Anne-Marie Lundsgaard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5069142/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gender Differences in Skeletal Muscle Substrate Metabolism ââ,¬â€œ Molecular Mechanisms and Insulin Sensitivity. Frontiers in Endocrinology, 2014, 5, 195.	3.5	182
2	Molecular Regulation of Fatty Acid Oxidation in Skeletal Muscle during Aerobic Exercise. Trends in Endocrinology and Metabolism, 2018, 29, 18-30.	7.1	100
3	Circulating FGF21 in humans is potently induced by short term overfeeding of carbohydrates. Molecular Metabolism, 2017, 6, 22-29.	6.5	95
4	Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation. Journal of Physiology, 2016, 594, 745-761.	2.9	78
5	Hepatic Insulin Clearance in Regulation of Systemic Insulin Concentrations—Role of Carbohydrate and Energy Availability. Diabetes, 2018, 67, 2129-2136.	0.6	74
6	Tuning fatty acid oxidation in skeletal muscle with dietary fat and exercise. Nature Reviews Endocrinology, 2020, 16, 683-696.	9.6	74
7	Role of AMPK in regulation of LC3 lipidation as a marker of autophagy in skeletal muscle. Cellular Signalling, 2016, 28, 663-674.	3.6	62
8	Molecular Mechanisms in Skeletal Muscle Underlying Insulin Resistance in Women Who Are Lean With Polycystic Ovary Syndrome. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 1841-1854.	3.6	50
9	Mechanisms Preserving Insulin Action during High Dietary Fat Intake. Cell Metabolism, 2019, 29, 50-63.e4.	16.2	50
10	Opposite Regulation of Insulin Sensitivity by Dietary Lipid Versus Carbohydrate Excess. Diabetes, 2017, 66, 2583-2595.	0.6	46
11	5′â€AMP activated protein kinase α ₂ controls substrate metabolism during postâ€exercise recovery via regulation of pyruvate dehydrogenase kinaseÂ4. Journal of Physiology, 2015, 593, 4765-4780.	2.9	39
12	New Nordic Diet–Induced Weight Loss Is Accompanied by Changes in Metabolism and AMPK Signaling in Adipose Tissue. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 3509-3519.	3.6	39
13	Adiponectin concentration is associated with muscle insulin sensitivity, AMPK phosphorylation, and ceramide content in skeletal muscles of men but not women. Journal of Applied Physiology, 2013, 114, 592-601.	2.5	32
14	The Importance of Fatty Acids as Nutrients during Post-Exercise Recovery. Nutrients, 2020, 12, 280.	4.1	29
15	Thyroid hormone receptor α in skeletal muscle is essential for T3â€mediated increase in energy expenditure. FASEB Journal, 2020, 34, 15480-15491.	0.5	25
16	ApoA-1 improves glucose tolerance by increasing glucose uptake into heart and skeletal muscle independently of AMPKα2. Molecular Metabolism, 2020, 35, 100949.	6.5	25
17	Dietary Fuels in Athletic Performance. Annual Review of Nutrition, 2019, 39, 45-73.	10.1	23
18	Glucometabolic consequences of acute and prolonged inhibition of fatty acid oxidation. Journal of Lipid Research, 2020, 61, 10-19.	4.2	23

#	Article	IF	CITATIONS
19	Cancer causes metabolic perturbations associated with reduced insulin-stimulated glucose uptake in peripheral tissues and impaired muscle microvascular perfusion. Metabolism: Clinical and Experimental, 2020, 105, 154169.	3.4	22
20	Differential effects of glucagonâ€like peptideâ€1 on microvascular recruitment and glucose metabolism in short―and longâ€ŧerm insulin resistance. Journal of Physiology, 2015, 593, 2185-2198.	2.9	20
21	Small Amounts of Dietary Medium-Chain Fatty Acids Protect Against Insulin Resistance During Caloric Excess in Humans. Diabetes, 2021, 70, 91-98.	0.6	18
22	Insulinâ€stimulated glucose uptake partly relies on p21â€activated kinase (PAK)2, but not PAK1, in mouse skeletal muscle. Journal of Physiology, 2020, 598, 5351-5377.	2.9	15
23	Mechanisms Underlying Absent Training-Induced Improvement in Insulin Action in Lean, Hyperandrogenic Women With Polycystic Ovary Syndrome. Diabetes, 2020, 69, 2267-2280.	0.6	13
24	Nutritional optimization for female elite football players—topical review. Scandinavian Journal of Medicine and Science in Sports, 2022, 32, 81-104.	2.9	12
25	Pharmacological targeting of $\hat{l}\pm3\hat{l}^24$ nicotinic receptors improves peripheral insulin sensitivity in mice with diet-induced obesity. Diabetologia, 2020, 63, 1236-1247.	6.3	9
26	The Role of Hepatic Fat Accumulation in Glucose and Insulin Homeostasis—Dysregulation by the Liver. Journal of Clinical Medicine, 2021, 10, 390.	2.4	8
27	Exercise Physiology in Men and Women. , 2017, , 525-542.		5
28	Fatty acid type–specific regulation of SIRT1 does not affect insulin sensitivity in human skeletal muscle. FASEB Journal, 2019, 33, 5510-5519.	0.5	4