Nadine Hempel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5064750/publications.pdf Version: 2024-02-01

NADINE HEMDEL

#	Article	IF	CITATIONS
1	Optimization of Extracellular Flux Assay to Measure Respiration of Anchorage-independent Tumor Cell Spheroids. Bio-protocol, 2022, 12, e4321.	0.4	4
2	Emerging perspectives on growth factor metabolic relationships in the ovarian cancer ascites environment. Seminars in Cancer Biology, 2022, 86, 709-719.	9.6	12
3	Mitochondrial Calcium Uniporter Drives Metastasis and Confers a Targetable Cystine Dependency in Pancreatic Cancer. Cancer Research, 2022, 82, 2254-2268.	0.9	36
4	HuR-dependent SOD2 protein synthesis is an early adaptation to anchorage-independence. Redox Biology, 2022, 53, 102329.	9.0	6
5	Hypoxia-induced inhibin promotes tumor growth and vascular permeability in ovarian cancers. Communications Biology, 2022, 5, .	4.4	7
6	PVT1 is a stress-responsive lncRNA that drives ovarian cancer metastasis and chemoresistance. Life Science Alliance, 2022, 5, e202201370.	2.8	7
7	Omnitemporal choreographies of all five STIM/Orai and IP3Rs underlie the complexity of mammalian Ca2+ signaling. Cell Reports, 2021, 34, 108760.	6.4	57
8	Antisense oligonucleotideâ€mediated knockdown of Mpzl3 attenuates the negative metabolic effects of dietâ€induced obesity in mice. Physiological Reports, 2021, 9, e14853.	1.7	5
9	The Mitochondrial Ca2+ uniporter is a central regulator of interorganellar Ca2+ transfer and NFAT activation. Journal of Biological Chemistry, 2021, 297, 101174.	3.4	30
10	Context-dependent activation of SIRT3 is necessary for anchorage-independent survival and metastasis of ovarian cancer cells. Oncogene, 2020, 39, 1619-1633.	5.9	37
11	Extracellular Glutathione Peroxidase GPx3 and Its Role in Cancer. Cancers, 2020, 12, 2197.	3.7	105
12	The native ORAI channel trio underlies the diversity of Ca2+ signaling events. Nature Communications, 2020, 11, 2444.	12.8	90
13	L-type Ca ²⁺ channel blockers promote vascular remodeling through activation of STIM proteins. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17369-17380.	7.1	37
14	Mitochondrial Calcium Regulation of Redox Signaling in Cancer. Cells, 2020, 9, 432.	4.1	77
15	Dichotomous role of the human mitochondrial Na+/Ca2+/Li+ exchanger NCLX in colorectal cancer growth and metastasis. ELife, 2020, 9, .	6.0	39
16	A calcium/cAMP signaling loop at the ORAI1 mouth drives channel inactivation to shape NFAT induction. Nature Communications, 2019, 10, 1971.	12.8	73
17	Cross-talk between N-terminal and C-terminal domains in stromal interaction molecule 2 (STIM2) determines enhanced STIM2 sensitivity. Journal of Biological Chemistry, 2019, 294, 6318-6332.	3.4	36
18	GPx3 supports ovarian cancer progression by manipulating the extracellular redox environment. Redox Biology, 2019, 25, 101051.	9.0	41

NADINE HEMPEL

#	Article	IF	CITATIONS
19	TAK1 activation of alpha-TAT1 and microtubule hyperacetylation control AKT signaling and cell growth. Nature Communications, 2018, 9, 1696.	12.8	35
20	Inhibin Is a Novel Paracrine Factor for Tumor Angiogenesis and Metastasis. Cancer Research, 2018, 78, 2978-2989.	0.9	32
21	Crosstalk between calcium and reactive oxygen species signaling in cancer. Cell Calcium, 2017, 63, 70-96.	2.4	163
22	Mitochondria control storeâ€operated Ca ²⁺ entry through Na ⁺ and redox signals. EMBO Journal, 2017, 36, 797-815.	7.8	82
23	Cationic dendritic starch as a vehicle for photodynamic therapy and siRNA co-delivery. Journal of Photochemistry and Photobiology B: Biology, 2017, 168, 185-192.	3.8	13
24	Clonal evolution in paired endometrial intraepithelial neoplasia/atypical hyperplasia and endometrioid adenocarcinoma. Human Pathology, 2017, 67, 69-77.	2.0	34
25	Insights into the Dichotomous Regulation of SOD2 in Cancer. Antioxidants, 2017, 6, 86.	5.1	100
26	Activation of Mitofusin2 by Smad2-RIN1 Complex during Mitochondrial Fusion. Molecular Cell, 2016, 62, 520-531.	9.7	41
27	Regulation of the Cellular Redox Environment by Superoxide Dismutases, Catalase, and Glutathione Peroxidases During Tumor Metastasis. Oxidative Stress in Applied Basic Research and Clinical Practice, 2016, , 51-79.	0.4	1
28	Focal adhesion kinase-promoted tumor glucose metabolism is associated with a shift of mitochondrial respiration to glycolysis. Oncogene, 2016, 35, 1926-1942.	5.9	38
29	Abstract A12: Regulation of the mitochondrial stress response and metabolism by the intraperitoneal tumor environment during ovarian cancer transcoelomic metastasis. , 2016, , .		0
30	Regulation of MMP-1 expression in response to hypoxia is dependent on the intracellular redox status of metastatic bladder cancer cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 2593-2602.	3.8	56
31	Metastatic bladder cancer cells distinctively sense and respond to physical cues of collagen fibril-mimetic nanotopography. Experimental Biology and Medicine, 2015, 240, 601-610.	2.4	6
32	Chemically Modified Dendritic Starch: A Novel Nanomaterial for siRNA Delivery. Bioconjugate Chemistry, 2015, 26, 1766-1774.	3.6	29
33	Mitochondrial Superoxide Dismutase Has a Protumorigenic Role in Ovarian Clear Cell Carcinoma. Cancer Research, 2015, 75, 4973-4984.	0.9	57
34	Abstract 1440: Mitochondrial superoxide dismutase (Sod2) modulates ovarian clear cell carcinoma transcoelomic metastatic pathway. , 2015, , .		0
35	Development of Nanoscale Approaches for Ovarian Cancer Therapeutics and Diagnostics. Critical Reviews in Oncogenesis, 2014, 19, 281-315.	0.4	37
36	Intracellular redox status controls membrane localization of pro- and anti-migratory signaling molecules. Redox Biology, 2014, 2, 245-250.	9.0	23

NADINE HEMPEL

#	Article	IF	CITATIONS
37	Bioenergetic Analysis of Ovarian Cancer Cell Lines: Profiling of Histological Subtypes and Identification of a Mitochondria-Defective Cell Line. PLoS ONE, 2014, 9, e98479.	2.5	74
38	Redox-control of the alarmin, Interleukin-1α. Redox Biology, 2013, 1, 218-225.	9.0	28
39	Acquisition of the Metastatic Phenotype Is Accompanied by H2O2-Dependent Activation of the p130Cas Signaling Complex. Molecular Cancer Research, 2013, 11, 303-312.	3.4	26
40	Recent Advances in Intracellular and In Vivo ROS Sensing: Focus on Nanoparticle and Nanotube Applications. International Journal of Molecular Sciences, 2012, 13, 10660-10679.	4.1	53
41	A Novel Tumor Model for the Characterization of Ovarian Cancer Spheroids. Free Radical Biology and Medicine, 2012, 53, S52.	2.9	0
42	Manganese Superoxide Dismutase (Sod2) and Redox-Control of Signaling Events That Drive Metastasis. Anti-Cancer Agents in Medicinal Chemistry, 2011, 11, 191-201.	1.7	135
43	Loss of type III transforming growth factor-β receptor expression is due to methylation silencing of the transcription factor GATA3 in renal cell carcinoma. Oncogene, 2010, 29, 2905-2915.	5.9	41
44	The type III TGF-β receptor suppresses breast cancer progression through GIPC-mediated inhibition of TGF-β signaling. Carcinogenesis, 2010, 31, 175-183.	2.8	57
45	Altered redox status accompanies progression to metastatic human bladder cancer. Free Radical Biology and Medicine, 2009, 46, 42-50.	2.9	92
46	Respiratory Control of Redox Signaling and Cancer. , 2009, , 33-44.		0
47	Expression of the type III TGF-l² receptor is negatively regulated by TGF-l². Carcinogenesis, 2008, 29, 905-912.	2.8	47
48	Loss of Betaglycan Expression in Ovarian Cancer: Role in Motility and Invasion. Cancer Research, 2007, 67, 5231-5238.	0.9	108
49	Manganese Superoxide Dismutase Enhances the Invasive and Migratory Activity of Tumor Cells. Cancer Research, 2007, 67, 10260-10267.	0.9	157
50	The Type III Transforming Growth Factor-β Receptor as a Novel Tumor Suppressor Gene in Prostate Cancer. Cancer Research, 2007, 67, 1090-1098.	0.9	167
51	Human cytosolic sulfotransferase SULT1A1. International Journal of Biochemistry and Cell Biology, 2007, 39, 685-689.	2.8	52
52	The type III TGF-Î ² receptor suppresses breast cancer progression. Journal of Clinical Investigation, 2007, 117, 206-217.	8.2	212
53	Human Sulfotransferases and Their Role in Chemical Metabolism. Toxicological Sciences, 2006, 90, 5-22.	3.1	582
54	Negative Regulation of TRPC3 Channels by Protein Kinase C-Mediated Phosphorylation of Serine 712. Molecular Pharmacology, 2005, 67, 558-563.	2.3	121

#	Article	IF	CITATIONS
55	Human SULT1A Genes: Cloning and Activity Assays of the SULT1A Promoters. Methods in Enzymology, 2005, 400, 147-165.	1.0	18
56	The Human Sulfotransferase SULT1A1 Gene Is Regulated in a Synergistic Manner by Sp1 and GA Binding Protein. Molecular Pharmacology, 2004, 66, 1690-1701.	2.3	48
57	Site-Directed Mutagenesis of the Substrate-Binding Cleft of Human Estrogen Sulfotransferase. Biochemical and Biophysical Research Communications, 2000, 276, 224-230.	2.1	18