
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5069987/publications.pdf Version: 2024-02-01

KALMANC

#	Article	IF	CITATIONS
1	Single-cell multiomics reveals increased plasticity, resistant populations, and stem-cell–like blasts in <i>KMT2A</i> -rearranged leukemia. Blood, 2022, 139, 2198-2211.	0.6	37
2	DeepRepeat: direct quantification of short tandem repeats on signal data from nanopore sequencing. Genome Biology, 2022, 23, 108.	3.8	16
3	CancerVar: An artificial intelligence–empowered platform for clinical interpretation of somatic mutations in cancer. Science Advances, 2022, 8, eabj1624.	4.7	14
4	Expediting knowledge acquisition by a web framework for Knowledge Graph Exploration and Visualization (KGEV): case studies on COVID-19 and Human Phenotype Ontology. BMC Medical Informatics and Decision Making, 2022, 22, .	1.5	3
5	Multiplex gene and phenotype network to characterize shared genetic pathways of epilepsy and autism. Scientific Reports, 2021, 11, 952.	1.6	27
6	A computational method for direct imputation of cell type-specific expression profiles and cellular compositions from bulk-tissue RNA-Seq in brain disorders. NAR Genomics and Bioinformatics, 2021, 3, lqab056.	1.5	5
7	PhenCards: a data resource linking human phenotype information to biomedical knowledge. Genome Medicine, 2021, 13, 91.	3.6	6
8	LIQA: long-read isoform quantification and analysis. Genome Biology, 2021, 22, 182.	3.8	49
9	Clinical Phenotypic Spectrum of 4095 Individuals with Down Syndrome from Text Mining of Electronic Health Records. Genes, 2021, 12, 1159.	1.0	6
10	NanoCaller for accurate detection of SNPs and indels in difficult-to-map regions from long-read sequencing by haplotype-aware deep neural networks. Genome Biology, 2021, 22, 261.	3.8	33
11	The proteome and its dynamics: A missing piece for integrative multi-omics in schizophrenia. Schizophrenia Research, 2020, 217, 148-161.	1.1	16
12	Single-molecule optical mapping enables quantitative measurement of D4Z4 repeats in facioscapulohumeral muscular dystrophy (FSHD). Journal of Medical Genetics, 2020, 57, 109-120.	1.5	43
13	Ultrafast and scalable variant annotation and prioritization with big functional genomics data. Genome Research, 2020, 30, 1789-1801.	2.4	14
14	Cell-Type-Specific Proteogenomic Signal Diffusion for Integrating Multi-Omics Data Predicts Novel Schizophrenia Risk Genes. Patterns, 2020, 1, 100091.	3.1	5
15	Detection of base analogs incorporated during DNA replication by nanopore sequencing. Nucleic Acids Research, 2020, 48, e88-e88.	6.5	31
16	Cell Type-Specific Annotation and Fine Mapping of Variants Associated With Brain Disorders. Frontiers in Genetics, 2020, 11, 575928.	1.1	2
17	Detecting differential alternative splicing events in scRNA-seq with or without Unique Molecular Identifiers. PLoS Computational Biology, 2020, 16, e1007925.	1.5	20
18	Phen2Gene: rapid phenotype-driven gene prioritization for rare diseases. NAR Genomics and Bioinformatics, 2020, 2, Iqaa032.	1.5	45

#	Article	IF	CITATIONS
19	Gene Expression in Patient-Derived Neural Progenitors Implicates WNT5A Signaling in the Etiology of Schizophrenia. Biological Psychiatry, 2020, 88, 236-247.	0.7	28
20	Innovating Computational Biology and Intelligent Medicine: ICIBM 2019 Special Issue. Genes, 2020, 11, 437.	1.0	0
21	Genome-wide detection of short tandem repeat expansions by long-read sequencing. BMC Bioinformatics, 2020, 21, 542.	1.2	11
22	LongGF: computational algorithm and software tool for fast and accurate detection of gene fusions by long-read transcriptome sequencing. BMC Genomics, 2020, 21, 793.	1.2	22
23	Accelerating bioinformatics research with International Conference on Intelligent Biology and Medicine 2020. BMC Bioinformatics, 2020, 21, 563.	1.2	2
24	Variant Interpretation for Cancer (VIC): a computational tool for assessing clinical impacts of somatic variants. Genome Medicine, 2019, 11, 53.	3.6	36
25	Deconvolution of transcriptional networks identifies TCF4 as a master regulator in schizophrenia. Science Advances, 2019, 5, eaau4139.	4.7	59
26	NanoMod: a computational tool to detect DNA modifications using Nanopore long-read sequencing data. BMC Genomics, 2019, 20, 78.	1.2	50
27	Detection of DNA base modifications by deep recurrent neural network on Oxford Nanopore sequencing data. Nature Communications, 2019, 10, 2449.	5.8	237
28	Doc2Hpo: a web application for efficient and accurate HPO concept curation. Nucleic Acids Research, 2019, 47, W566-W570.	6.5	47
29	Group Lasso Regularized Deep Learning for Cancer Prognosis from Multi-Omics and Clinical Features. Genes, 2019, 10, 240.	1.0	59
30	LinkedSV for detection of mosaic structural variants from linked-read exome and genome sequencing data. Nature Communications, 2019, 10, 5585.	5.8	24
31	Long-read sequencing identified intronic repeat expansions in <i>SAMD12</i> from Chinese pedigrees affected with familial cortical myoclonic tremor with epilepsy. Journal of Medical Genetics, 2019, 56, 265-270.	1.5	82
32	Evaluation of biological and technical variations in low-input RNA-Seq and single-cell RNA-Seq. International Journal of Computational Biology and Drug Design, 2018, 11, 5.	0.3	2
33	A semi-supervised approach for predicting cell-type specific functional consequences of non-coding variation using MPRAs. Nature Communications, 2018, 9, 5199.	5.8	34
34	Deep Phenotyping on Electronic Health Records Facilitates Genetic Diagnosis by Clinical Exomes. American Journal of Human Genetics, 2018, 103, 58-73.	2.6	99
35	NextSV: a meta-caller for structural variants from low-coverage long-read sequencing data. BMC Bioinformatics, 2018, 19, 180.	1.2	29
36	Identification of Copy Number Variants from SNP Arrays Using PennCNV. Methods in Molecular Biology, 2018, 1833, 1-28.	0.4	8

#	Article	IF	CITATIONS
37	Evaluation of biological and technical variations in low-input RNA-Seq and single-cell RNA-Seq. International Journal of Computational Biology and Drug Design, 2018, 11, 5.	0.3	1
38	InterVar: Clinical Interpretation of Genetic Variants by the 2015 ACMG-AMP Guidelines. American Journal of Human Genetics, 2017, 100, 267-280.	2.6	717
39	Interrogating the "unsequenceable―genomic trinucleotide repeat disorders by long-read sequencing. Genome Medicine, 2017, 9, 65.	3.6	79
40	<i>SCN8A</i> mutation in a child presenting with seizures and developmental delays. Journal of Physical Education and Sports Management, 2016, 2, a001073.	0.5	12
41	iCAGES: integrated CAncer GEnome Score for comprehensively prioritizing driver genes in personal cancer genomes. Genome Medicine, 2016, 8, 135.	3.6	45
42	Long-read sequencing and de novo assembly of a Chinese genome. Nature Communications, 2016, 7, 12065.	5.8	242
43	KBG syndrome involving a single-nucleotide duplication in <i>ANKRD11</i> . Journal of Physical Education and Sports Management, 2016, 2, a001131.	0.5	15
44	TAF1 Variants Are Associated with Dysmorphic Features, Intellectual Disability, and Neurological Manifestations. American Journal of Human Genetics, 2015, 97, 922-932.	2.6	101
45	Phenolyzer: phenotype-based prioritization of candidate genes for human diseases. Nature Methods, 2015, 12, 841-843.	9.0	327
46	Improved exome prioritization of disease genes through cross-species phenotype comparison. Genome Research, 2014, 24, 340-348.	2.4	300
47	Jannovar: A Java Library for Exome Annotation. Human Mutation, 2014, 35, 548-555.	1.1	63
48	Genome-Wide Association Study of Multiplex Schizophrenia Pedigrees. American Journal of Psychiatry, 2012, 169, 963-973.	4.0	61
49	wANNOVAR: annotating genetic variants for personal genomes via the web. Journal of Medical Genetics, 2012, 49, 433-436.	1.5	366
50	Genomic characteristics of cattle copy number variations. BMC Genomics, 2011, 12, 127.	1.2	201
51	A human B ell interactome identifies MYB and FOXM1 as master regulators of proliferation in germinal centers. Molecular Systems Biology, 2010, 6, 377.	3.2	336
52	MapSplice: Accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Research, 2010, 38, e178-e178.	6.5	946
53	ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research, 2010, 38, e164-e164.	6.5	10,960
54	Modeling genetic inheritance of copy number variations. Nucleic Acids Research, 2008, 36, e138-e138.	6.5	77

#	Article	IF	CITATIONS
55	PennCNV: An integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Research, 2007, 17, 1665-1674.	2.4	1,586
56	Reverse engineering cellular networks. Nature Protocols, 2006, 1, 662-671.	5.5	345
57	Polishing high-quality genome assemblies. Nature Methods, 0, , .	9.0	1
58	Epigenetic Dysregulation in Meningiomas. Neuro-Oncology Advances, 0, , .	0.4	0