Michael Kyba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5067034/publications.pdf

Version: 2024-02-01

160 papers 13,344 citations

²⁶⁶³⁰
56
h-index

24258 110 g-index

170 all docs

170 docs citations

170 times ranked

16225 citing authors

#	Article	IF	CITATIONS
1	Persistent Fibroadipogenic Progenitor Expansion Following Transient DUX4 Expression Provokes a Profibrotic State in a Mouse Model for FSHD. International Journal of Molecular Sciences, 2022, 23, 1983.	4.1	11
2	Laminin 411 mediates endothelial specification via multiple signaling axes that converge on \hat{l}^2 -catenin. Stem Cell Reports, 2022, 17, 569-583.	4.8	9
3	Estradiol deficiency reduces the satellite cell pool by impairing cell cycle progression. American Journal of Physiology - Cell Physiology, 2022, 322, C1123-C1137.	4.6	5
4	Antiapoptotic Protein FAIM2 is targeted by miR-3202, and DUX4 via TRIM21, leading to cell death and defective myogenesis. Cell Death and Disease, 2022, 13, 405.	6.3	2
5	Baroreflex sensitivity in facioscapulohumeral muscular dystrophy. Physiological Reports, 2022, 10, e15277.	1.7	1
6	Dux facilitates post-implantation development, but is not essential for zygotic genome activationâ€. Biology of Reproduction, 2021, 104, 83-93.	2.7	26
7	Enhanced differentiation of human induced pluripotent stem cells toward the midbrain dopaminergic neuron lineage through GLYPICAN-4 downregulation. Stem Cells Translational Medicine, 2021, 10, 725-742.	3.3	7
8	Chromatin accessibility profiling identifies evolutionary conserved loci in activated human satellite cells. Stem Cell Research, 2021, 55, 102496.	0.7	4
9	B1 lymphocytes develop independently of Notch signaling during mouse embryonic development. Development (Cambridge), 2021, 148, .	2.5	6
10	Resting metabolic rate in adults with facioscapulohumeral muscular dystrophy. Applied Physiology, Nutrition and Metabolism, 2021, 46, 1058-1064.	1.9	3
11	Fli1 Promotes Vascular Morphogenesis by Regulating Endothelial Potential of Multipotent Myogenic Progenitors. Circulation Research, 2021, 129, 949-964.	4.5	5
12	Preservation of satellite cell number and regenerative potential with age reveals locomotory muscle bias. Skeletal Muscle, 2021, 11, 22.	4.2	14
13	Inactivation of the CIC-DUX4 oncogene through P300/CBP inhibition, a therapeutic approach for CIC-DUX4 sarcoma. Oncogenesis, 2021, 10, 68.	4.9	18
14	InÂvitro expanded skeletal myogenic progenitors from pluripotent stem cell-derived teratomas have high engraftment capacity. Stem Cell Reports, 2021, 16, 2900-2912.	4.8	9
15	Editorial overview – Differentiation: the driver of development. Current Opinion in Cell Biology, 2021, 73, iii-v.	5.4	0
16	Tet3 regulates cellular identity and DNA methylation in neural progenitor cells. Cellular and Molecular Life Sciences, 2020, 77, 2871-2883.	5.4	29
17	Prospective isolation of human fibroadipogenic progenitors with CD73. Heliyon, 2020, 6, e04503.	3.2	7
18	Oestradiol affects skeletal muscle mass, strength and satellite cells following repeated injuries. Experimental Physiology, 2020, 105, 1700-1707.	2.0	16

#	Article	IF	CITATIONS
19	Sarcopenic Obesity in Facioscapulohumeral Muscular Dystrophy. Frontiers in Physiology, 2020, 11, 1008.	2.8	10
20	DNA aptamers against the DUX4 protein reveal novel therapeutic implications for FSHD. FASEB Journal, 2020, 34, 4573-4590.	0.5	19
21	Replication of bone-marrow pathophysiology. Nature Biomedical Engineering, 2020, 4, 364-365.	22.5	0
22	Transcriptional and cytopathological hallmarks of FSHD in chronic DUX4-expressing mice. Journal of Clinical Investigation, 2020, 130, 2465-2477.	8.2	44
23	Estrogen Regulates the Satellite Cell Compartment in Females. Cell Reports, 2019, 28, 368-381.e6.	6.4	79
24	Pluripotent Stem Cell-Based Therapeutics for Muscular Dystrophies. Trends in Molecular Medicine, 2019, 25, 803-816.	6.7	14
25	A novel P300 inhibitor reverses DUX4-mediated global histone H3 hyperacetylation, target gene expression, and cell death. Science Advances, 2019, 5, eaaw7781.	10.3	47
26	Pluripotent stem cell-derived myogenic progenitors remodel their molecular signature upon in vivo engraftment. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4346-4351.	7.1	35
27	ULK1 phosphorylates Ser30 of BECN1 in association with ATG14 to stimulate autophagy induction. Autophagy, 2018, 14, 584-597.	9.1	121
28	Low level DUX4 expression disrupts myogenesis through deregulation of myogenic gene expression. Scientific Reports, 2018, 8, 16957.	3.3	30
29	Crystal Structure of the Double Homeodomain of DUX4 in Complex with DNA. Cell Reports, 2018, 25, 2955-2962.e3.	6.4	24
30	Evolutionarily conserved <i>Tbx5</i> – <i>Wnt2/2b</i> pathway orchestrates cardiopulmonary development. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10615-E10624.	7.1	55
31	Skeletal Muscle Stem Cells from PSC-Derived Teratomas Have Functional Regenerative Capacity. Cell Stem Cell, 2018, 23, 74-85.e6.	11.1	48
32	Comment on structural basis of DUX4/IGH-driven transactivation. Leukemia, 2018, 32, 2090-2092.	7.2	1
33	A moderate oestradiol level enhances neutrophil number and activity in muscle after traumatic injury but strength recovery is accelerated. Journal of Physiology, 2018, 596, 4665-4680.	2.9	29
34	DNMT3A and TET1 cooperate to regulate promoter epigenetic landscapes in mouse embryonic stem cells. Genome Biology, 2018, 19, 88.	8.8	120
35	Estrogen Regulates the Satellite Cell Compartment in Females. SSRN Electronic Journal, 2018, , .	0.4	0
36	A Novel Inducible Mouse Model of <i>MLLâ€ENL</i> â€driven Mixedâ€lineage Acute Leukemia. HemaSphere, 2018, 2, e51.	2.7	14

#	Article	IF	CITATIONS
37	Twist of fate for skeletal muscle mesenchymal cells. Nature Cell Biology, 2017, 19, 153-154.	10.3	3
38	miR-125b promotes MLL-AF9–driven murine acute myeloid leukemia involving a VEGFA-mediated non–cell-intrinsic mechanism. Blood, 2017, 129, 1491-1502.	1.4	40
39	Expansion and Purification Are Critical for the Therapeutic Application of Pluripotent Stem Cell-Derived Myogenic Progenitors. Stem Cell Reports, 2017, 9, 12-22.	4.8	60
40	Muscle pathology from stochastic low level DUX4 expression in an FSHD mouse model. Nature Communications, 2017, 8, 550.	12.8	84
41	The DUX4 homeodomains mediate inhibition of myogenesis and are functionally exchangeable with the Pax7 homeodomain. Journal of Cell Science, 2017, 130, 3685-3697.	2.0	41
42	p53-independent DUX4 pathology. DMM Disease Models and Mechanisms, 2017, 10, 1211-1216.	2.4	22
43	Modulating the malignancy of Hox proteins. Blood, 2017, 129, 269-270.	1.4	4
44	A PPAR \hat{I}^3 transcriptional cascade directs adipose progenitor cell-niche interaction and niche expansion. Nature Communications, 2017, 8, 15926.	12.8	39
45	Cellular Aging Contributes to Failure of Cold-Induced Beige Adipocyte Formation in Old Mice and Humans. Cell Metabolism, 2017, 25, 166-181.	16.2	144
46	Pax7 remodels the chromatin landscape in skeletal muscle stem cells. PLoS ONE, 2017, 12, e0176190.	2.5	40
47	Notch activation is required for downregulation of HoxA3-dependent endothelial cell phenotype during blood formation. PLoS ONE, 2017, 12, e0186818.	2.5	6
48	Heterogeneity of Mesp1+ mesoderm revealed by single-cell RNA-seq. Biochemical and Biophysical Research Communications, 2016, 474, 469-475.	2.1	13
49	Development of Bipotent Cardiac/Skeletal Myogenic Progenitors from MESP1+ Mesoderm. Stem Cell Reports, 2016, 6, 26-34.	4.8	42
50	Freeze Injury of the Tibialis Anterior Muscle. Methods in Molecular Biology, 2016, 1460, 33-41.	0.9	19
51	Flow Cytometry and Transplantation-Based Quantitative Assays for Satellite Cell Self-Renewal and Differentiation. Methods in Molecular Biology, 2016, 1460, 163-179.	0.9	14
52	Mesoderm, Cooked Up Fast and Served to Order. Cell Stem Cell, 2016, 19, 146-148.	11.1	2
53	Transcriptional Inhibitors Identified in a 160,000-Compound Small-Molecule DUX4 Viability Screen. Journal of Biomolecular Screening, 2016, 21, 680-688.	2.6	13
54	MLL-AF9 Expression in Hematopoietic Stem Cells Drives a Highly Invasive AML Expressing EMT-Related Genes Linked to Poor Outcome. Cancer Cell, 2016, 30, 43-58.	16.8	176

#	Article	IF	CITATIONS
55	Germ Cell Nuclear Factor (GCNF) Represses Oct4 Expression and Globally Modulates Gene Expression in Human Embryonic Stem (hES) Cells. Journal of Biological Chemistry, 2016, 291, 8644-8652.	3.4	20
56	Lineage Reprogramming of Fibroblasts into Proliferative Induced Cardiac Progenitor Cells by Defined Factors. Cell Stem Cell, 2016, 18, 354-367.	11.1	165
57	GSK3 \hat{l}^2 inhibition activates the CDX/HOX pathway and promotes hemogenic endothelial progenitor differentiation from human pluripotent stem cells. Experimental Hematology, 2016, 44, 68-74.e10.	0.4	23
58	DUX4 recruits p300/CBP through its C-terminus and induces global H3K27 acetylation changes. Nucleic Acids Research, 2016, 44, 5161-5173.	14.5	148
59	High Frequency Hearing Loss and Hyperactivity in DUX4 Transgenic Mice. PLoS ONE, 2016, 11, e0151467.	2.5	14
60	Pax3-induced expansion enables the genetic correction of dystrophic satellite cells. Skeletal Muscle, 2015, 5, 36.	4.2	14
61	DNA-binding sequence specificity of DUX4. Skeletal Muscle, 2015, 6, 8.	4.2	30
62	Derivation and High Engraftment of Patient-Specific Cardiomyocyte Sheet Using Induced Pluripotent Stem Cells Generated From Adult Cardiac Fibroblast. Circulation: Heart Failure, 2015, 8, 156-166.	3.9	81
63	Drosophila Cyclin G and epigenetic maintenance of gene expression during development. Epigenetics and Chromatin, 2015, 8, 18.	3.9	5
64	Inducible Gata1 suppression expands megakaryocyte-erythroid progenitors from embryonic stem cells. Journal of Clinical Investigation, 2015, 125, 2369-2374.	8.2	29
65	Dominant Lethal Pathologies in Male Mice Engineered to Contain an X-Linked DUX4 Transgene. Cell Reports, 2014, 8, 1484-1496.	6.4	65
66	Reconstruction of phrenic neuron identity in embryonic stem cell-derived motor neurons. Development (Cambridge), 2014, 141, 784-794.	2.5	51
67	High-throughput screening identifies inhibitors of DUX4-induced myoblast toxicity. Skeletal Muscle, 2014, 4, 4.	4.2	56
68	Acquisition of a Quantitative, Stoichiometrically Conserved Ratiometric Marker of Maturation Status in Stem Cell-Derived Cardiac Myocytes. Stem Cell Reports, 2014, 3, 594-605.	4.8	195
69	Direct induction of haematoendothelial programs in human pluripotent stem cells by transcriptional regulators. Nature Communications, 2014, 5, 4372.	12.8	160
70	NLRP7 affects trophoblast lineage differentiation, binds to overexpressed YY1 and alters CpG methylation. Human Molecular Genetics, 2014, 23, 706-716.	2.9	54
71	Cooperative interaction of Etv2 and Gata2 regulates the development of endothelial and hematopoietic lineages. Developmental Biology, 2014, 389, 208-218.	2.0	51
72	OVOL2 is a critical regulator of ER71/ETV2 in generating FLK1+, hematopoietic, and endothelial cells from embryonic stem cells. Blood, 2014, 124, 2948-2952.	1.4	24

#	Article	IF	Citations
73	Rapid Genetic Modification of Mouse Embryonic Stem Cells by Inducible Cassette Exchange Recombination. Methods in Molecular Biology, 2014, 1101, 339-351.	0.9	31
74	TBX3 Directs Cell-Fate Decision toward Mesendoderm. Stem Cell Reports, 2013, 1, 248-265.	4.8	72
75	An ex vivo gene therapy approach to treat muscular dystrophy using inducible pluripotent stem cells. Nature Communications, 2013, 4, 1549.	12.8	124
76	Nkx2-5 Mediates Differential Cardiac Differentiation Through Interaction with Hoxa10. Stem Cells and Development, 2013, 22, 2211-2220.	2.1	31
77	Expression of the Human FSHD-Linked DUX4 Gene Induces Neurogenesis During Differentiation of Murine Embryonic Stem Cells. Stem Cells and Development, 2013, 22, 2440-2448.	2.1	12
78	Mesp1 Patterns Mesoderm into Cardiac, Hematopoietic, or Skeletal Myogenic Progenitors in a Context-Dependent Manner. Cell Stem Cell, 2013, 12, 587-601.	11.1	157
79	Expression levels of endoglin distinctively identify hematopoietic and endothelial progeny at different stages of yolk sac hematopoiesis. Stem Cells, 2013, 31, 1893-1901.	3.2	18
80	A focal domain of extreme demethylation within D4Z4 in FSHD2. Neurology, 2013, 80, 392-399.	1.1	67
81	A New Immuno-, Dystrophin-Deficient Model, the <i>NSG-mdx4Cv</i> Mouse, Provides Evidence for Functional Improvement Following Allogeneic Satellite Cell Transplantation. Stem Cells, 2013, 31, 1611-1620.	3.2	90
82	Molecular Functions of the LIM-Homeobox Transcription Factor <i>Lhx2</i> in Hematopoietic Progenitor Cells Derived from Mouse Embryonic Stem Cells. Stem Cells, 2013, 31, 2680-2689.	3.2	15
83	Hemogenic endothelium in a dish. Blood, 2013, 121, 417-418.	1.4	1
84	DNA methylation of Runx1 regulatory regions correlates with transition from primitive to definitive hematopoietic potential in vitro and in vivo. Blood, 2013, 122, 2978-2986.	1.4	18
85	What is a Master Regulator?. Journal of Stem Cell Research & Therapy, 2013, 03, .	0.3	71
86	A Novel Conditional Mouse Model For MLL-ENL Induced Acute Leukemia. Blood, 2013, 122, 1277-1277.	1.4	0
87	p53 Regulates Cell Cycle and MicroRNAs to Promote Differentiation of Human Embryonic Stem Cells. PLoS Biology, 2012, 10, e1001268.	5.6	207
88	A critical role for endoglin in the emergence of blood during embryonic development. Blood, 2012, 119, 5417-5428.	1.4	36
89	BCL6 controls neurogenesis through Sirt1-dependent epigenetic repression of selective Notch targets. Nature Neuroscience, 2012, 15, 1627-1635.	14.8	117
90	Human ES- and iPS-Derived Myogenic Progenitors Restore DYSTROPHIN and Improve Contractility upon Transplantation in Dystrophic Mice. Cell Stem Cell, 2012, 10, 610-619.	11.1	411

#	Article	IF	Citations
91	Zinc Finger Protein ZFP57 Requires Its Co-factor to Recruit DNA Methyltransferases and Maintains DNA Methylation Imprint in Embryonic Stem Cells via Its Transcriptional Repression Domain. Journal of Biological Chemistry, 2012, 287, 2107-2118.	3.4	153
92	Generation of functional thyroid from embryonic stem cells. Nature, 2012, 491, 66-71.	27.8	319
93	Satellite cell heterogeneity revealed by G-Tool, an open algorithm to quantify myogenesis through colony-forming assays. Skeletal Muscle, 2012, 2, 13.	4.2	11
94	Etv2 Is Expressed in the Yolk Sac Hematopoietic and Endothelial Progenitors and Regulates <i>Lmo2</i> Gene Expression. Stem Cells, 2012, 30, 1611-1623.	3.2	65
95	The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and lgf1r. Nature Cell Biology, 2012, 14, 659-665.	10.3	747
96	Eomesodermin induces Mesp1 expression and cardiac differentiation from embryonic stem cells in the absence of Activin. EMBO Reports, 2012, 13, 355-362.	4.5	50
97	The Plasminogen Activation System Modulates Differently Adipogenesis and Myogenesis of Embryonic Stem Cells. PLoS ONE, 2012, 7, e49065.	2.5	12
98	Cellular and Molecular Targets of MLL-AF9 in a Novel Conditional Mouse Model. Blood, 2012, 120, 1280-1280.	1.4	0
99	An Inducible Expression System of the Calcium-Activated Potassium Channel 4 to Study the Differential Impact on Embryonic Stem Cells. Stem Cells International, 2011, 2011, 1-12.	2.5	22
100	Hematopoietic differentiation of induced pluripotent stem cells from patients with mucopolysaccharidosis type I (Hurler syndrome). Blood, 2011, 117, 839-847.	1.4	82
101	Genome-wide analysis of target genes regulated by HoxB4 in hematopoietic stem and progenitor cells developing from embryonic stem cells. Blood, 2011, 117, e142-e150.	1.4	42
102	Modulation of TGF- \hat{l}^2 signaling by endoglin in murine hemangioblast development and primitive hematopoiesis. Blood, 2011, 118, 88-97.	1.4	39
103	HoxA3 is an apical regulator of haemogenic endothelium. Nature Cell Biology, 2011, 13, 72-78.	10.3	72
104	Functional Myogenic Engraftment from Mouse iPS Cells. Stem Cell Reviews and Reports, 2011, 7, 948-957.	5.6	106
105	Transcripts that associate with the RNA binding protein, DEAD-END (DND1), in embryonic stem (ES) cells. BMC Molecular Biology, 2011, 12, 37.	3.0	30
106	Assessment of the Myogenic Stem Cell Compartment Following Transplantation of <i>Pax3</i> /i>/ei>Pax7-Induced Embryonic Stem Cell-Derived Progenitors. Stem Cells, 2011, 29, 777-790.	3.2	111
107	Snail and the microRNA-200 Family Act in Opposition to Regulate Epithelial-to-Mesenchymal Transition and Germ Layer Fate Restriction in Differentiating ESCs. Stem Cells, 2011, 29, 764-776.	3.2	73
108	Inducible Cassette Exchange: A Rapid and Efficient System Enabling Conditional Gene Expression in Embryonic Stem and Primary Cells. Stem Cells, 2011, 29, 1580-1588.	3.2	170

#	Article	IF	Citations
109	The Wnt3a \hat{I}^2 -catenin target gene Mesogenin1 controls the segmentation clock by activating a Notch signalling program. Nature Communications, 2011, 2, 390.	12.8	56
110	Characterization of an <i>In Vitro</i> Differentiation Assay for Pancreatic-Like Cell Development from Murine Embryonic Stem Cells: Detailed Gene Expression Analysis. Assay and Drug Development Technologies, 2011, 9, 403-419.	1.2	19
111	ER71 directs mesodermal fate decisions during embryogenesis. Development (Cambridge), 2011, 138, 4801-4812.	2.5	98
112	Embryonic stem cell–based mapping of developmental transcriptional programs. Nature Methods, 2011, 8, 1056-1058.	19.0	71
113	Nkx2-5 Represses <i>Gata1</i> Gene Expression and Modulates the Cellular Fate of Cardiac Progenitors During Embryogenesis. Circulation, 2011, 123, 1633-1641.	1.6	48
114	Gene therapy by allele selection in a mouse model of beta-thalassemia. Journal of Clinical Investigation, 2011, 121, 623-627.	8.2	6
115	Decreased Proliferation Kinetics of Mouse Myoblasts Overexpressing FRG1. PLoS ONE, 2011, 6, e19780.	2.5	13
116	DNA Methylation Profile of Runx1 Regulatory Regions Is Correlated with Transition From Primitive to Definitive Hematopoietic Potential In Vitro and In Vivo. Blood, 2011, 118, 389-389.	1.4	0
117	The Retinoid Signaling Pathway Inhibits Hematopoiesis and Uncouples from the Hox Genes During Hematopoietic Development. Stem Cells, 2010, 28, 1518-1529.	3.2	12
118	Proteomic Analysis of Sox2-Associated Proteins During Early Stages of Mouse Embryonic Stem Cell Differentiation Identifies Sox21 as a Novel Regulator of Stem Cell Fate Â. Stem Cells, 2010, 28, 1715-1727.	3.2	107
119	Facioscapulohumeral Dystrophy: Incomplete Suppression of a Retrotransposed Gene. PLoS Genetics, 2010, 6, e1001181.	3.5	394
120	A JAK2 Interdomain Linker Relays Epo Receptor Engagement Signals to Kinase Activation. Journal of Biological Chemistry, 2009, 284, 26988-26998.	3.4	41
121	Nkx2–5 transactivates the <i>Ets-related protein 71</i> gene and specifies an endothelial/endocardial fate in the developing embryo. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 814-819.	7.1	195
122	Engraftment of mesenchymal stem cells into dystrophin-deficient mice is not accompanied by functional recovery. Experimental Cell Research, 2009, 315, 2624-2636.	2.6	63
123	A Conserved Role for Hox Paralog Group 4 in Regulation of Hematopoietic Progenitors. Stem Cells and Development, 2009, 18, 783-792.	2.1	59
124	Engraftment of embryonic stem cell-derived myogenic progenitors in a dominant model of muscular dystrophy. Experimental Neurology, 2009, 220, 212-216.	4.1	39
125	Biphasic Myopathic Phenotype of Mouse DUX, an ORF within Conserved FSHD-Related Repeats. PLoS ONE, 2009, 4, e7003.	2.5	54
126	Mesp1 Acts as a Master Regulator of Multipotent Cardiovascular Progenitor Specification. Cell Stem Cell, 2008, 3, 69-84.	11.1	341

#	Article	IF	CITATIONS
127	Prospective Isolation of Skeletal Muscle Stem Cells with a Pax7 Reporter. Stem Cells, 2008, 26, 3194-3204.	3.2	152
128	An isogenetic myoblast expression screen identifies DUX4-mediated FSHD-associated molecular pathologies. EMBO Journal, 2008, 27, 2766-2779.	7.8	272
129	Functional skeletal muscle regeneration from differentiating embryonic stem cells. Nature Medicine, 2008, 14, 134-143.	30.7	308
130	Mesodermal patterning activity of SCL. Experimental Hematology, 2008, 36, 1593-1603.	0.4	38
131	ER71 Acts Downstream of BMP, Notch, and Wnt Signaling in Blood and Vessel Progenitor Specification. Cell Stem Cell, 2008, 2, 497-507.	11.1	294
132	Caspase Activity Mediates the Differentiation of Embryonic Stem Cells. Cell Stem Cell, 2008, 2, 595-601.	11.1	244
133	Mesp1 Coordinately Regulates Cardiovascular Fate Restriction and Epithelial-Mesenchymal Transition in Differentiating ESCs. Cell Stem Cell, 2008, 3, 55-68.	11.1	180
134	DUX4c, an FSHD candidate gene, interferes with myogenic regulators and abolishes myoblast differentiation. Experimental Neurology, 2008, 214, 87-96.	4.1	77
135	White Fat Progenitor Cells Reside in the Adipose Vasculature. Science, 2008, 322, 583-586.	12.6	983
136	An ES cell–derived immune system. Blood, 2008, 111, 2948-2949.	1.4	2
136	An ES cell–derived immune system. Blood, 2008, 111, 2948-2949. GATA2 functions at multiple steps in hemangioblast development and differentiation. Development (Cambridge), 2007, 134, 393-405.	1.4 2.5	2
	GATA2 functions at multiple steps in hemangioblast development and differentiation. Development		
137	GATA2 functions at multiple steps in hemangioblast development and differentiation. Development (Cambridge), 2007, 134, 393-405. HoxA2 Regulates Proliferation of an Embryonic Megakaryocyte Progenitor, Which Can Effectively	2.5	143
137	GATA2 functions at multiple steps in hemangioblast development and differentiation. Development (Cambridge), 2007, 134, 393-405. HoxA2 Regulates Proliferation of an Embryonic Megakaryocyte Progenitor, Which Can Effectively Produce Platelets In Vitro Blood, 2007, 110, 1266-1266.	2.5	143 O
137 138 139	GATA2 functions at multiple steps in hemangioblast development and differentiation. Development (Cambridge), 2007, 134, 393-405. HoxA2 Regulates Proliferation of an Embryonic Megakaryocyte Progenitor, Which Can Effectively Produce Platelets In Vitro Blood, 2007, 110, 1266-1266. Mesodermal Patterning Activity of the Transcription Factor SCL Blood, 2007, 110, 1241-1241. Acceleration of mesoderm development and expansion of hematopoietic progenitors in differentiating	2.5 1.4 1.4	143 O O
137 138 139 140	GATA2 functions at multiple steps in hemangioblast development and differentiation. Development (Cambridge), 2007, 134, 393-405. HoxA2 Regulates Proliferation of an Embryonic Megakaryocyte Progenitor, Which Can Effectively Produce Platelets In Vitro Blood, 2007, 110, 1266-1266. Mesodermal Patterning Activity of the Transcription Factor SCL Blood, 2007, 110, 1241-1241. Acceleration of mesoderm development and expansion of hematopoietic progenitors in differentiating ES cells by the mouse Mix-like homeodomain transcription factor. Blood, 2006, 107, 3122-3130. Canonical Wnt signaling is required for development of embryonic stem cell-derived mesoderm.	2.5 1.4 1.4	143 0 0 39
137 138 139 140	GATA2 functions at multiple steps in hemangioblast development and differentiation. Development (Cambridge), 2007, 134, 393-405. HoxA2 Regulates Proliferation of an Embryonic Megakaryocyte Progenitor, Which Can Effectively Produce Platelets In Vitro Blood, 2007, 110, 1266-1266. Mesodermal Patterning Activity of the Transcription Factor SCL Blood, 2007, 110, 1241-1241. Acceleration of mesoderm development and expansion of hematopoietic progenitors in differentiating ES cells by the mouse Mix-like homeodomain transcription factor. Blood, 2006, 107, 3122-3130. Canonical Wnt signaling is required for development of embryonic stem cell-derived mesoderm. Development (Cambridge), 2006, 133, 3787-3796. Lymphoid, Long-Term Repopulating, and Endothelial Potential of the Embryonic Hemangioblast Blood,	2.5 1.4 1.4 2.5	143 0 0 39 296

#	Article	IF	CITATIONS
145	Transgenes Targeted to the HPRT Locus and Expressed from a Tetracycline-Inducible Promoter Are Silenced during Embryonic Stem Cell Differentiation Blood, 2005, 106, 3618-3618.	1.4	8
146	Nuclear transplantation, embryonic stem cells and the potential for cell therapy. The Hematology Journal, 2004, 5, S114-S117.	1.4	68
147	A Role for Thrombopoietin in Hemangioblast Development. Stem Cells, 2003, 21, 272-280.	3.2	43
148	Enhanced hematopoietic differentiation of embryonic stem cells conditionally expressing Stat5. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11904-11910.	7.1	72
149	Development of Hematopoietic Repopulating Cells from Embryonic Stem Cells. Methods in Enzymology, 2003, 365, 114-129.	1.0	11
150	Hematopoiesis from embryonic stem cells: lessons from and for ontogeny. Experimental Hematology, 2003, 31, 994-1006.	0.4	37
151	HoxB4 Confers Definitive Lymphoid-Myeloid Engraftment Potential on Embryonic Stem Cell and Yolk Sac Hematopoietic Progenitors. Cell, 2002, 109, 29-37.	28.9	726
152	Correction of a Genetic Defect by Nuclear Transplantation and Combined Cell and Gene Therapy. Cell, 2002, 109, 17-27.	28.9	572
153	Efficiency of embryoid body formation and hematopoietic development from embryonic stem cells in different culture systems. Biotechnology and Bioengineering, 2002, 78, 442-453.	3.3	321
154	Tantalus, a Novel ASX-Interacting Protein with Tissue-Specific Functions. Developmental Biology, 2001, 234, 441-453.	2.0	10
155	Clonal analysis of differentiating embryonic stem cells reveals a hematopoietic progenitor with primitive erythroid and adult lymphoid-myeloid potential. Development (Cambridge), 2001, 128, 4597-4604.	2.5	92
156	A novel member of murine Polycomb-group proteins, Sex comb on midleg homolog protein, is highly conserved, and interacts with RAE28/mph1 in vitro. Differentiation, 1999, 65, 229-239.	1.9	41
157	The SAM domain of polyhomeotic, RAE28, and Scm mediates specific interactions through conserved residues. Genesis, 1998, 22, 74-84.	2.1	65
158	RAE28, BMI1, and M33 Are Members of Heterogeneous Multimeric Mammalian Polycomb Group Complexes. Biochemical and Biophysical Research Communications, 1998, 245, 356-365.	2.1	64
159	The <i>Drosophila</i> Polycomb Group Protein Psc Contacts ph and Pc through Specific Conserved Domains. Molecular and Cellular Biology, 1998, 18, 2712-2720.	2.3	94
160	The polyhomeotic locus of Drosophila melanogaster is transcriptionally and post-transcriptionally regulated during embryogenesis. Mechanisms of Development, 1997, 66, 69-81.	1.7	35