Society, 1998, 81, 2624-2628.	3.8	19
551	Top-seeding melt texture growth of single-domain superconducting pellets. Superconductor Science and Technology, 1997, 10, 147-155.	3.5	58
552	Overoxidized Poly{pyrrole-co-[3-(pyrrol-1-yl)- propanesulfonate]}-coated Platinum Electrodes for Selective Detection of Catecholamine Neurotransmitters. Analyst, The, 1997, 122, 981-984.	3.5	45
553	Ultrafine zirconia powders via microemulsion processing route. Scripta Materialia, 1997, 8, 499-505.	0.5	33
554	Reduced crystallization temperature in a microemulsion-derived zirconia precursor. Materials Letters, 1997, 30, 119-124.	2.6	34
555	Microemulsion processing of manganese zinc ferrites. Materials Letters, 1997, 30, 217-221.	2.6	52
556	Processing of hydroxyapatite via microemulsion and emulsion routes. Biomaterials, 1997, 18, 1433-1439.	11.4	146
557	Crystallization in seeded zirconia precipitates. Materials Letters, 1996, 27, 239-246.	2.6	8
558	Mullitization in Al2O3-SiC nanocomposite: A case study of high temperature oxidation. Scripta Materialia, 1996, 34, 935-940.	5.2	3

#	Article	IF	Citations
559	Processing of fine hydroxyapatite powders via an inverse microemulsion route. Materials Letters, 1996, 28, 431-436.	2.6	96
560	Crystallization in nanosized sol-derived zirconia precursors. Journal of Materials Science Letters, 1996, 15, 1680-1683.	0.5	9
561	Sintering and microstructural development of La0.80Ca0.22CrO3. Journal of Materials Science Letters, 1996, 15, 658-661.	0.5	5
562	Microcrack coalescence in alumina-zirconia composites. Journal of Materials Science Letters, 1996, 15, 442-444.	0.5	2
563	An improvement in processing of hydroxyapatite ceramics. Journal of Materials Science, 1995, 30, 3061-3074.	3.7	117
564	Thermal stability of Al2O3-5 vol% SiC nanocomposite. Journal of Materials Science, 1995, 30, 321-333.	3.7	10
565	Abnormal grain growth in alumina-doped hafnia ceramics. Journal of Materials Science, 1994, 29, 3577-3590.	3.7	5
566	The microstructure of pressureless sintered silver-toughened alumina: an in situ TEM study. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1993, 161, 119-126.	5.6	8
567	The effects of hydroxide gel drying on the characteristics of co-precipitated zirconia-hafnia powders. Journal of Materials Science, 1993, 28, 553-560.	3.7	9
568	The grain boundary modification of ceria-stabilized tetragonal zirconia polycrystals by a small amount of alumina addition. Journal of Materials Science Letters, 1993, 12, 702-705.	0.5	8
569	The closure of indentation cracks and strength recovery by low temperature ageing in Y-TZP. Scripta Metallurgica Et Materialia, 1992, 27, 815-820.	1.0	1
570	Hafnia and hafnia-toughened ceramics. Journal of Materials Science, 1992, 27, 5397-5430.	3.7	511
571	The effects of a small Al2O3 addition on the crystallization and densification of Na2O-stabilized silica sols. Journal of Materials Science Letters, 1992, 11, 1029-1032.	0.5	0
572	The loading rate dependence of fracture strength in a reaction-sintered mullite ceramic. Journal of Materials Science Letters, 1992, 11, 1201-1205.	0.5	6
573	An application of sol gelation in the dispersion mixing of ceramic-matrix composites. Journal of Materials Science Letters, 1992, 11, 807-809.	0.5	2
574	A quantitative X-ray diffraction phase analysis in the reaction-sintered mullite ceramics. Journal of Materials Science Letters, 1992, 11, 1301-1304.	0.5	5
575	The effects of notch width on the SENB toughness for oxide ceramics. Journal of the European Ceramic Society, 1992, 10, 21-31.	5.7	37
576	Effects of organic binders on the sintering of isostatically compacted zirconia powders. Journal of Materials Science, 1992, 27, 63-67.	3.7	6

#	Article	IF	CITATIONS
577	Fabrication and microstructure-mechanical property relationships in Ce-TZPs. Journal of Materials Science, 1992, 27, 5348-5356.	3.7	39
578	Zirconia toughened cordierite. Journal of Materials Science, 1990, 25, 3982-3989.	3.7	24
579	Preferred ZrO2(t) → ZrO2(m) transformation on the aged surface of TZP ceramics. Journal of Materials Science Letters, 1989, 8, 1195-1198.	0.5	14
580	Zirconia-toughened alumina (ZTA) ceramics. Journal of Materials Science, 1989, 24, 3421-3440.	3.7	372
581	Surface toughening of TZP ceramics by low temperature ageing. Ceramics International, 1989, 15, 15-21.	4.8	27
582	Modification of indentation cracks in TZP ceramics by thermal treatment. Journal of Materials Science Letters, 1988, 7, 560-562.	0.5	9
583	Toughening mechanisms in duplex alumina-zirconia ceramics. Journal of Materials Science, 1988, 23, 804-808.	3.7	42
584	A study of the reaction of Y1Ba2Cu3O7-? superconducting ceramics with water. Journal of Materials Science, 1988, 23, 3393-3397.	3.7	15
585	Residual strains and dielectric properties of Pb/sub 0.7/La/sub 0.2/TiO/sub 3/-based perovskites., 0,,.		O
586	The Nanocrystallinity Enhancement of Sol-Gel Derived TiO ₂ Nanoparticles by Pre-Hydrothermal Treatment. Advanced Materials Research, 0, 415-417, 715-719.	0.3	1
587	Nanostructured Mesoporous Thick Films of Titania for Dye-Sensitized Solar Cells. Applied Mechanics and Materials, 0, 110-116, 540-546.	0.2	O
588	Mesoporous Hollow Carbon Derived from Soft-Templated Hydrothermal Process for Supercapacitor Electrode. Key Engineering Materials, 0, 616, 134-140.	0.4	1
589	Membrane Fouling: Microscopic Insights into the Effects of Surface Chemistry and Roughness. Advanced Theory and Simulations, 0, , 2100395.	2.8	7