
Kevin J Waldron

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5066111/publications.pdf Version: 2024-02-01

KEVIN I WAIDDON

#	Article	IF	CITATIONS
1	Pore dynamics and asymmetric cargo loading in an encapsulin nanocompartment. Science Advances, 2022, 8, eabj4461.	10.3	22
2	Old dogs, new tricks: New insights into the iron/manganese superoxide dismutase family. Journal of Inorganic Biochemistry, 2022, 230, 111748.	3.5	7
3	Role of horizontally transferred copper resistance genes in Staphylococcus aureus and Listeria monocytogenes. Microbiology (United Kingdom), 2022, 168, .	1.8	6
4	Blocking Polyphosphate Mobilization Inhibits Pho4 Activation and Virulence in the Pathogen Candida albicans. MBio, 2022, 13, e0034222.	4.1	2
5	Hepatoprotective Effects of Selenium-Enriched Probiotics Supplementation on Heat-Stressed Wistar Rat Through Anti-Inflammatory and Antioxidant Effects. Biological Trace Element Research, 2021, 199, 3445-3456.	3.5	18
6	Synthetic biology approaches to copper remediation: bioleaching, accumulation and recycling. FEMS Microbiology Ecology, 2021, 97, .	2.7	11
7	Dissecting the structural and functional roles of a putative metal entry site in encapsulated ferritins. Journal of Biological Chemistry, 2020, 295, 15511-15526.	3.4	13
8	Role of Glutathione in Buffering Excess Intracellular Copper in <i>Streptococcus pyogenes</i> . MBio, 2020, 11, .	4.1	40
9	An evolutionary path to altered cofactor specificity in a metalloenzyme. Nature Communications, 2020, 11, 2738.	12.8	22
10	Mass spectrometry reveals the assembly pathway of encapsulated ferritins and highlights a dynamic ferroxidase interface. Chemical Communications, 2020, 56, 3417-3420.	4.1	14
11	Copper tolerance in bacteria requires the activation of multiple accessory pathways. Molecular Microbiology, 2020, 114, 377-390.	2.5	118
12	Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification. PLoS ONE, 2020, 15, e0240237.	2.5	11
13	Title is missing!. , 2020, 15, e0240237.		0
14	Title is missing!. , 2020, 15, e0240237.		0
15	Title is missing!. , 2020, 15, e0240237.		0
16	Title is missing!. , 2020, 15, e0240237.		0
17	Title is missing!. , 2020, 15, e0240237.		0

KEVIN J WALDRON

#	Article	IF	CITATIONS
19	Osteoinduction of 3D printed particulate and short-fibre reinforced composites produced using PLLA and apatite-wollastonite. Composites Science and Technology, 2019, 184, 107834.	7.8	18
20	Copper stress in <i>Staphylococcus aureus</i> leads to adaptive changes in central carbon metabolism. Metallomics, 2019, 11, 183-200.	2.4	51
21	Handling of nutrient copper in the bacterial envelope. Metallomics, 2019, 11, 50-63.	2.4	51
22	Conservation of the structural and functional architecture of encapsulated ferritins in bacteria and archaea. Biochemical Journal, 2019, 476, 975-989.	3.7	23
23	A charge polarization model for the metal-specific activity of superoxide dismutases. Physical Chemistry Chemical Physics, 2018, 20, 2363-2372.	2.8	7
24	Comparison of total ionic strength adjustment buffers III and IV in the measurement of fluoride concentration of teas. Nutrition and Health, 2018, 24, 111-119.	1.5	7
25	A horizontally gene transferred copper resistance locus confers hyperâ€resistance to antibacterial copper toxicity and enables survival of community acquired methicillin resistant <i>Staphylococcus aureus</i> USA300 in macrophages. Environmental Microbiology, 2018, 20, 1576-1589.	3.8	48
26	Mobile-Genetic-Element-Encoded Hypertolerance to Copper Protects Staphylococcus aureus from Killing by Host Phagocytes. MBio, 2018, 9, .	4.1	33
27	The Role of Intermetal Competition and Mis-Metalation in Metal Toxicity. Advances in Microbial Physiology, 2017, 70, 315-379.	2.4	48
28	A Superoxide Dismutase Capable of Functioning with Iron or Manganese Promotes the Resistance of Staphylococcus aureus to Calprotectin and Nutritional Immunity. PLoS Pathogens, 2017, 13, e1006125.	4.7	89
29	Pho4 mediates phosphate acquisition in <i>Candida albicans</i> and is vital for stress resistance and metal homeostasis. Molecular Biology of the Cell, 2016, 27, 2784-2801.	2.1	46
30	Bacterial cytosolic proteins with a high capacity for Cu(I) that protect against copper toxicity. Scientific Reports, 2016, 6, 39065.	3.3	52
31	Archaeoglobus Fulgidus DNA Polymerase D: A Zinc-Binding Protein Inhibited by Hypoxanthine and Uracil. Journal of Molecular Biology, 2016, 428, 2805-2813.	4.2	10
32	Structural characterization of encapsulated ferritin provides insight into iron storage in bacterial nanocompartments. ELife, 2016, 5, .	6.0	77
33	A four-helix bundle stores copper for methane oxidation. Nature, 2015, 525, 140-143.	27.8	83
34	Tissue differences in BER-related incision activity and non-specific nuclease activity as measured by the comet assay. Mutagenesis, 2013, 28, 673-681.	2.6	10
35	Factors Required for Activation of Urease as a Virulence Determinant in Cryptococcus neoformans. MBio, 2013, 4, e00220-13.	4.1	73
36	Cyanobacterial metallochaperone inhibits deleterious side reactions of copper. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 95-100.	7.1	91

KEVIN J WALDRON

#	Article	IF	CITATIONS
37	Cellular Iron Distribution in Bacillus anthracis. Journal of Bacteriology, 2012, 194, 932-940.	2.2	31
38	Measuring DNA repair incision activity of mouse tissue extracts towards singlet oxygen-induced DNA damage: a comet-based in vitro repair assay. Mutagenesis, 2011, 26, 461-471.	2.6	39
39	Interaction between cyanobacterial copper chaperone Atx1 and zinc homeostasis. Journal of Biological Inorganic Chemistry, 2010, 15, 77-85.	2.6	27
40	NMR structural analysis of the soluble domain of ZiaA-ATPase and the basis of selective interactions with copper metallochaperone Atx1. Journal of Biological Inorganic Chemistry, 2010, 15, 87-98.	2.6	19
41	Copper Homeostasis in Salmonella Is Atypical and Copper-CueP Is a Major Periplasmic Metal Complex. Journal of Biological Chemistry, 2010, 285, 25259-25268.	3.4	149
42	Structure and Metal Loading of a Soluble Periplasm Cuproprotein. Journal of Biological Chemistry, 2010, 285, 32504-32511.	3.4	31
43	Metalloproteins and metal sensing. Nature, 2009, 460, 823-830.	27.8	1,031
44	How do bacterial cells ensure that metalloproteins get the correct metal?. Nature Reviews Microbiology, 2009, 7, 25-35.	28.6	693
45	Protein-folding location can regulate manganese-binding versus copper- or zinc-binding. Nature, 2008, 455, 1138-1142.	27.8	281
46	FutA2 Is a Ferric Binding Protein from Synechocystis PCC 6803. Journal of Biological Chemistry, 2008, 283, 12520-12527.	3.4	56
47	A Periplasmic Iron-binding Protein Contributes toward Inward Copper Supply. Journal of Biological Chemistry, 2007, 282, 3837-3846.	3.4	46
48	Mycobacterial Cells Have Dual Nickel-Cobalt Sensors. Journal of Biological Chemistry, 2007, 282, 32298-32310.	3.4	91
49	BACE1 Cytoplasmic Domain Interacts with the Copper Chaperone for Superoxide Dismutase-1 and Binds Copper. Journal of Biological Chemistry, 2005, 280, 17930-17937.	3.4	111