Deo Raj Kaushal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5066610/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CFD modeling for pipeline flow of fine particles at high concentration. International Journal of Multiphase Flow, 2012, 43, 85-100.	3.4	192
2	Effect of particle size distribution on pressure drop and concentration profile in pipeline flow of highly concentrated slurry. International Journal of Multiphase Flow, 2005, 31, 809-823.	3.4	130
3	Solids concentration profiles and pressure drop in pipeline flow of multisized particulate slurries. International Journal of Multiphase Flow, 2002, 28, 1697-1717.	3.4	128
4	Experimental investigation for near-wall lift of coarser particles in slurry pipeline using Î ³ -ray densitometer. Powder Technology, 2007, 172, 177-187.	4.2	86
5	Modeling of sand-water slurry flow through horizontal pipe using CFD. Journal of Hydrology and Hydromechanics, 2016, 64, 261-272.	2.0	60
6	Analysis of Effect of Grain Size on Various Parameters of Slurry Flow through Pipeline Using CFD. Particulate Science and Technology, 2015, 33, 369-384.	2.1	44
7	Concentration at the pipe bottom at deposition velocity for transportation of commercial slurries through pipeline. Powder Technology, 2002, 125, 89-101.	4.2	42
8	Flow of mono-dispersed particles through horizontal bend. International Journal of Multiphase Flow, 2013, 52, 71-91.	3.4	41
9	Comparative study of pressure drop in multisized particulate slurry flow through pipe and rectangular duct. International Journal of Multiphase Flow, 2003, 29, 1473-1487.	3.4	40
10	Multi-objective optimization for stormwater management by green-roofs and infiltration trenches to reduce urban flooding in central Delhi. Journal of Hydrology, 2022, 606, 127455.	5.4	37
11	Prediction of concentration and particle size distribution in the flow of multi-sized particulate slurry through rectangular duct. Applied Mathematical Modelling, 2002, 26, 941-952.	4.2	33
12	Experimental investigations and CFD modeling for flow of highly concentrated iron ore slurry through horizontal pipeline. Particulate Science and Technology, 2019, 37, 232-250.	2.1	32
13	Prediction of Concentration Distribution in Pipeline Flow of Highly Concentrated Slurry. Particulate Science and Technology, 2013, 31, 28-34.	2.1	24
14	A comprehensive review on mechanical properties of Al-B4C stir casting fabricated composite. Materials Today: Proceedings, 2020, 21, 1432-1435.	1.8	24
15	A comprehensive review on stir cast Al-SiC composite. Materials Today: Proceedings, 2020, 21, 1610-1614.	1.8	22
16	Experimental study on the rheological behaviour of coal ash slurries. Journal of Hydrology and Hydromechanics, 2015, 63, 303-310.	2.0	18
17	Comparison of two- and three-dimensional modeling of invert trap for sewer solid management. Particuology, 2008, 6, 176-184.	3.6	17
18	Experimental Investigations of the Effect of Chemical Additives on the Rheological Properties of Highly Concentrated Iron Ore Slurries. KONA Powder and Particle Journal, 2018, 35, 186-199.	1.7	17

DEO RAJ KAUSHAL

#	Article	IF	CITATIONS
19	Three-Dimensional CFD Modeling for Optimization of Invert Trap Configuration to Be Used in Sewer Solids Management. Particulate Science and Technology, 2008, 26, 507-519.	2.1	16
20	3D CFD validation of invert trap efficiency for sewer solid management using VOF model. Water Science and Engineering, 2016, 9, 106-114.	3.2	15
21	A comparative study of friction factor correlations for high concentrate slurry flow in smooth pipes. Journal of Hydrology and Hydromechanics, 2015, 63, 13-20.	2.0	14
22	Experimental investigation on optimization of invert trap configuration for sewer solid management. Powder Technology, 2012, 215-216, 1-14.	4.2	13
23	Flow of Bi-modal Slurry through Horizontal Bend. KONA Powder and Particle Journal, 2017, 34, 258-274.	1.7	13
24	MODELING FOR SLURRY PIPELINE FLOW HAVING COARSE PARTICLES. Multiphase Science and Technology, 2016, 28, 1-33.	0.5	12
25	Evaluation of evolutionary algorithms for the optimization of storm water drainage network for an urbanized area. Acta Geophysica, 2019, 67, 149-165.	2.0	12
26	Impact of climate change on stormwater drainage in urban areas. Stochastic Environmental Research and Risk Assessment, 2022, 36, 77-96.	4.0	12
27	An Improved Method for Predicting Pressure Drop along Slurry Pipeline. Particulate Science and Technology, 2002, 20, 305-324.	2.1	11
28	Constructed wetland management in urban catchments for mitigating floods. Stochastic Environmental Research and Risk Assessment, 2021, 35, 2105-2124.	4.0	10
29	A new model for the viscosity of highly concentrated multi-sized particulate Bingham slurries. Particulate Science and Technology, 2017, 35, 77-85.	2.1	9
30	Pressure drop calculation for fly ash slurry using rheological model. World Journal of Engineering, 2019, 16, 751-767.	1.6	7
31	A Model for the Prediction of Concentration and Particle Size Distribution for the Flow of Multisized Particulate Suspensions through Closed Ducts and Open Channels. Particulate Science and Technology, 2006, 24, 239-258.	2.1	6
32	Experimental investigation on effects of solid concentration, chemical additives, and shear rate on the rheological properties of bottom ash (BA) slurry. International Journal of Coal Preparation and Utilization, 2022, 42, 609-622.	2.1	6
33	A 2D-CFD (VOF model) analysis of invert trap for bed load removal in an open rectangular sewer drain. Particulate Science and Technology, 2017, 35, 54-66.	2.1	5
34	Experimental and CFD Analyses Using Two-Dimensional and Three-Dimensional Models for Invert Traps in Open Rectangular Sewer Channels. Journal of Irrigation and Drainage Engineering - ASCE, 2017, 143, .	1.0	5
35	Three-dimensional computational fluid dynamics (volume of fluid) modelling coupled with a stochastic discrete phase model for the performance analysis of an invert trap experimentally validated using field sewer solids. Particuology, 2017, 33, 98-111.	3.6	4
36	CFD Modelling and Experimental Investigation of Bimodal Slurry Flow in Horizontal Pipeline and Bends. Lecture Notes in Mechanical Engineering, 2019, , 337-345.	0.4	4

DEO RAJ KAUSHAL

#	Article	IF	CITATIONS
37	Bend pressure drop experiments compared with Fluent. Proceedings of the Institution of Civil Engineers: Engineering and Computational Mechanics, 2008, 161, 35-42.	0.4	3
38	Discussion of "Analysis of the Vertical Profile of Concentration in Sediment-Laden Flows―by Q. Q. Liu, A. P. Shu, and V. P. Singh. Journal of Engineering Mechanics - ASCE, 2009, 135, 743-744.	2.9	3
39	SIMULATION OF SAND–WATER SLURRY FLOWS THROUGH PIPELINE. Multiphase Science and Technology, 2018, 30, 293-318.	0.5	3
40	CFD modeling of fly-ash slurry to analyse the concentration and velocity profiles. Materials Today: Proceedings, 2020, 21, 1695-1699.	1.8	3
41	Effect of solid concentration and grain size on the rheology of fly ash slurries. Materials Today: Proceedings, 2021, 46, 10904-10908.	1.8	3
42	Performance analysis of rectangular SIT (sediment invert trap) for stormwater drainage system. Journal of Hydrology and Hydromechanics, 2022, 70, 195-212.	2.0	3
43	Discussion of "Self-Cleansing Sewer Design Based on Sediment Transport Principles―by David Butler, Richard May, and John Ackers. Journal of Hydraulic Engineering, 2004, 130, 722-723.	1.5	2
44	Discussion of "Vertical Dispersion of Fine and Coarse Sediments in Turbulent Open-Channel Flows―by Xudong Fu, Guangqian Wang, and Xuejun Shao. Journal of Hydraulic Engineering, 2007, 133, 1292-1294.	1.5	2
45	Discussion of "Fluid-Solid Interaction in Particle-Laden Flows―by Q. Q. Liu and V. P. Singh. Journal of Engineering Mechanics - ASCE, 2006, 132, 463-464.	2.9	1
46	Effect of soaking time on rheological properties and settling characteristics of coking coal slurry. International Journal of Coal Preparation and Utilization, 2019, , 1-17.	2.1	1
47	PREDICTION CORRELATION OF SOLID VELOCITY DISTRIBUTION FOR SOLID-LIQUID SLURRY FLOWS THROUGH HORIZONTAL PIPELINES USING CFD. , 2020, 47, 445-459.		1
48	Hydrodynamic simulation of urban stormwater drain (Delhi city, India) using iRIC Model. Journal of Applied Research and Technology, 2019, 16, .	0.9	1
49	A CORRELATION FOR PRESSURE DROP PREDICTION FOR SOLID-LIQUID SLURRY FLOWS THROUGH HORIZONTAL PIPELINES. Multiphase Science and Technology, 2020, 32, 311-324.	0.5	1
50	Model for the rheological parameters of coking coal and water slurry with calcium hydroxide additive. Particulate Science and Technology, 2021, 39, 74-83.	2.1	0