
Gerardo A Morfini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/506925/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modeling gain-of-function and loss-of-function components of <i>SPAST</i> -based hereditary spastic paraplegia using transgenic mice. Human Molecular Genetics, 2022, 31, 1844-1859.	2.9	4
2	Tau: A Signaling Hub Protein. Frontiers in Molecular Neuroscience, 2021, 14, 647054.	2.9	29
3	Engagement of Neurotropic Viruses in Fast Axonal Transport: Mechanisms, Potential Role of Host Kinases and Implications for Neuronal Dysfunction. Frontiers in Cellular Neuroscience, 2021, 15, 684762.	3.7	8
4	Therapeutic Strategies for Mutant SPAST-Based Hereditary Spastic Paraplegia. Brain Sciences, 2021, 11, 1081.	2.3	5
5	Frontotemporal Lobar Dementia Mutant Tau Impairs Axonal Transport through a Protein Phosphatase 1Î ³ -Dependent Mechanism. Journal of Neuroscience, 2021, 41, 9431-9451.	3.6	8
6	Multicomponent diffusion analysis reveals microstructural alterations in spinal cord of a mouse model of amyotrophic lateral sclerosis ex vivo. PLoS ONE, 2020, 15, e0231598.	2.5	5
7	Defined Tau Phosphospecies Differentially Inhibit Fast Axonal Transport Through Activation of Two Independent Signaling Pathways. Frontiers in Molecular Neuroscience, 2020, 13, 610037.	2.9	13
8	EGF Treatment Improves Motor Behavior and Cortical GABAergic Function in the R6/2 Mouse Model of Huntington's Disease. Molecular Neurobiology, 2019, 56, 7708-7718.	4.0	6
9	Detection of axonal degeneration in a mouse model of Huntington's disease: comparison between diffusion tensor imaging and anomalous diffusion metrics. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2019, 32, 461-471.	2.0	28
10	Hereditary spastic paraplegia: gain-of-function mechanisms revealed by new transgenic mouse. Human Molecular Genetics, 2019, 28, 1136-1152.	2.9	22
11	Tau and Axonal Transport Misregulation in Tauopathies. Advances in Experimental Medicine and Biology, 2019, 1184, 81-95.	1.6	46
12	Pretangle pathology within cholinergic nucleus basalis neurons coincides with neurotrophic and neurotransmitter receptor gene dysregulation during the progression of Alzheimer's disease. Neurobiology of Disease, 2018, 117, 125-136.	4.4	37
13	Phosphoregulation of Tau modulates inhibition of kinesin-1 motility. Molecular Biology of the Cell, 2017, 28, 1079-1087.	2.1	53
14	Mutant spastin proteins promote deficits in axonal transport through an isoform-specific mechanism involving casein kinase 2 activation. Human Molecular Genetics, 2017, 26, 2321-2334.	2.9	27
15	Regulation of motor proteins, axonal transport deficits and adult-onset neurodegenerative diseases. Neurobiology of Disease, 2017, 105, 273-282.	4.4	115
16	ALS-linked FUS exerts a gain of toxic function involving aberrant p38 MAPK activation. Scientific Reports, 2017, 7, 115.	3.3	45
17	Axonal Degeneration in Tauopathies: Disease Relevance and Underlying Mechanisms. Frontiers in Neuroscience, 2017, 11, 572.	2.8	82
18	Prion protein inhibits fast axonal transport through a mechanism involving casein kinase 2. PLoS ONE, 2017, 12, e0188340.	2.5	14

GERARDO A MORFINI

#	Article	IF	CITATIONS
19	Biochemical analysis of axon-specific phosphorylation events using isolated squid axoplasms. Methods in Cell Biology, 2016, 131, 199-216.	1.1	10
20	Fast axonal transport in isolated axoplasm from the squid giant axon. Methods in Cell Biology, 2016, 131, 331-348.	1.1	25
21	Alterations in Activity-Dependent Neuroprotective Protein in Sporadic and Experimental Parkinson's Disease. Journal of Parkinson's Disease, 2016, 6, 77-97.	2.8	9
22	Analysis of isoform-specific tau aggregates suggests a common toxic mechanism involving similar pathological conformations and axonal transport inhibition. Neurobiology of Aging, 2016, 47, 113-126.	3.1	41
23	Pseudophosphorylation of tau at S422 enhances SDS-stable dimer formation and impairs both anterograde and retrograde fast axonal transport. Experimental Neurology, 2016, 283, 318-329.	4.1	28
24	HIV Glycoprotein Gp120 Impairs Fast Axonal Transport by Activating Tak1 Signaling Pathways. ASN Neuro, 2016, 8, 175909141667907.	2.7	9
25	Conventional kinesin: Biochemical heterogeneity and functional implications in health and disease. Brain Research Bulletin, 2016, 126, 347-353.	3.0	48
26	Tau pathology-mediated presynaptic dysfunction. Neuroscience, 2016, 325, 30-38.	2.3	54
27	Regulation of Tau Dynamics by Phosphorylation in the Squid Giant Axon. Biophysical Journal, 2015, 108, 450a.	0.5	Ο
28	Analysis of YFP(<i>J16</i>)-R6/2 reporter mice and postmortem brains reveals early pathology and increased vulnerability of callosal axons in Huntington's disease. Human Molecular Genetics, 2015, 24, 5285-5298.	2.9	48
29	Internalization and Axonal Transport of the HIV Glycoprotein gp120. ASN Neuro, 2015, 7, 175909141456818.	2.7	31
30	A novel rat model of Alzheimer's disease based on lentiviral-mediated expression of mutant APP. Neuroscience, 2015, 284, 99-106.	2.3	9
31	Amyloid β precursor protein as a molecular target for amyloid β–induced neuronal degeneration in Alzheimer's disease. Neurobiology of Aging, 2013, 34, 2525-2537.	3.1	40
32	Effects of eribulin, vincristine, paclitaxel and ixabepilone on fast axonal transport and kinesin-1 driven microtubule gliding: Implications for chemotherapy-induced peripheral neuropathy. NeuroToxicology, 2013, 37, 231-239.	3.0	182
33	The Sphingolipid Psychosine Inhibits Fast Axonal Transport in Krabbe Disease by Activation of GSK3Â and Deregulation of Molecular Motors. Journal of Neuroscience, 2013, 33, 10048-10056.	3.6	80
34	Axonal degeneration in Alzheimer's disease: When signaling abnormalities meet the axonal transport system. Experimental Neurology, 2013, 246, 44-53.	4.1	171
35	The NF2 tumor suppressor regulates microtubule-based vesicle trafficking via a novel Rac, MLK and p38SAPK pathway. Oncogene, 2013, 32, 1135-1143.	5.9	20
36	Inhibition of Fast Axonal Transport by Pathogenic SOD1 Involves Activation of p38 MAP Kinase. PLoS ONE, 2013, 8, e65235.	2.5	100

#	Article	IF	CITATIONS
37	Intracellular Trafficking. , 2012, , 119-145.		4
38	Axonal Transport. , 2012, , 146-164.		20
39	Phosphorylation in the amino terminus of tau prevents inhibition of anterograde axonal transport. Neurobiology of Aging, 2012, 33, 826.e15-826.e30.	3.1	89
40	Regulation of Axonal Transport by Kinesin Phosphorylation at S176. Biophysical Journal, 2012, 102, 370a.	0.5	0
41	Alterations in axonal transport motor proteins in sporadic and experimental Parkinson's disease. Brain, 2012, 135, 2058-2073.	7.6	249
42	Axonal transport of APP and the spatial regulation of APP cleavage and function in neuronal cells. Experimental Brain Research, 2012, 217, 353-364.	1.5	79
43	Measuring Tau's Effect on Kinesin Motility in Model Systems for Axonal Transport. Biophysical Journal, 2011, 100, 449a.	0.5	0
44	Heat Shock Protein 70 Prevents both Tau Aggregation and the Inhibitory Effects of Preexisting Tau Aggregates on Fast Axonal Transport. Biochemistry, 2011, 50, 10300-10310.	2.5	106
45	Microtubule-Severing ATPase Spastin in Glioblastoma: Increased Expression in Human Glioblastoma Cell Lines and Inverse Roles in Cell Motility and Proliferation. Journal of Neuropathology and Experimental Neurology, 2011, 70, 811-826.	1.7	32
46	Pathogenic Forms of Tau Inhibit Kinesin-Dependent Axonal Transport through a Mechanism Involving Activation of Axonal Phosphotransferases. Journal of Neuroscience, 2011, 31, 9858-9868.	3.6	231
47	Abstract C213: Eribulin, vincristine, ixabepilone, and paclitaxel inhibit neuronal cell function by varied mechanisms and to varying degrees , 2011, , .		0
48	A Perspective on Neuronal Cell Death Signaling and Neurodegeneration. Molecular Neurobiology, 2010, 42, 25-31.	4.0	42
49	Differential vulnerability of neurons in Huntington's disease: the role of cell typeâ€specific features. Journal of Neurochemistry, 2010, 113, 1073-1091.	3.9	130
50	Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nature Neuroscience, 2010, 13, 1396-1403.	14.8	600
51	APP Anterograde Transport Requires Rab3A GTPase Activity for Assembly of the Transport Vesicle. Journal of Neuroscience, 2009, 29, 14534-14544.	3.6	106
52	Disruption of fast axonal transport is a pathogenic mechanism for intraneuronal amyloid beta. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5907-5912.	7.1	198
53	The amino terminus of tau inhibits kinesinâ€dependent axonal transport: Implications for filament toxicity. Journal of Neuroscience Research, 2009, 87, 440-451.	2.9	203
54	Pathogenic huntingtin inhibits fast axonal transport by activating JNK3 and phosphorylating kinesin. Nature Neuroscience, 2009, 12, 864-871.	14.8	222

GERARDO A MORFINI

#	Article	IF	CITATIONS
55	Axonal Transport Defects in Neurodegenerative Diseases. Journal of Neuroscience, 2009, 29, 12776-12786.	3.6	398
56	Conventional Kinesin Holoenzymes Are Composed of Heavy and Light Chain Homodimers. Biochemistry, 2008, 47, 4535-4543.	2.5	79
57	Quantitative and Functional Analyses of Spastin in the Nervous System: Implications for Hereditary Spastic Paraplegia. Journal of Neuroscience, 2008, 28, 2147-2157.	3.6	102
58	Identification of a novel pathway for the in vivo regulation of fast anterograde axonal transport. Journal of Neurochemistry, 2008, 81, 93-94.	3.9	0
59	1-Methyl-4-phenylpyridinium induces synaptic dysfunction through a pathway involving caspase and PKCÂ enzymatic activities. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2437-2441.	7.1	32
60	1-Methyl-4-phenylpyridinium affects fast axonal transport by activation of caspase and protein kinase C. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2442-2447.	7.1	114
61	Impairments in Fast Axonal Transport and Motor Neuron Deficits in Transgenic Mice Expressing Familial Alzheimer's Disease-Linked Mutant Presenilin 1. Journal of Neuroscience, 2007, 27, 7011-7020.	3.6	120
62	Tau binding to microtubules does not directly affect microtubule-based vesicle motility. Journal of Neuroscience Research, 2007, 85, 2620-2630.	2.9	74
63	Approaches to Kinesin-1 Phosphorylation. Methods in Molecular Biology, 2007, 392, 51-69.	0.9	9
64	JNK mediates pathogenic effects of polyglutamine-expanded androgen receptor on fast axonal transport. Nature Neuroscience, 2006, 9, 907-916.	14.8	169
65	Axonal Transport, Amyloid Precursor Protein, Kinesin-1, and the Processing Apparatus: Revisited. Journal of Neuroscience, 2005, 25, 2386-2395.	3.6	221
66	Polyglutamine expansion diseases: failing to deliver. Trends in Molecular Medicine, 2005, 11, 64-70.	6.7	63
67	Reelin and Cyclin-Dependent Kinase 5-Dependent Signals Cooperate in Regulating Neuronal Migration and Synaptic Transmission. Journal of Neuroscience, 2004, 24, 1897-1906.	3.6	107
68	A novel CDK5-dependent pathway for regulating GSK3 activity and kinesin-driven motility in neurons. EMBO Journal, 2004, 23, 2235-2245.	7.8	245
69	Neuropathogenic Forms of Huntingtin and Androgen Receptor Inhibit Fast Axonal Transport. Neuron, 2003, 40, 41-52.	8.1	289
70	Regulation of membrane expansion at the nerve growth cone. Journal of Cell Science, 2003, 116, 1209-1217.	2.0	102
71	Alzheimer's Presenilin 1 Mutations Impair Kinesin-Based Axonal Transport. Journal of Neuroscience, 2003, 23, 4499-4508.	3.6	275
72	Reelin-mediated Signaling Locally Regulates Protein Kinase B/Akt and Glycogen Synthase Kinase 3β. Journal of Biological Chemistry, 2002, 277, 49958-49964.	3.4	275

Gerardo A Morfini

#	Article	IF	CITATIONS
73	Ca2+-dependent Dephosphorylation of Kinesin Heavy Chain on β-Granules in Pancreatic β-Cells. Journal of Biological Chemistry, 2002, 277, 24232-24242.	3.4	91
74	Pictures in Cell Biology GSK-3 and regulation of kinesin function. Trends in Cell Biology, 2002, 12, 245.	7.9	3
75	Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility. EMBO Journal, 2002, 21, 281-293.	7.8	358
76	Fast Axonal Transport Misregulation and Alzheimer's Disease. NeuroMolecular Medicine, 2002, 2, 089-100.	3.4	82
77	Regulation of Kinesin: Implications for Neuronal Development. Developmental Neuroscience, 2001, 23, 364-376.	2.0	54
78	Approaches to Study Interactions Between Kinesin Motors and Membranes. , 2001, 164, 147-162.		11
79	Release of Kinesin from Vesicles by hsc70 and Regulation of Fast Axonal Transport. Molecular Biology of the Cell, 2000, 11, 2161-2173.	2.1	91
80	Evidence for the Participation of the Neuron-Specific CDK5 Activator P35 during Laminin-Enhanced Axonal Growth. Journal of Neuroscience, 1998, 18, 9858-9869.	3.6	181
81	Suppression of KIF2 in PC12 Cells Alters the Distribution of a Growth Cone Nonsynaptic Membrane Receptor and Inhibits Neurite Extension. Journal of Cell Biology, 1997, 138, 657-669.	5.2	74
82	Neurotrophin-3 enhances neurite outgrowth in cultured hippocampal pyramidal neurons. Journal of Neuroscience Research, 1994, 39, 219-232.	2.9	55
83	Microfilament-associated growth cone component depends upon Tau for its intracellular localization. Cytoskeleton, 1994, 29, 117-130.	4.4	72
84	Intraneuronal traffic of the Amyloid Precursor Protein. , 0, 2007, .		0
85	Approaches to Kinesin-1 Phosphorylation. , 0, , 51-70.		0