
Richard J Roman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5067615/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>P</i> -450 Metabolites of Arachidonic Acid in the Control of Cardiovascular Function. Physiological Reviews, 2002, 82, 131-185.	28.8	1,235
2	Inflammation and renal fibrosis: Recent developments on key signaling molecules as potential therapeutic targets. European Journal of Pharmacology, 2018, 820, 65-76.	3.5	219
3	Brown Norway Chromosome 13 Confers Protection From High Salt to Consomic Dahl S Rat. Hypertension, 2001, 37, 456-461.	2.7	194
4	The Renal Medulla and Hypertension. Hypertension, 1995, 25, 663-673.	2.7	184
5	Molecular Characterization of an Arachidonic Acid Epoxygenase in Rat Brain Astrocytes. Stroke, 1996, 27, 971-979.	2.0	176
6	Nitric Oxide-20–Hydroxyeicosatetraenoic Acid Interaction in the Regulation of K ⁺ Channel Activity and Vascular Tone in Renal Arterioles. Circulation Research, 1998, 83, 1069-1079.	4.5	162
7	20-Hydroxyeicosatetraeonic Acid: A New Target for the Treatment of Hypertension. Journal of Cardiovascular Pharmacology, 2010, 56, 336-344.	1.9	154
8	Effects of a New SGLT2 Inhibitor, Luseogliflozin, on Diabetic Nephropathy in T2DN Rats. Journal of Pharmacology and Experimental Therapeutics, 2013, 345, 464-472.	2.5	132
9	Functional polymorphism in human CYP4F2 decreases 20-HETE production. Physiological Genomics, 2007, 30, 74-81.	2.3	131
10	Elevated production of 20-HETE in the cerebral vasculature contributes to severity of ischemic stroke and oxidative stress in spontaneously hypertensive rats. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H2455-H2465.	3.2	126
11	Molecular Mechanisms of Renal Blood Flow Autoregulation. Current Vascular Pharmacology, 2014, 12, 845-858.	1.7	117
12	Renal And Cardiovascular Actions Of 20-Hydroxyeicosatetraenoic Acid And Epoxyeicosatrienoic Acids. Clinical and Experimental Pharmacology and Physiology, 2000, 27, 855-865.	1.9	114
13	Activation of Vascular Endothelial Growth Factor through Reactive Oxygen Species Mediates 20-Hydroxyeicosatetraenoic Acid-Induced Endothelial Cell Proliferation. Journal of Pharmacology and Experimental Therapeutics, 2007, 321, 18-27.	2.5	103
14	Oxidative Stress and Renal Fibrosis: Recent Insights for the Development of Novel Therapeutic Strategies. Frontiers in Physiology, 2018, 9, 105.	2.8	102
15	Role of 20-HETE in Elevating Chloride Transport in the Thick Ascending Limb of Dahl SS/Jr Rats. Hypertension, 1999, 33, 419-423.	2.7	93
16	Effect of 20-HETE Inhibition on Infarct Volume and Cerebral Blood Flow after Transient Middle Cerebral Artery Occlusion. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 629-639.	4.3	91
17	Contribution of 5-Hydroxytryptamine1BReceptors and 20-Hydroxyeiscosatetraenoic Acid to Fall in Cerebral Blood Flow After Subarachnoid Hemorrhage. Stroke, 2003, 34, 1269-1275.	2.0	89
18	Role of cGMP versus 20-HETE in the vasodilator response to nitric oxide in rat cerebral arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H339-H350.	3.2	86

#	Article	IF	CITATIONS
19	Genetically defined risk of salt sensitivity in an intercross of Brown Norway and Dahl S rats. Physiological Genomics, 2000, 2, 107-115.	2.3	78
20	Endothelial specific SIRT3 deletion impairs glycolysis and angiogenesis and causes diastolic dysfunction. Journal of Molecular and Cellular Cardiology, 2017, 112, 104-113.	1.9	78
21	20-HETE agonists and antagonists in the renal circulation. American Journal of Physiology - Renal Physiology, 1999, 277, F790-F796.	2.7	75
22	Placental ischemia in pregnant rats impairs cerebral blood flow autoregulation and increases blood-brain barrier permeability. Physiological Reports, 2014, 2, e12134.	1.7	75
23	Molecular mechanisms and cell signaling of 20-hydroxyeicosatetraenoic acid in vascular pathophysiology. Frontiers in Bioscience - Landmark, 2016, 21, 1427-1463.	3.0	75
24	Initial Characterization of a Rat Model of Diabetic Nephropathy. Diabetes, 2004, 53, 735-742.	0.6	74
25	CYP4A metabolites of arachidonic acid and VEGF are mediators of skeletal muscle angiogenesis. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H1528-H1535.	3.2	73
26	Effect of Cytochrome P450 Metabolites of Arachidonic Acid in Nephrology. Journal of the American Society of Nephrology: JASN, 2017, 28, 2845-2855.	6.1	71
27	Interaction of nitric oxide, 20-HETE, and EETs during functional hyperemia in whisker barrel cortex. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H619-H631.	3.2	67
28	Role of 20-HETE in Elevating Loop Chloride Reabsorption in Dahl SS/Jr Rats. Hypertension, 1996, 27, 631-635.	2.7	67
29	Lovastatin Prevents Development of Hypertension in Spontaneously Hypertensive Rats. Hypertension, 1997, 30, 968-974.	2.7	67
30	Localization of cytochrome <i>P</i> -450 4A isoforms along the rat nephron. American Journal of Physiology - Renal Physiology, 1998, 274, F395-F404.	2.7	64
31	Evidence that 20-HETE contributes to the development of acute and delayed cerebral vasospasm. Neurological Research, 2006, 28, 738-749.	1.3	64
32	Abnormal pressure-natriuresis in hypertension: role of cytochrome P450 metabolites of arachidonic acid. American Journal of Hypertension, 2001, 14, S90-S97.	2.0	63
33	Cytochrome P4504A Genotype Cosegregates With Hypertension in Dahl S Rats. Hypertension, 1996, 27, 564-568.	2.7	62
34	Contribution of 20-HETE to the vasodilator actions of nitric oxide in renal arteries. American Journal of Physiology - Renal Physiology, 1998, 275, F370-F378.	2.7	58
35	Renal P450 Metabolites of Arachidonic Acid and the Development of Hypertension in Dahl Salt-Sensitive Rats. American Journal of Hypertension, 1997, 10, 63S-67S.	2.0	56
36	Electrical and mechanical responses of rat middle cerebral arteries to reduced P O 2 and prostacyclin. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 276, H509-H516.	3.2	55

#	Article	IF	CITATIONS
37	Renin Gene Transfer Restores Angiogenesis and Vascular Endothelial Growth Factor Expression in Dahl S Rats. Hypertension, 2001, 37, 386-390.	2.7	55
38	Impaired myogenic response and autoregulation of cerebral blood flow is rescued in CYP4A1 transgenic Dahl salt-sensitive rat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R379-R390.	1.8	55
39	Macula Densa Nitric Oxide Synthase 1β Protects against Salt-Sensitive Hypertension. Journal of the American Society of Nephrology: JASN, 2016, 27, 2346-2356.	6.1	55
40	20-Hydroxyeicosatetraenoic Acid Contributes to the Inhibition of K+ Channel Activity and Vasoconstrictor Response to Angiotensin II in Rat Renal Microvessels. PLoS ONE, 2013, 8, e82482.	2.5	54
41	Altered renal hemodynamics and impaired myogenic responses in the fawn-hooded rat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 276, R855-R863.	1.8	51
42	Renoprotective effects of combined SGLT2 and ACE inhibitor therapy in diabetic Dahl S rats. Physiological Reports, 2015, 3, e12436.	1.7	51
43	20-HETE. Hypertension, 2018, 72, 12-18.	2.7	50
44	Fluorescent HPLC assay for 20-HETE and other P-450 metabolites of arachidonic acid. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H863-H871.	3.2	47
45	Reversal of Microvascular Rarefaction and Reduced Renal Mass Hypertension. Hypertension, 1997, 30, 120-127.	2.7	47
46	20-HETE modulates myogenic response of skeletal muscle resistance arteries from hypertensive Dahl-SS rats. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H1066-H1074.	3.2	43
47	Chromosomal mapping of the genetic basis of hypertension and renal disease in FHH rats. American Journal of Physiology - Renal Physiology, 2007, 293, F1905-F1914.	2.7	42
48	Accelerated cerebral vascular injury in diabetes is associated with vascular smooth muscle cell dysfunction. GeroScience, 2020, 42, 547-561.	4.6	41
49	Aging exacerbates impairments of cerebral blood flow autoregulation and cognition in diabetic rats. GeroScience, 2020, 42, 1387-1410.	4.6	40
50	Zinc-Finger Nuclease Knockout of Dual-Specificity Protein Phosphatase-5 Enhances the Myogenic Response and Autoregulation of Cerebral Blood Flow in FHH.1BN Rats. PLoS ONE, 2014, 9, e112878.	2.5	39
51	Knockdown of Add3 impairs the myogenic response of renal afferent arterioles and middle cerebral arteries. American Journal of Physiology - Renal Physiology, 2017, 312, F971-F981.	2.7	38
52	Impaired autoregulation of renal blood flow in the fawn-hooded rat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 276, R189-R196.	1.8	37
53	20-Hydroxyeicosatetraenoic Acid Inhibition Attenuates Balloon Injury-Induced Neointima Formation and Vascular Remodeling in Rat Carotid Arteries. Journal of Pharmacology and Experimental Therapeutics, 2013, 346, 67-74.	2.5	36
54	Cytochrome P-450 ω-hydroxylase senses O2 in hamster muscle, but not cheek pouch epithelium, microcirculation. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 276, H503-H508.	3.2	35

#	Article	IF	CITATIONS
55	Reduced pericyte and tight junction coverage in old diabetic rats are associated with hyperglycemia-induced cerebrovascular pericyte dysfunction. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H549-H562.	3.2	35
56	Identification of a QTL on chromosome 1 for impaired autoregulation of RBF in fawn-hooded hypertensive rats. American Journal of Physiology - Renal Physiology, 2006, 290, F1213-F1221.	2.7	34
57	Role of 20-HETE in the impaired myogenic and TGF responses of the Af-Art of Dahl salt-sensitive rats. American Journal of Physiology - Renal Physiology, 2014, 307, F509-F515.	2.7	33
58	Loss of prolyl hydroxylase domain protein 2 in vascular endothelium increases pericyte coverage and promotes pulmonary arterial remodeling. Oncotarget, 2016, 7, 58848-58861.	1.8	33
59	Altered Mechanisms Underlying Hypoxic Dilation of Skeletal Muscle Resistance Arteries of Hypertensive versus Normotensive Dahl Rats. Microcirculation, 2001, 8, 115-127.	1.8	32
60	Conflicting Roles of 20-HETE in Hypertension and Stroke. International Journal of Molecular Sciences, 2019, 20, 4500.	4.1	32
61	Novel Mechanistic Insights and Potential Therapeutic Impact of TRPC6 in Neurovascular Coupling and Ischemic Stroke. International Journal of Molecular Sciences, 2021, 22, 2074.	4.1	32
62	Substitution of chromosome 1 ameliorates l-NAME hypertension and renal disease in the fawn-hooded hypertensive rat. American Journal of Physiology - Renal Physiology, 2005, 288, F1015-F1022.	2.7	31
63	Regulation ofP-450 4A activity in the glomerulus of the rat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 276, R1749-R1757.	1.8	30
64	Sex differences in the structure and function of rat middle cerebral arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H1219-H1232.	3.2	30
65	Endogenously produced 20-HETE modulates myogenic and TGF response in microperfused afferent arterioles. Prostaglandins and Other Lipid Mediators, 2013, 102-103, 42-48.	1.9	29
66	Genetic basis of the impaired renal myogenic response in FHH rats. American Journal of Physiology - Renal Physiology, 2013, 304, F565-F577.	2.7	28
67	20-HETE Enzymes and Receptors in the Neurovascular Unit: Implications in Cerebrovascular Disease. Frontiers in Neurology, 2020, 11, 983.	2.4	28
68	Role of guanylyl cyclase and cytochrome P-450 on renal response to nitric oxide. American Journal of Physiology - Renal Physiology, 2001, 281, F420-F427.	2.7	27
69	20â€HETE Contributes to Myogenic Activation of Skeletal Muscle Resistance Arteries in Brown Norway and Spragueâ€Dawley Rats. Microcirculation, 2001, 8, 45-55.	1.8	27
70	Cerebral Autoregulation in Hypertension and Ischemic Stroke: A Mini Review. , 2017, 2017, 21-27.		27
71	Lovastatin reduces renal vascular reactivity in spontaneously hypertensive ratsâ~†. American Journal of Hypertension, 1998, 11, 1222-1231.	2.0	25
72	Hippocampus is more susceptible to hypoxic injury: has the Rosetta Stone of regional variation in neurovascular coupling been deciphered?. GeroScience, 2022, 44, 127-130.	4.6	25

Richard J Roman

#	Article	IF	CITATIONS
73	Urinary CYP eicosanoid excretion correlates with glomerular filtration in African-Americans with chronic kidney disease. Prostaglandins and Other Lipid Mediators, 2014, 113-115, 45-51.	1.9	24
74	Expression of CYP 4A ω-hydroxylase and formation of 20-hydroxyeicosatetreanoic acid (20-HETE) in cultured rat brain astrocytes. Prostaglandins and Other Lipid Mediators, 2016, 124, 16-26.	1.9	24
75	Enhanced large conductance K ⁺ channel activity contributes to the impaired myogenic response in the cerebral vasculature of Fawn Hooded Hypertensive rats. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H989-H1000.	3.2	23
76	GPR75 Identified as the First 20-HETE Receptor. Circulation Research, 2017, 120, 1696-1698.	4.5	23
77	A Mutation in γ-Adducin Impairs Autoregulation of Renal Blood Flow and Promotes the Development of Kidney Disease. Journal of the American Society of Nephrology: JASN, 2020, 31, 687-700.	6.1	23
78	Enhanced renal ischemia-reperfusion injury in aging and diabetes. American Journal of Physiology - Renal Physiology, 2018, 315, F1843-F1854.	2.7	22
79	From 1901 to 2022, how far are we from truly understanding the pathogenesis of age-related dementia?. GeroScience, 2022, 44, 1879-1883.	4.6	22
80	Knockout of Dual-Specificity Protein Phosphatase 5 Protects Against Hypertension-Induced Renal Injury. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 206-217.	2.5	21
81	20-HETE in acute kidney injury. Kidney International, 2011, 79, 10-13.	5.2	20
82	Influence of dualâ€specificity protein phosphatase 5 on mechanical properties of rat cerebral and renal arterioles. Physiological Reports, 2020, 8, e14345.	1.7	20
83	Recent Insights Into the Protective Mechanisms of Paeoniflorin in Neurological, Cardiovascular, and Renal Diseases. Journal of Cardiovascular Pharmacology, 2021, 77, 728-734.	1.9	20
84	Temporal characterization of the development of renal injury in FHH rats and FHH.1 ^{BN} congenic strains. American Journal of Physiology - Renal Physiology, 2011, 300, F330-F338.	2.7	19
85	Differential Effect of Cytochrome Pâ€450 ωâ€Hydroxylase Inhibition on O ₂ â€Induced Constriction of Arterioles in SHR With Early and Established Hypertension. Microcirculation, 2001, 8, 435-443.	1.8	18
86	Identification of a region of rat chromosome 1 that impairs the myogenic response and autoregulation of cerebral blood flow in fawn-hooded hypertensive rats. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H311-H317.	3.2	18
87	Upregulation of 20-HETE Synthetic Cytochrome P450 Isoforms by Oxygen–Glucose Deprivation in Cortical Neurons. Cellular and Molecular Neurobiology, 2017, 37, 1279-1286.	3.3	18
88	Shear stress blunts tubuloglomerular feedback partially mediated by primary cilia and nitric oxide at the macula densa. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R757-R766.	1.8	17
89	Inhibition of prolyl hydroxylases alters cell metabolism and reverses pre-existing diastolic dysfunction in mice. International Journal of Cardiology, 2018, 272, 281-287.	1.7	17
90	Cytochrome P-450 arachidonate metabolite inhibition improves renal function in Lyon hypertensive rats. American Journal of Hypertension, 1999, 12, 398-404.	2.0	16

#	Article	IF	CITATIONS
91	Identification and function of adenosine A ₃ receptor in afferent arterioles. American Journal of Physiology - Renal Physiology, 2015, 308, F1020-F1025.	2.7	16
92	Effects of converting enzyme inhibitors on renalP-450 metabolism of arachidonic acid. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 280, R822-R830.	1.8	15
93	Fluorescence dilution technique for measurement of albumin reflection coefficient in isolated glomeruli. American Journal of Physiology - Renal Physiology, 2015, 309, F1049-F1059.	2.7	15
94	Genetic susceptibility of hypertensionâ€induced kidney disease. Physiological Reports, 2021, 9, e14688.	1.7	15
95	Impaired myogenic response of the afferent arteriole contributes to the increased susceptibility to renal disease in Milan normotensive rats. Physiological Reports, 2017, 5, e13089.	1.7	14
96	Menopause and Ischemic Stroke: A Brief Review. MOJ Toxicology, 2017, 3, .	0.2	14
97	The angiotensin II type I receptor contributes to impaired cerebral blood flow autoregulation caused by placental ischemia in pregnant rats. Biology of Sex Differences, 2019, 10, 58.	4.1	14
98	Reversal of cerebral hypoperfusion: a novel therapeutic target for the treatment of AD/ADRD?. GeroScience, 2021, 43, 1065-1067.	4.6	14
99	P-450 Eicosanoids: A Novel Signaling Pathway Regulating Renal Function. Physiology, 1999, 14, 238-242.	3.1	13
100	DMOG, a Prolyl Hydroxylase Inhibitor, Increases Hemoglobin Levels without Exacerbating Hypertension and Renal Injury in Salt-Sensitive Hypertensive Rats. Journal of Pharmacology and Experimental Therapeutics, 2020, 372, 166-174.	2.5	13
101	Impaired renal hemodynamics and glomerular hyperfiltration contribute to hypertension-induced renal injury. American Journal of Physiology - Renal Physiology, 2020, 319, F624-F635.	2.7	13
102	20-HETE-promoted cerebral blood flow autoregulation is associated with enhanced pericyte contractility. Prostaglandins and Other Lipid Mediators, 2021, 154, 106548.	1.9	13
103	Is Beta-Amyloid Accumulation a Cause or Consequence of Alzheimer's Disease?. , 2016, 1, .		13
104	Intrarenal Renin–Angiotensin System. Hypertension, 2016, 67, 831-833.	2.7	12
105	Eicosanoid Profiles in the Vitreous Humor of Patients with Proliferative Diabetic Retinopathy. International Journal of Molecular Sciences, 2020, 21, 7451.	4.1	12
106	Luseogliflozin, a sodium-glucose cotransporter-2 inhibitor, reverses cerebrovascular dysfunction and cognitive impairments in 18-mo-old diabetic animals. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H246-H259.	3.2	12
107	Capillary Stalling: A Mechanism of Decreased Cerebral Blood Flow in AD/ADRD. , 2021, 2, 149-153.		12
108	Aging diabetes, deconstructing the cerebrovascular wall. Aging, 2021, 13, 9158-9159.	3.1	11

#	Article	IF	CITATIONS
109	Vascular contributions to cognitive impairment and dementia: the emerging role of 20-HETE. Clinical Science, 2021, 135, 1929-1944.	4.3	11
110	Effects of Intrarenal Infusion of 17-Octadecynoic Acid on Renal Antihypertensive Mechanisms in Anesthetized Rabbits. American Journal of Hypertension, 1998, 11, 803-812.	2.0	10
111	Contribution of cerebral microvascular mechanisms to age-related cognitive impairment and dementia. Physiology International, 2022, 109, 20-30.	1.6	10
112	Sex differences in blood pressure control in SHR: lack of a role for EETs. Physiological Reports, 2014, 2, e12022.	1.7	9
113	Elevated K ⁺ channel activity opposes vasoconstrictor response to serotonin in cerebral arteries of the Fawn Hooded Hypertensive rat. Physiological Genomics, 2017, 49, 27-36.	2.3	9
114	Diffusion-weighted 7.0T Magnetic Resonance Imaging in Assessment of Intervertebral Disc Degeneration in Rats. Chinese Medical Journal, 2018, 131, 63-68.	2.3	9
115	Role of γ-adducin in actin cytoskeleton rearrangements in podocyte pathophysiology. American Journal of Physiology - Renal Physiology, 2021, 320, F97-F113.	2.7	9
116	Visualization of the intrarenal distribution of capillary blood flow. Physiological Reports, 2019, 7, e14065.	1.7	7
117	Renoprotective effects of empagliflozin in type 1 and type 2 models of diabetic nephropathy superimposed with hypertension. GeroScience, 2022, 44, 2845-2861.	4.6	7
118	Knockout of <i>γ</i> -Adducin Promotes N ^G -Nitro-L-Arginine-Methyl-Ester–Induced Hypertensive Renal Injury. Journal of Pharmacology and Experimental Therapeutics, 2021, 377, 189-198.	2.5	6
119	20-HETE Contributes to Myogenic Activation of Skeletal Muscle Resistance Arteries in Brown Norway and Sprague-Dawley Rats. Microcirculation, 2001, 8, 45-55.	1.8	6
120	Abstract WP498: Impaired Pericyte Constriction and Cerebral Blood Flow Autoregulationin Diabetes. Stroke, 2020, 51, .	2.0	5
121	The adducin saga: pleiotropic genomic targets for precision medicine in human hypertension—vascular, renal, and cognitive diseases. Physiological Genomics, 2022, 54, 58-70.	2.3	5
122	Genetic Susceptibility to Hypertension-Induced Renal Injury. Hypertension, 2018, 71, 559-560.	2.7	4
123	Increased Levels of Renal Lysophosphatidic Acid in Rodent Models with Renal Disease. Journal of Pharmacology and Experimental Therapeutics, 2021, 376, 240-249.	2.5	4
124	Abstract 35: Gamma Adducin Dysfunction Leads To Cerebrovascular Distention, Blood Brain Barrier Leakage, And Cognitive Deficits In The Fawn-hooded Hypertensive Rats. Hypertension, 2021, 78, .	2.7	4
125	Energy-dispersive X-ray microanalysis of aqueous biologic samples on bulk supports. Journal of Electron Microscopy Technique, 1984, 1, 141-150.	1.1	3
126	Downâ€Regulation of Gammaâ€Adducin Disrupts the Actin Cytoskeleton in FHH rats and May Contribute to the Development of Hypertensionâ€induced Renal Injury. FASEB Journal, 2018, 32, 721.10.	0.5	3

Richard J Roman

#	Article	IF	CITATIONS
127	Traumatic brain injury induced by exposure to blast overpressure via ear canal. Neural Regeneration Research, 2022, 17, 115.	3.0	2
128	Increased Renal Expression of Adhesion Molecules and Inflammation in Diabetic Nephropathy. FASEB Journal, 2019, 33, 573.7.	0.5	2
129	Upregulation of renal medullary 20â€HETE production opposes the development of hypertension in Sleeping Beauty Transposon CYP4A1 transgenic Dahl S rats. FASEB Journal, 2012, 26, .	0.5	2
130	Increases in renal medullary 20â€HETE formation oppose the development of hypertension and improves pressure natriuresis in CYP4A1 transgenic Dahl S rats. FASEB Journal, 2013, 27, 1115.3.	0.5	2
131	Contribution of Betaâ€amyloid Accumulation to Cerebral Hypoperfusion in Alzheimer's Disease. FASEB Journal, 2022, 36, .	0.5	2
132	Effects of an SGLT2 inhibitor on cognition in diabetes involving amelioration of deep cortical cerebral blood flow autoregulation and pericyte function. Alzheimer's and Dementia, 2020, 16, e037056.	0.8	1
133	Elevated Aminopeptidase P Attenuates Cerebral Arterial Responses to Bradykinin in Fawn-Hooded Hypertensive Rats. PLoS ONE, 2015, 10, e0145335.	2.5	1
134	Transfer of Brown Norway Rat Chromosome 13 into Dahl S Genomic Background Confers Protection from High Salt Diet. Hypertension, 2000, 36, 717-717.	2.7	1
135	Down Regulation of Add3 in Astrocytes Disrupts the Actin Cytoskeleton in Association with Decreasing Small Molecule Uptake and May Contribute to Cognitive Deficits in FHH rats. FASEB Journal, 2018, 32, 697.10.	0.5	1
136	Duration and magnitude of bidirectional fluctuation in blood pressure: the link between cerebrovascular dysfunction and cognitive impairment following spinal cord injury. Journal of Neurobiology and Physiology, 2020, 2, 15-18.	1.0	1
137	A Biopolymerâ€delivered MMPâ€2 Inhibitory for Treatment of Renal Fibrosis. FASEB Journal, 2021, 35, .	0.5	Ο
138	Eicosanoid profiling in cerebral vessels and brain of WKY, SHR, and SHRâ€ S P rats. FASEB Journal, 2006, 20, A731.	0.5	0
139	Efficient transgenic rat production by a lentiviral vector. FASEB Journal, 2006, 20, A407.	0.5	Ο
140	Interaction of nitric oxide and 20â€HETE during cortical functional hyperemia. FASEB Journal, 2006, 20, A730.	0.5	0
141	Effect of cellâ€free hemoglobin transfusion and 20â€HETE synthesis inhibition on pial arteriolar diameter during middle cerebral artery occlusion. FASEB Journal, 2007, 21, A1274.	0.5	Ο
142	Protective effect of 20â€HETE inhibition on infarct volume following temporary middle cerebral artery occlusion is not associated with changes in cerebral blood flow. FASEB Journal, 2007, 21, A1383.	0.5	0
143	Highâ€Throughput Production and Phenotyping of Rat Knockout Models for Hypertension. FASEB Journal, 2007, 21, A1236.	0.5	0
144	Cerebral vascular cytochrome Pâ€450 4A enzyme activity and expression are elevated in a genetic model of stroke. FASEB Journal, 2007, 21, A1383.	0.5	0

0

#	ARTICLE	IF	CITATIONS
145	Molecular changes in the cytochrome P450 4A isoforms in the Sprague Dawley rat kidney following ischemia/reperfusion. FASEB Journal, 2008, 22, 730.10.	0.5	0
146	Overexpression of CYP4A1â€20â€HETE in U251 Glioma Cell Induces Hyperproliferative Phenotypes in vitro and in vivo. FASEB Journal, 2008, 22, 1136.13.	0.5	0
147	Dilutional fluorescent method to measure glomerular albumin reflection coefficient (dσAlb) in vitro. FASEB Journal, 2009, 23, .	0.5	0
148	Effects of cytochrome P450 metabolites of arachidonic acid on the epithelial sodium channel (ENaC). FASEB Journal, 2010, 24, 611.3.	0.5	0
149	Role of 20â€HETE in Differential Effects of High Salt Diet on Resistance Artery Function in Dahl Saltâ€Sensitive (SS) Rats and SSâ€5BN Consomic Rats. FASEB Journal, 2010, 24, 976.6.	0.5	0
150	The progression of diabetesâ€induced renal injury in Dahl saltâ€sensitive rats. FASEB Journal, 2011, 25, 664.7.	0.5	0
151	Role of 20â€HETE in neuronal signaling and contribution to neonatal hypoxicâ€ischemic encephalopathy. FASEB Journal, 2012, 26, 711.4.	0.5	0
152	The Reduction of Renal Injury in Diabetic Dahl Saltâ€ s ensitive Rats with Insulin is Associated with Decreased MMP Activity. FASEB Journal, 2012, 26, 687.3.	0.5	0
153	Increased MMPâ€9 Activity During the Progression of Renal Injury in Typeâ€2 Diabetic Nephropathy rats. FASEB Journal, 2012, 26, 687.4.	0.5	0
154	Using the T2DN rat as a model to determine therapeutic efficacy of Serelaxin (recombinant human) Tj ETQq0 0 0	rgBT /Ove 0.5	rlock 10 Tf 5
155	Macula Densa NOS1 Protects Against Acute Kidney Injury (AKI) Mediated by Primary Cilia. FASEB Journal, 2013, 27, 910.8.	0.5	0
156	Impaired myogenic responses of the Afâ€Art contributes to chronic kidney disease in Milan Normotensive rats. FASEB Journal, 2015, 29, 811.17.	0.5	0
157	Excessive salt consumption increases susceptibility to cerebrovascular dysfunction and cognitive impairments in the elderly of both sexes. FASEB Journal, 2019, 33, 511.7.	0.5	0
158	Hypertensionâ€induced Renal Injury is Associated with Impaired Glomerular Barrier Function Involving Podocyte Dysfunction. FASEB Journal, 2019, 33, 573.9.	0.5	0
159	Localization of the CYP4A Enzymes that Produce 20â€HETE and the 20â€HETE Receptor in the Brain. FASEB Journal, 2019, 33, 500.12.	0.5	0