## John P Aggleton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5063897/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Episodic memory, amnesia, and the hippocampal–anterior thalamic axis. Behavioral and Brain Sciences,<br>1999, 22, 425-444.                                                                                                              | 0.7  | 1,862     |
| 2  | Recognition memory: What are the roles of the perirhinal cortex and hippocampus?. Nature Reviews Neuroscience, 2001, 2, 51-61.                                                                                                          | 10.2 | 1,360     |
| 3  | What does the retrosplenial cortex do?. Nature Reviews Neuroscience, 2009, 10, 792-802.                                                                                                                                                 | 10.2 | 1,170     |
| 4  | Spontaneous object recognition and object location memory in rats: the effects of lesions in the cingulate cortices, the medial prefrontal cortex, the cingulum bundle and the fornix. Experimental Brain Research, 1997, 113, 509-519. | 1.5  | 588       |
| 5  | Impaired auditory recognition of fear and anger following bilateral amygdala lesions. Nature, 1997, 385, 254-257.                                                                                                                       | 27.8 | 584       |
| 6  | Cortical and subcortical afferents to the amygdala of the rhesus monkey (Macaca mulatta). Brain<br>Research, 1980, 190, 347-368.                                                                                                        | 2.2  | 575       |
| 7  | Extending the spontaneous preference test of recognition: evidence of object-location and object-context recognition. Behavioural Brain Research, 1999, 99, 191-200.                                                                    | 2.2  | 510       |
| 8  | The effects of hippocampal lesions upon spatial and non-spatial tests of working memory. Behavioural<br>Brain Research, 1986, 19, 133-146.                                                                                              | 2.2  | 501       |
| 9  | Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behavioral and Brain Sciences, 1999, 22, 425-44; discussion 444-89.                                                                                               | 0.7  | 491       |
| 10 | The cingulum bundle: Anatomy, function, and dysfunction. Neuroscience and Biobehavioral Reviews, 2018, 92, 104-127.                                                                                                                     | 6.1  | 468       |
| 11 | Interleaving brain systems for episodic and recognition memory. Trends in Cognitive Sciences, 2006, 10, 455-463.                                                                                                                        | 7.8  | 418       |
| 12 | Different Contributions of the Hippocampus and Perirhinal Cortex to Recognition Memory. Journal of Neuroscience, 1999, 19, 1142-1148.                                                                                                   | 3.6  | 413       |
| 13 | Face processing impairments after amygdalotomy. Brain, 1995, 118, 15-24.                                                                                                                                                                | 7.6  | 410       |
| 14 | The contribution of the amygdala to normal and abnormal emotional states. Trends in Neurosciences, 1993, 16, 328-333.                                                                                                                   | 8.6  | 394       |
| 15 | Hippocampal–anterior thalamic pathways for memory: uncovering a network of direct and indirect actions. European Journal of Neuroscience, 2010, 31, 2292-2307.                                                                          | 2.6  | 384       |
| 16 | Neurotoxic lesions of the perirhinal cortex do not mimic the behavioural effects of fornix transection in the rat. Behavioural Brain Research, 1996, 80, 9-25.                                                                          | 2.2  | 354       |
| 17 | Amnesia and recognition memory: A re-analysis of psychometric data. Neuropsychologia, 1996, 34, 51-62.                                                                                                                                  | 1.6  | 323       |
| 18 | Thalamic pathology and memory loss in early Alzheimer's disease: moving the focus from the medial temporal lobe to Papez circuit. Brain, 2016, 139, 1877-1890.                                                                          | 7.6  | 283       |

| #  | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Multiple anatomical systems embedded within the primate medial temporal lobe: Implications for hippocampal function. Neuroscience and Biobehavioral Reviews, 2012, 36, 1579-1596.                                | 6.1  | 278       |
| 20 | Functionally Dissociating Aspects of Event Memory: the Effects of Combined Perirhinal and<br>Postrhinal Cortex Lesions on Object and Place Memory in the Rat. Journal of Neuroscience, 1999, 19,<br>495-502.     | 3.6  | 263       |
| 21 | The anterior thalamus provides a subcortical circuit supporting memory and spatial navigation.<br>Frontiers in Systems Neuroscience, 2013, 7, 45.                                                                | 2.5  | 258       |
| 22 | A disproportionate role for the fornix and mammillary bodies in recall versus recognition memory.<br>Nature Neuroscience, 2008, 11, 834-842.                                                                     | 14.8 | 256       |
| 23 | Sparing of the familiarity component of recognition memory in a patient with hippocampal pathology.<br>Neuropsychologia, 2005, 43, 1810-1823.                                                                    | 1.6  | 252       |
| 24 | The mammillary bodies: two memory systems in one?. Nature Reviews Neuroscience, 2004, 5, 35-44.                                                                                                                  | 10.2 | 247       |
| 25 | A comparison of egocentric and allocentric spatial memory in a patient with selective hippocampal damage. Neuropsychologia, 2000, 38, 410-425.                                                                   | 1.6  | 245       |
| 26 | Fos Imaging Reveals Differential Patterns of Hippocampal and Parahippocampal Subfield Activation in Rats in Response to Different Spatial Memory Tests. Journal of Neuroscience, 2000, 20, 2711-2718.            | 3.6  | 243       |
| 27 | The effects of neurotoxic lesions of the perirhinal cortex combined to fornix transection on object recognition memory in the rat. Behavioural Brain Research, 1997, 88, 181-193.                                | 2.2  | 235       |
| 28 | Extensive Cytotoxic Lesions Involving Both the Rhinal Cortices and Area TE Impair Recognition But<br>Spare Spatial Alternation in the Rat. Brain Research Bulletin, 1997, 43, 279-287.                           | 3.0  | 228       |
| 29 | Distinct patterns of behavioural impairments resulting from fornix transection or neurotoxic<br>lesions of the perirhinal and postrhinal cortices in the rat. Behavioural Brain Research, 2000, 111,<br>187-202. | 2.2  | 226       |
| 30 | The effects of selective lesions within the anterior thalamic nuclei on spatial memory in the rat.<br>Behavioural Brain Research, 1996, 81, 189-198.                                                             | 2.2  | 212       |
| 31 | Syndrome produced by lesions of the amygdala in monkeys (Macaca mulatta) Journal of Comparative and Physiological Psychology, 1981, 95, 961-977.                                                                 | 1.8  | 211       |
| 32 | Effects of the novelty or familiarity of visual stimuli on the expression of the immediate early gene<br>c-fos in rat brain. Neuroscience, 1995, 69, 821-829.                                                    | 2.3  | 208       |
| 33 | The effects of fornix and medial prefrontal lesions on delayed non-matching-to-sample by rats.<br>Behavioural Brain Research, 1993, 54, 91-102.                                                                  | 2.2  | 207       |
| 34 | Cholinergic Neurotransmission Is Essential for Perirhinal Cortical Plasticity and Recognition Memory. Neuron, 2003, 38, 987-996.                                                                                 | 8.1  | 206       |
| 35 | Frontotemporal Connections in Episodic Memory and Aging: A Diffusion MRI Tractography Study.<br>Journal of Neuroscience, 2011, 31, 13236-13245.                                                                  | 3.6  | 205       |
| 36 | Visual recognition impairment following medial thalamic lesions in monkeys. Neuropsychologia, 1983, 21, 189-197.                                                                                                 | 1.6  | 204       |

| #  | Article                                                                                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Distinct subdivisions of the cingulum bundle revealed by diffusion MRI fibre tracking: Implications for neuropsychological investigations. Neuropsychologia, 2013, 51, 67-78.                                                                                                                                         | 1.6  | 204       |
| 38 | Effects of selective excitotoxic prefrontal lesions on acquisition of nonmatching- and matching-to-place in the T-maze in the rat: differential involvement of the prelimbic-infralimbic and anterior cingulate cortices in providing behavioural flexibility. European Journal of Neuroscience, 2000, 12, 4457-4466. | 2.6  | 194       |
| 39 | Comparison of hippocampal, amygdala, and perirhinal projections to the nucleus accumbens:<br>Combined anterograde and retrograde tracing study in the Macaque brain. Journal of Comparative<br>Neurology, 2002, 450, 345-365.                                                                                         | 1.6  | 194       |
| 40 | A comparison of the effects of anterior thalamic, mamillary body and fornix lesions on reinforced spatial alternation. Behavioural Brain Research, 1995, 68, 91-101.                                                                                                                                                  | 2.2  | 182       |
| 41 | Removal of the hippocampus and transection of the fornix produce comparable deficits on delayed non-matching to position by rats. Behavioural Brain Research, 1992, 52, 61-71.                                                                                                                                        | 2.2  | 180       |
| 42 | A description of the amygdalo-hippocampal interconnections in the macaque monkey. Experimental<br>Brain Research, 1986, 64, 515-526.                                                                                                                                                                                  | 1.5  | 171       |
| 43 | Catechol O-Methyltransferase Gene Variant and Birth Weight Predict Early-Onset Antisocial Behavior<br>in Children With Attention-Deficit/Hyperactivity Disorder. Archives of General Psychiatry, 2005, 62,<br>1275.                                                                                                   | 12.3 | 171       |
| 44 | Extensive cytotoxic lesions of the rat retrosplenial cortex reveal consistent deficits on tasks that tax allocentric spatial memory Behavioral Neuroscience, 2002, 116, 85-94.                                                                                                                                        | 1.2  | 168       |
| 45 | Impaired recollection but spared familiarity in patients with extended hippocampal system damage revealed by 3 convergent methods. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5442-5447.                                                                             | 7.1  | 166       |
| 46 | The functional anatomy of visual-tactile integration in man: a study using positron emission tomography. Neuropsychologia, 2000, 38, 115-124.                                                                                                                                                                         | 1.6  | 162       |
| 47 | The contribution of the anterior thalamic nuclei to anterograde amnesia. Neuropsychologia, 1993, 31, 1001-1019.                                                                                                                                                                                                       | 1.6  | 161       |
| 48 | The Conjoint Importance of the Hippocampus and Anterior Thalamic Nuclei for Allocentric Spatial<br>Learning: Evidence from a Disconnection Study in the Rat. Journal of Neuroscience, 2001, 21, 7323-7330.                                                                                                            | 3.6  | 157       |
| 49 | Hippocampal–diencephalic–cingulate networks for memory and emotion: An anatomical guide. Brain<br>and Neuroscience Advances, 2017, 1, 239821281772344.                                                                                                                                                                | 3.4  | 157       |
| 50 | The performance of amnesic subjects on tests of experimental amnesia in animals: delayed matching-to-sample and concurrent learning. Neuropsychologia, 1988, 26, 265-272.                                                                                                                                             | 1.6  | 155       |
| 51 | Cingulum Microstructure Predicts Cognitive Control in Older Age and Mild Cognitive Impairment.<br>Journal of Neuroscience, 2012, 32, 17612-17619.                                                                                                                                                                     | 3.6  | 148       |
| 52 | An experimental test of the role of postsynaptic calcium levels in determining synaptic strength using perirhinal cortex of rat. Journal of Physiology, 2001, 532, 459-466.                                                                                                                                           | 2.9  | 147       |
| 53 | Research priorities for the COVIDâ€19 pandemic and beyond: A call to action for psychological science.<br>British Journal of Psychology, 2020, 111, 603-629.                                                                                                                                                          | 2.3  | 146       |
| 54 | Contrasting Hippocampal and Perirhinalcortex Function using Immediate Early Gene Imaging.<br>Quarterly Journal of Experimental Psychology Section B: Comparative and Physiological Psychology,<br>2005, 58, 218-233.                                                                                                  | 2.8  | 138       |

| #  | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | The Relationships Between Temporal Lobe and Diencephalic Structures Implicated in Anterograde Amnesia. Memory, 1997, 5, 49-72.                                                                                                                           | 1.7  | 133       |
| 56 | Neural systems underlying episodic memory: insights from animal research. Philosophical Transactions of the Royal Society B: Biological Sciences, 2001, 356, 1467-1482.                                                                                  | 4.0  | 133       |
| 57 | Lesions of the rat perirhinal cortex spare the acquisition of a complex configural visual discrimination yet impair object recognition Behavioral Neuroscience, 2010, 124, 55-68.                                                                        | 1.2  | 130       |
| 58 | Mapping visual recognition memory through expression of the immediate early gene c-fos.<br>NeuroReport, 1996, 7, 1871-1875.                                                                                                                              | 1.2  | 129       |
| 59 | A new form of long-term depression in the perirhinal cortex. Nature Neuroscience, 2000, 3, 150-156.                                                                                                                                                      | 14.8 | 129       |
| 60 | Projections from the entorhinal cortex, perirhinal cortex, presubiculum, and parasubiculum to the<br>medial thalamus in macaque monkeys: identifying different pathways using disconnection techniques.<br>Experimental Brain Research, 2005, 167, 1-16. | 1.5  | 129       |
| 61 | Lack of effect of lesions in the anterior cingulate cortex and retrosplenial cortex on certain tests of spatial memory in the rat. Behavioural Brain Research, 1994, 65, 89-101.                                                                         | 2.2  | 124       |
| 62 | Recognition memory: Material, processes, and substrates. Hippocampus, 2010, 20, 1228-1244.                                                                                                                                                               | 1.9  | 122       |
| 63 | Identifying cortical inputs to the rat hippocampus that subserve allocentric spatial processes: A simple problem with a complex answer. Hippocampus, 2000, 10, 466-474.                                                                                  | 1.9  | 120       |
| 64 | Effects of amygdaloid and amygdaloid-hippocampal lesions on object recognition and spatial working memory in rats Behavioral Neuroscience, 1989, 103, 962-974.                                                                                           | 1.2  | 118       |
| 65 | Evidence of a Spatial Encoding Deficit in Rats with Lesions of the Mammillary Bodies or<br>Mammillothalamic Tract. Journal of Neuroscience, 2003, 23, 3506-3514.                                                                                         | 3.6  | 118       |
| 66 | Unraveling the contributions of the diencephalon to recognition memory: A review. Learning and Memory, 2011, 18, 384-400.                                                                                                                                | 1.3  | 118       |
| 67 | Qualitatively different modes of perirhinal–hippocampal engagement when rats explore novel vs.<br>familiar objects as revealed by câ€Fos imaging. European Journal of Neuroscience, 2010, 31, 134-147.                                                   | 2.6  | 117       |
| 68 | Both fornix and anterior thalamic, but not mammillary, lesions disrupt delayed<br>non-matching-to-position memory in rats. Behavioural Brain Research, 1991, 44, 151-161.                                                                                | 2.2  | 115       |
| 69 | Differential deficits in the Morris water maze following cytotoxic lesions of the anterior thalamus and fornix transection. Behavioural Brain Research, 1998, 98, 27-38.                                                                                 | 2.2  | 113       |
| 70 | Novel spatial arrangements of familiar visual stimuli promote activity in the rat hippocampal<br>formation but not the parahippocampal cortices: a c-fos expression study. Neuroscience, 2004, 124,<br>43-52.                                            | 2.3  | 111       |
| 71 | Testing the importance of the retrosplenial guidance system: effects of different sized retrosplenial cortex lesions on heading direction and spatial working memory. Behavioural Brain Research, 2004, 155, 97-108.                                     | 2.2  | 109       |
| 72 | Origin and topography of fibers contributing to the fornix in macaque monkeys. Hippocampus, 2007, 17, 396-411.                                                                                                                                           | 1.9  | 109       |

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Assessing the magnitude of the allocentric spatial deficit associated with complete loss of the anterior thalamic nuclei in rats. Behavioural Brain Research, 1997, 87, 223-232.                                                | 2.2 | 107       |
| 74 | The ability of odours to serve as state-dependent cues for real-world memories: Can Viking smells aid the recall of Viking experiences?. British Journal of Psychology, 1999, 90, 1-7.                                          | 2.3 | 107       |
| 75 | Magnitude of the object recognition deficit associated with perirhinal cortex damage in rats: Effects of varying the lesion extent and the duration of the sample period Behavioral Neuroscience, 2009, 123, 115-124.           | 1.2 | 107       |
| 76 | Theta-Modulated Head Direction Cells in the Rat Anterior Thalamus. Journal of Neuroscience, 2011, 31, 9489-9502.                                                                                                                | 3.6 | 107       |
| 77 | Complementary Patterns of Direct Amygdala and Hippocampal Projections to the Macaque Prefrontal<br>Cortex. Cerebral Cortex, 2015, 25, 4351-4373.                                                                                | 2.9 | 107       |
| 78 | A description of intra-amygdaloid connections in old world monkeys. Experimental Brain Research,<br>1985, 57, 390-9.                                                                                                            | 1.5 | 106       |
| 79 | Effects of scopolamine and physostigmine on recognition memory in monkeys with ibotenic-acid lesions of the nucleus basalis of Meynert. Psychopharmacology, 1987, 92, 292-300.                                                  | 3.1 | 106       |
| 80 | Fos expression in the rostral thalamic nuclei and associated cortical regions in response to different spatial memory tests. Neuroscience, 2000, 101, 983-991.                                                                  | 2.3 | 106       |
| 81 | Spontaneous recognition of object configurations in rats: effects of fornix lesions. Experimental<br>Brain Research, 1994, 100, 85-92.                                                                                          | 1.5 | 103       |
| 82 | Comparing the effects of selective cingulate cortex lesions and cingulum bundle lesions on water maze performance by rats. European Journal of Neuroscience, 1998, 10, 622-634.                                                 | 2.6 | 103       |
| 83 | The Different Effects on Recognition Memory of Perirhinal Kainate and NMDA Glutamate Receptor<br>Antagonism: Implications for Underlying Plasticity Mechanisms. Journal of Neuroscience, 2006, 26,<br>3561-3566.                | 3.6 | 101       |
| 84 | EPS Mid-Career Award 2006: Understanding anterograde amnesia: Disconnections and hidden lesions.<br>Quarterly Journal of Experimental Psychology, 2008, 61, 1441-1471.                                                          | 1.1 | 100       |
| 85 | The performance of amnesic subjects on tests of delayed matching-to-sample and delayed matching-to-position. Neuropsychologia, 1995, 33, 1583-1596.                                                                             | 1.6 | 98        |
| 86 | Disconnecting hippocampal projections to the anterior thalamus produces deficits on tests of spatial memory in rats. European Journal of Neuroscience, 2000, 12, 1714-1726.                                                     | 2.6 | 96        |
| 87 | Testing the importance of the caudal retrosplenial cortex for spatial memory in rats. Behavioural<br>Brain Research, 2003, 140, 107-118.                                                                                        | 2.2 | 96        |
| 88 | The effects of mammillary body and combined amygdalar-fornix lesions on tests of delayed non-matching-to-sample in the rat. Behavioural Brain Research, 1990, 40, 145-157.                                                      | 2.2 | 93        |
| 89 | Neurotoxic Lesions of the Dorsomedial Thalamus Impair the Acquisition But Not the Performance of<br>Delayed Matching to Place by Rats: a Deficit in Shifting Response Rules. Journal of Neuroscience, 1998,<br>18, 10045-10052. | 3.6 | 93        |
| 90 | Nucleus reuniens of the thalamus contains head direction cells. ELife, 2014, 3, .                                                                                                                                               | 6.0 | 91        |

| #   | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | The subiculum. Progress in Brain Research, 2015, 219, 65-82.                                                                                                                                                    | 1.4 | 89        |
| 92  | Temporal association tracts and the breakdown of episodic memory in mild cognitive impairment.<br>Neurology, 2012, 79, 2233-2240.                                                                               | 1.1 | 88        |
| 93  | Why do lesions in the rodent anterior thalamic nuclei cause such severe spatial deficits?.<br>Neuroscience and Biobehavioral Reviews, 2015, 54, 131-144.                                                        | 6.1 | 88        |
| 94  | Selective dysgranular retrosplenial cortex lesions in rats disrupt allocentric performance of the radial-arm maze task Behavioral Neuroscience, 2005, 119, 1682-1686.                                           | 1.2 | 87        |
| 95  | The medial dorsal thalamic nucleus and the medial prefrontal cortex of the rat function together to support associative recognition and recency but not item recognition. Learning and Memory, 2013, 20, 41-50. | 1.3 | 86        |
| 96  | Evidence for spatially-responsive neurons in the rostral thalamus. Frontiers in Behavioral<br>Neuroscience, 2015, 9, 256.                                                                                       | 2.0 | 85        |
| 97  | Differential activation of the rat hippocampus and perirhinal cortex by novel visual stimuli and a novel environment. Neuroscience Letters, 1997, 229, 141-143.                                                 | 2.1 | 84        |
| 98  | cAMP Responsive Element-Binding Protein Phosphorylation Is Necessary for Perirhinal Long-Term<br>Potentiation and Recognition Memory. Journal of Neuroscience, 2005, 25, 6296-6303.                             | 3.6 | 83        |
| 99  | Fornix Lesions Can Facilitate Acquisition of the Transverse Patterning Task: A Challenge for<br>"Configural―Theories of Hippocampal Function. Journal of Neuroscience, 1998, 18, 1622-1631.                     | 3.6 | 80        |
| 100 | Do rats with retrosplenial cortex lesions lack direction?. European Journal of Neuroscience, 2008, 28, 2486-2498.                                                                                               | 2.6 | 80        |
| 101 | Parallel but separate inputs from limbic cortices to the mammillary bodies and anterior thalamic nuclei in the rat. Journal of Comparative Neurology, 2010, 518, 2334-2354.                                     | 1.6 | 80        |
| 102 | Extensive cytotoxic lesions of the rat retrosplenial cortex reveal consistent deficits on tasks that tax allocentric spatial memory. Behavioral Neuroscience, 2002, 116, 85-94.                                 | 1.2 | 80        |
| 103 | THE AMYGDALA: SENSORY GATEWAY TO THE EMOTIONS. , 1986, , 281-299.                                                                                                                                               |     | 79        |
| 104 | Medial dorsal thalamic lesions and working memory in the rat. Behavioral and Neural Biology, 1991, 55, 227-246.                                                                                                 | 2.2 | 79        |
| 105 | Chewing gum can produce context-dependent effects upon memory. Appetite, 2004, 43, 207-210.                                                                                                                     | 3.7 | 78        |
| 106 | Mamillary-body lesions and visual recognition in monkeys. Experimental Brain Research, 1985, 58, 190-7.                                                                                                         | 1.5 | 77        |
| 107 | Understanding retrosplenial amnesia: Insights from animal studies. Neuropsychologia, 2010, 48, 2328-2338.                                                                                                       | 1.6 | 77        |
| 108 | Differential effects of amygdaloid lesions on conditioned taste aversion learning by rats. Physiology and Behavior, 1981, 27, 397-400.                                                                          | 2.1 | 75        |

| #   | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Granular and dysgranular retrosplenial cortices provide qualitatively different contributions to<br>spatial working memory: evidence from immediateâ€early gene imaging in rats. European Journal of<br>Neuroscience, 2009, 30, 877-888. | 2.6 | 73        |
| 110 | Projections from the hippocampal region to the mammillary bodies in macaque monkeys. European<br>Journal of Neuroscience, 2005, 22, 2519-2530.                                                                                           | 2.6 | 72        |
| 111 | New behavioral protocols to extend our knowledge of rodent object recognition memory. Learning and Memory, 2010, 17, 407-419.                                                                                                            | 1.3 | 72        |
| 112 | What pharmacological interventions indicate concerning the role of the perirhinal cortex in recognition memory. Neuropsychologia, 2012, 50, 3122-3140.                                                                                   | 1.6 | 72        |
| 113 | Loss of the thalamic nuclei for "head direction" impairs performance on spatial memory tasks in rats<br>Behavioral Neuroscience, 2001, 115, 861-869.                                                                                     | 1.2 | 71        |
| 114 | Fos Imaging Reveals that Lesions of the Anterior Thalamic Nuclei Produce Widespread Limbic<br>Hypoactivity in Rats. Journal of Neuroscience, 2002, 22, 5230-5238.                                                                        | 3.6 | 71        |
| 115 | Hippocampal lesions halve immediate–early gene protein counts in retrosplenial cortex: distal<br>dysfunctions in a spatial memory system. European Journal of Neuroscience, 2007, 26, 1254-1266.                                         | 2.6 | 71        |
| 116 | Benzodiazepine impairment of perirhinal cortical plasticity and recognition memory. European Journal of Neuroscience, 2004, 20, 2214-2224.                                                                                               | 2.6 | 70        |
| 117 | A Critical Role for the Anterior Thalamus in Directing Attention to Task-Relevant Stimuli. Journal of Neuroscience, 2015, 35, 5480-5488.                                                                                                 | 3.6 | 70        |
| 118 | Looking beyond the hippocampus: old and new neurological targets for understanding memory disorders. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140565.                                                       | 2.6 | 69        |
| 119 | Anterior thalamic lesions stop immediate early gene activation in selective laminae of the<br>retrosplenial cortex: evidence of covert pathology in rats?. European Journal of Neuroscience, 2004,<br>19, 3291-3304.                     | 2.6 | 67        |
| 120 | Anterior thalamic lesions stop synaptic plasticity in retrosplenial cortex slices: expanding the pathology of diencephalic amnesia. Brain, 2009, 132, 1847-1857.                                                                         | 7.6 | 66        |
| 121 | Segregation of parallel inputs to the anteromedial and anteroventral thalamic nuclei of the rat.<br>Journal of Comparative Neurology, 2013, 521, 2966-2986.                                                                              | 1.6 | 66        |
| 122 | Qualitatively Different Hippocampal Subfield Engagement Emerges with Mastery of a Spatial Memory<br>Task by Rats. Journal of Neuroscience, 2008, 28, 1034-1045.                                                                          | 3.6 | 65        |
| 123 | A comparison between the connections of the amygdala and hippocampus with the basal forebrain in the macaque. Experimental Brain Research, 1987, 67, 556-68.                                                                             | 1.5 | 64        |
| 124 | Working memory in aged rats Behavioral Neuroscience, 1989, 103, 975-983.                                                                                                                                                                 | 1.2 | 64        |
| 125 | Fos imaging reveals differential neuronal activation of areas of rat temporal cortex by novel and familiar sounds. European Journal of Neuroscience, 2001, 14, 118-124.                                                                  | 2.6 | 64        |
| 126 | Transient impairment of recognition memory following ibotenic-acid lesions of the basal forebrain in macaques. Experimental Brain Research, 1991, 86, 18-26.                                                                             | 1.5 | 62        |

| #   | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Using Fos Imaging in the Rat to Reveal the Anatomical Extent of the Disruptive Effects of Fornix<br>Lesions. Journal of Neuroscience, 2000, 20, 8144-8152.                                                                        | 3.6 | 61        |
| 128 | Contrasting brain activity patterns for item recognition memory and associative recognition memory:<br>Insights from immediate-early gene functional imaging. Neuropsychologia, 2012, 50, 3141-3155.                              | 1.6 | 61        |
| 129 | When is the perirhinal cortex necessary for the performance of spatial memory tasks?. Neuroscience and Biobehavioral Reviews, 2004, 28, 611-624.                                                                                  | 6.1 | 59        |
| 130 | Evolutionary coherence of the mammalian amygdala. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 539-543.                                                                                                    | 2.6 | 58        |
| 131 | The role of the hippocampus in mnemonic integration and retrieval: complementary evidence from lesion and inactivation studies. European Journal of Neuroscience, 2009, 30, 2177-2189.                                            | 2.6 | 58        |
| 132 | Medial temporal lobe projections to the retrosplenial cortex of the macaque monkey. Hippocampus, 2012, 22, 1883-1900.                                                                                                             | 1.9 | 58        |
| 133 | The effects of discrete cingulum bundle lesions in the rat on the acquisition and performance of two tests of spatial working memory. Behavioural Brain Research, 1996, 80, 75-85.                                                | 2.2 | 56        |
| 134 | The ability of amnesic subjects to estimate time intervals. Neuropsychologia, 1994, 32, 857-873.                                                                                                                                  | 1.6 | 54        |
| 135 | Perirhinal cortex and place–object conditional learning in the rat Behavioral Neuroscience, 2001, 115, 776-785.                                                                                                                   | 1.2 | 53        |
| 136 | Advances in the behavioural testing and network imaging of rodent recognition memory. Behavioural<br>Brain Research, 2015, 285, 67-78.                                                                                            | 2.2 | 52        |
| 137 | Differing time dependencies of object recognition memory impairments produced by nicotinic and muscarinic cholinergic antagonism in perirhinal cortex. Learning and Memory, 2011, 18, 484-492.                                    | 1.3 | 50        |
| 138 | An examination of the spatial working memory deficit following neurotoxic medial dorsal thalamic<br>lesions in rats. Behavioural Brain Research, 1998, 97, 129-141.                                                               | 2.2 | 49        |
| 139 | Lesions of the fornix and anterior thalamic nuclei dissociate different aspects of<br>hippocampal-dependent spatial learning: Implications for the neural basis of scene learning<br>Behavioral Neuroscience, 2009, 123, 504-519. | 1.2 | 48        |
| 140 | Oscillatory Entrainment of Thalamic Neurons by Theta Rhythm in Freely Moving Rats. Journal of Neurophysiology, 2011, 105, 4-17.                                                                                                   | 1.8 | 48        |
| 141 | Evidence that the rat hippocampus has contrasting roles in object recognition memory and object recency memory Behavioral Neuroscience, 2012, 126, 659-669.                                                                       | 1.2 | 48        |
| 142 | The rat retrosplenial cortex is required when visual cues are used flexibly to determine location.<br>Behavioural Brain Research, 2014, 263, 98-107.                                                                              | 2.2 | 47        |
| 143 | A novel role for the rat retrosplenial cortex in cognitive control. Learning and Memory, 2014, 21, 90-97.                                                                                                                         | 1.3 | 47        |
| 144 | Effects of selective granular retrosplenial cortex lesions on spatial working memory in rats.<br>Behavioural Brain Research, 2010, 208, 566-575.                                                                                  | 2.2 | 46        |

| #   | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Cholinergic Basal Forebrain Structure Influences the Reconfiguration of White Matter Connections to Support Residual Memory in Mild Cognitive Impairment. Journal of Neuroscience, 2015, 35, 739-747.                            | 3.6 | 45        |
| 146 | Handedness and Musical Ability: A Study of Professional Orchestral Players, Composers, and Choir<br>Members. Psychology of Music, 1994, 22, 148-156.                                                                             | 1.6 | 44        |
| 147 | Changes in Fos expression in the rat brain after unilateral lesions of the anterior thalamic nuclei.<br>European Journal of Neuroscience, 2002, 16, 1425-1432.                                                                   | 2.6 | 44        |
| 148 | Selective disconnection of the hippocampal formation projections to the mammillary bodies produces only mild deficits on spatial memory tasks: Implications for fornix function. Hippocampus, 2011, 21, 945-957.                 | 1.9 | 44        |
| 149 | Dysgranular retrosplenial cortex lesions in rats disrupt cross-modal object recognition. Learning and Memory, 2014, 21, 171-179.                                                                                                 | 1.3 | 44        |
| 150 | Fornix white matter glia damage causes hippocampal gray matter damage during age-dependent limbic<br>decline. Scientific Reports, 2019, 9, 1060.                                                                                 | 3.3 | 44        |
| 151 | Distinct, parallel pathways link the medial mammillary bodies to the anterior thalamus in macaque monkeys. European Journal of Neuroscience, 2007, 26, 1575-1586.                                                                | 2.6 | 43        |
| 152 | Lack of effect of dorsomedial thalamic lesions on automated tests of spatial memory in the rat.<br>Behavioural Brain Research, 1993, 55, 39-49.                                                                                  | 2.2 | 42        |
| 153 | Mapping immediateâ€early gene activity in the rat after place learning in a waterâ€maze: the importance of matched control conditions. European Journal of Neuroscience, 2008, 28, 982-996.                                      | 2.6 | 42        |
| 154 | Complementary subicular pathways to the anterior thalamic nuclei and mammillary bodies in the rat and macaque monkey brain. European Journal of Neuroscience, 2016, 43, 1044-1061.                                               | 2.6 | 42        |
| 155 | Stable Encoding of Visual Cues in the Mouse Retrosplenial Cortex. Cerebral Cortex, 2020, 30, 4424-4437.                                                                                                                          | 2.9 | 42        |
| 156 | Rats' processing of visual scenes: effects of lesions to fornix, anterior thalamus, mamillary nuclei or the retrohippocampal region. Behavioural Brain Research, 2001, 121, 103-117.                                             | 2.2 | 41        |
| 157 | The origin of projections from the posterior cingulate and retrosplenial cortices to the anterior,<br>medial dorsal and laterodorsal thalamic nuclei of macaque monkeys. European Journal of<br>Neuroscience, 2014, 39, 107-123. | 2.6 | 41        |
| 158 | Perirhinal cortex lesions uncover subsidiary systems in the rat for the detection of novel and familiar objects. European Journal of Neuroscience, 2011, 34, 331-342.                                                            | 2.6 | 39        |
| 159 | Dissociation of recognition and recency memory judgments after anterior thalamic nuclei lesions in rats Behavioral Neuroscience, 2013, 127, 415-431.                                                                             | 1.2 | 39        |
| 160 | The retrosplenial cortex and object recency memory in the rat. European Journal of Neuroscience, 2017, 45, 1451-1464.                                                                                                            | 2.6 | 39        |
| 161 | Does pretraining spare the spatial deficit associated with anterior thalamic damage in rats?.<br>Behavioral Neuroscience, 1999, 113, 956-967.                                                                                    | 1.2 | 38        |
| 162 | Testing the importance of the retrosplenial navigation system: lesion size but not strain matters: a reply to Harker and Whishaw. Neuroscience and Biobehavioral Reviews, 2004, 28, 525-531.                                     | 6.1 | 38        |

| #   | Article                                                                                                                                                                        | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | The status of the precommissural and postcommissural fornix in normal ageing and mild cognitive impairment: An MRI tractography study. NeuroImage, 2016, 130, 35-47.           | 4.2  | 38        |
| 164 | The anterior thalamic nuclei: core components of a tripartite episodic memory system. Nature Reviews Neuroscience, 2022, 23, 505-516.                                          | 10.2 | 38        |
| 165 | Amygdaloid lesions and stimulus-reward associations in the rat. Behavioural Brain Research, 1991, 42, 57-66.                                                                   | 2.2  | 37        |
| 166 | Physiological evidence for a possible projection from dorsal subiculum to hippocampal area CA1.<br>Experimental Brain Research, 2002, 146, 155-160.                            | 1.5  | 37        |
| 167 | Anterior thalamic nuclei lesions in rats disrupt markers of neural plasticity in distal limbic brain regions. Neuroscience, 2012, 224, 81-101.                                 | 2.3  | 37        |
| 168 | Perirhinal cortex lesions impair tests of object recognition memory but spare novelty detection.<br>European Journal of Neuroscience, 2015, 42, 3117-3127.                     | 2.6  | 37        |
| 169 | What does spatial alternation tell us about retrosplenial cortex function?. Frontiers in Behavioral Neuroscience, 2015, 9, 126.                                                | 2.0  | 37        |
| 170 | Space and Memory (Far) Beyond the Hippocampus: Many Subcortical Structures Also Support Cognitive Mapping and Mnemonic Processing. Frontiers in Neural Circuits, 2019, 13, 52. | 2.8  | 37        |
| 171 | Separate but interacting recognition memory systems for different senses: The role of the rat perirhinal cortex. Learning and Memory, 2011, 18, 435-443.                       | 1.3  | 36        |
| 172 | Individual Differences in Fornix Microstructure and Body Mass Index. PLoS ONE, 2013, 8, e59849.                                                                                | 2.5  | 36        |
| 173 | Intact negative patterning in rats with fornix or combined perirhinal and postrhinal cortex lesions.<br>Experimental Brain Research, 2000, 134, 506-519.                       | 1.5  | 35        |
| 174 | Differential regulation of synaptic plasticity of the hippocampal and the hypothalamic inputs to the anterior thalamus. Hippocampus, 2011, 21, 1-8.                            | 1.9  | 35        |
| 175 | The Failure of Context Shifts to Alter the Recognition of Faces: Implications for Contextual Deficits in Amnesia. Cortex, 1994, 30, 351-354.                                   | 2.4  | 34        |
| 176 | The importance of the rat hippocampus for learning the structure of visual arrays. European Journal of Neuroscience, 2006, 24, 1781-1788.                                      | 2.6  | 34        |
| 177 | Distinct patterns of hippocampal formation activity associated with different spatial tasks: a Fos imaging study in rats. Experimental Brain Research, 2003, 151, 514-523.     | 1.5  | 33        |
| 178 | Hippocampal inputs mediate theta-related plasticity in anterior thalamus. Neuroscience, 2011, 187, 52-62.                                                                      | 2.3  | 33        |
| 179 | Asymmetric cross-hemispheric connections link the rat anterior thalamic nuclei with the cortex and hippocampal formation. Neuroscience, 2017, 349, 128-143.                    | 2.3  | 33        |
| 180 | Distributed interactive brain circuits for object-in-place memory: A place for time?. Brain and Neuroscience Advances, 2020, 4, 239821282093347.                               | 3.4  | 33        |

| #   | Article                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Collateral Projections Innervate the Mammillary Bodies and Retrosplenial Cortex: A New Category of<br>Hippocampal Cells. ENeuro, 2018, 5, ENEURO.0383-17.2018.                      | 1.9 | 33        |
| 182 | Novel temporal configurations of stimuli produce discrete changes in immediate-early gene expression in the rat hippocampus. European Journal of Neuroscience, 2006, 24, 2611-2621. | 2.6 | 32        |
| 183 | Post-surgical interval and lesion location within the limbic thalamus determine extent of retrosplenial cortex immediate-early gene hypoactivity. Neuroscience, 2009, 160, 452-469. | 2.3 | 32        |
| 184 | Fornical and nonfornical projections from the rat hippocampal formation to the anterior thalamic nuclei. Hippocampus, 2015, 25, 977-992.                                            | 1.9 | 32        |
| 185 | Detecting and discriminating novel objects: The impact of perirhinal cortex disconnection on hippocampal activity patterns. Hippocampus, 2016, 26, 1393-1413.                       | 1.9 | 32        |
| 186 | An assessment of the reinforcing properties of foods after amygdaloid lesions in rhesus monkeys<br>Journal of Comparative and Physiological Psychology, 1982, 96, 71-77.            | 1.8 | 31        |
| 187 | Synaptic depression induced by pharmacological activation of metabotropic glutamate receptors in the perirhinal cortex in vitro. Neuroscience, 1999, 93, 977-984.                   | 2.3 | 31        |
| 188 | Changes in immediate early gene expression in the rat brain after unilateral lesions of the hippocampus. Neuroscience, 2006, 137, 747-759.                                          | 2.3 | 30        |
| 189 | Structural learning and the hippocampus. Hippocampus, 2007, 17, 723-734.                                                                                                            | 1.9 | 29        |
| 190 | The Frequency and Extent of Mammillary Body Atrophy Associated with Surgical Removal of a Colloid<br>Cyst. American Journal of Neuroradiology, 2009, 30, 736-743.                   | 2.4 | 29        |
| 191 | The effect of retrosplenial cortex lesions in rats on incidental and active spatial learning. Frontiers in Behavioral Neuroscience, 2015, 9, 11.                                    | 2.0 | 28        |
| 192 | Perirhinal cortex lesions in rats: Novelty detection and sensitivity to interference Behavioral Neuroscience, 2015, 129, 227-243.                                                   | 1.2 | 28        |
| 193 | Deconstructing the Direct Reciprocal Hippocampal-Anterior Thalamic Pathways for Spatial Learning.<br>Journal of Neuroscience, 2020, 40, 6978-6990.                                  | 3.6 | 28        |
| 194 | The effects of hippocampal system lesions on a novel temporal discrimination task for rats.<br>Behavioural Brain Research, 2008, 187, 159-171.                                      | 2.2 | 27        |
| 195 | Anterior Thalamic Inputs Are Required for Subiculum Spatial Coding, with Associated Consequences for Hippocampal Spatial Memory. Journal of Neuroscience, 2021, 41, 6511-6525.      | 3.6 | 27        |
| 196 | Neurotoxic lesions of the rat perirhinal cortex fail to disrupt the acquisition of performance of tests of allocentric spatial memory Behavioral Neuroscience, 2002, 116, 232-240.  | 1.2 | 26        |
| 197 | Early-onset dysfunction of retrosplenial cortex precedes overt amyloid plaque formation in Tg2576 mice. Neuroscience, 2011, 174, 71-83.                                             | 2.3 | 26        |
| 198 | Primacy, recency, and the von Restorff effect in rats' nonspatial recognition memory Journal of<br>Experimental Psychology, 1991, 17, 36-44.                                        | 1.7 | 24        |

| #   | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | The rat retrosplenial cortex as a link for frontal functions: A lesion analysis. Behavioural Brain<br>Research, 2017, 335, 88-102.                                                                                      | 2.2 | 24        |
| 200 | Visual impairments in macaques following inferior temporal lesions are exacerbated selectively by additional damage to superior temporal sulcus. Behavioural Brain Research, 1990, 39, 262-274.                         | 2.2 | 23        |
| 201 | Lesions of the fornix but not the amygdala impair the acquisition of concurrent discriminations by rats. Behavioural Brain Research, 1992, 48, 103-112.                                                                 | 2.2 | 22        |
| 202 | Anterior thalamic lesions produce chronic and profuse transcriptional deregulation in retrosplenial cortex: a model of retrosplenial hypoactivity and covert pathology. Thalamus & Related Systems, 2008, 4, 59-77.     | 0.5 | 22        |
| 203 | The neural basis of nonvisual object recognition memory in the rat Behavioral Neuroscience, 2013, 127, 70-85.                                                                                                           | 1.2 | 22        |
| 204 | The impact of fornix lesions in rats on spatial learning tasks sensitive to anterior thalamic and hippocampal damage. Behavioural Brain Research, 2015, 278, 360-374.                                                   | 2.2 | 22        |
| 205 | Separate cortical and hippocampal cell populations target the rat nucleus reuniens and mammillary bodies. European Journal of Neuroscience, 2019, 49, 1649-1672.                                                        | 2.6 | 22        |
| 206 | The anterior thalamic nuclei and nucleus reuniens: So similar but so different. Neuroscience and<br>Biobehavioral Reviews, 2020, 119, 268-280.                                                                          | 6.1 | 22        |
| 207 | The effects of lesions to the fornix and dorsomedial thalamus on concurrent discrimination learning by rats. Behavioural Brain Research, 1994, 62, 195-205.                                                             | 2.2 | 21        |
| 208 | Neurotoxic lesions of the rat perirhinal and postrhinal cortices and their impact on biconditional visual discrimination tasks. Behavioural Brain Research, 2007, 176, 274-283.                                         | 2.2 | 21        |
| 209 | Selective importance of the rat anterior thalamic nuclei for configural learning involving distal spatial cues. European Journal of Neuroscience, 2014, 39, 241-256.                                                    | 2.6 | 21        |
| 210 | Using Idiothetic Cues to Swim a Path With a Fixed Trajectory and Distance: Necessary Involvement of the Hippocampus, but Not the Retrosplenial Cortex Behavioral Neuroscience, 2003, 117, 1363-1377.                    | 1.2 | 20        |
| 211 | Selective lamina dysregulation in granular retrosplenial cortex (area 29) after anterior thalamic<br>lesions: an in situ hybridization and trans-neuronal tracing study in rats. Neuroscience, 2010, 169,<br>1255-1267. | 2.3 | 20        |
| 212 | A Key Role for Subiculum-Fornix Connectivity in Recollection in Older Age. Frontiers in Systems<br>Neuroscience, 2018, 12, 70.                                                                                          | 2.5 | 20        |
| 213 | Sensory preconditioning in rats with lesions of the anterior thalamic nuclei: evidence for intact nonspatial â€relational' processing. Behavioural Brain Research, 2002, 133, 125-133.                                  | 2.2 | 19        |
| 214 | Lesions of the mammillothalamic tract impair the acquisition of spatial but not nonspatial contextual conditional discriminations. European Journal of Neuroscience, 2003, 18, 2413-2416.                               | 2.6 | 19        |
| 215 | Mapping parahippocampal systems for recognition and recency memory in the absence of the rat hippocampus. European Journal of Neuroscience, 2014, 40, 3720-3734.                                                        | 2.6 | 19        |
| 216 | Association rules for rat spatial learning: The importance of the hippocampus for binding item identity with item location. Hippocampus, 2013, 23, 1162-1178.                                                           | 1.9 | 18        |

| #   | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Chemogenetics Reveal an Anterior Cingulate–Thalamic Pathway for Attending to Task-Relevant<br>Information. Cerebral Cortex, 2021, 31, 2169-2186.                                                                                 | 2.9 | 18        |
| 218 | Topographic separation of fornical fibers associated with the anterior and posterior hippocampus in the human brain: An <scp>MRI</scp> â€diffusion study. Brain and Behavior, 2017, 7, e00604.                                   | 2.2 | 17        |
| 219 | The ability of different strains of rats to acquire a visual nonmatching-to-sample task. Cognitive,<br>Affective and Behavioral Neuroscience, 1996, 24, 44-48.                                                                   | 1.3 | 17        |
| 220 | Lesions of the perirhinal cortex do not impair integration of visual and geometric information in rats Behavioral Neuroscience, 2010, 124, 311-320.                                                                              | 1.2 | 16        |
| 221 | Projections from Gudden's tegmental nuclei to the mammillary body region in the cynomolgus monkey<br>( <i>Macaca fascicularis</i> ). Journal of Comparative Neurology, 2012, 520, 1128-1145.                                     | 1.6 | 16        |
| 222 | Evidence for two distinct thalamocortical circuits in retrosplenial cortex. Neurobiology of Learning and Memory, 2021, 185, 107525.                                                                                              | 1.9 | 16        |
| 223 | Lesions in the anterior thalamic nuclei of rats do not disrupt acquisition of stimulus sequence<br>learning. Quarterly Journal of Experimental Psychology, 2011, 64, 65-73.                                                      | 1.1 | 15        |
| 224 | Contrasting networks for recognition memory and recency memory revealed by immediate-early gene imaging in the rat Behavioral Neuroscience, 2014, 128, 504-522.                                                                  | 1.2 | 15        |
| 225 | The Anatomical Boundary of the Rat Claustrum. Frontiers in Neuroanatomy, 2019, 13, 53.                                                                                                                                           | 1.7 | 15        |
| 226 | The separate and combined properties of the granular (area 29) and dysgranular (area 30) retrosplenial cortex. Neurobiology of Learning and Memory, 2021, 185, 107516.                                                           | 1.9 | 15        |
| 227 | Emotion: Sensory Representation, Reinforcement, and the Temporal Lobe. Cognition and Emotion, 1990, 4, 191-208.                                                                                                                  | 2.0 | 14        |
| 228 | Occupation and handedness: An examination of architects and mail survey biases Canadian Journal of<br>Psychology, 1991, 45, 395-404.                                                                                             | 0.8 | 14        |
| 229 | On the Transience of Egocentric Working Memory: Evidence From Testing the Contribution of Limbic<br>Brain Regions Behavioral Neuroscience, 2004, 118, 785-797.                                                                   | 1.2 | 14        |
| 230 | The impact of anterior thalamic lesions on active and passive spatial learning in stimulus controlled environments: Geometric cues and pattern arrangement Behavioral Neuroscience, 2014, 128, 161-177.                          | 1.2 | 14        |
| 231 | Calcium-binding protein immunoreactivity in Gudden's tegmental nuclei and the hippocampal<br>formation: differential co-localization in neurons projecting to the mammillary bodies. Frontiers in<br>Neuroanatomy, 2015, 9, 103. | 1.7 | 13        |
| 232 | Trajectory of hippocampal fibres to the contralateral anterior thalamus and mammillary bodies in rats, mice, and macaque monkeys. Brain and Neuroscience Advances, 2019, 3, 239821281987120.                                     | 3.4 | 13        |
| 233 | When is the rat retrosplenial cortex required for stimulus integration?. Behavioral Neuroscience, 2018, 132, 366-377.                                                                                                            | 1.2 | 13        |
| 234 | X-ray localization of limbic structures in the cynomolgus monkey (Macaca fascicularis). Journal of<br>Neuroscience Methods, 1985, 14, 101-108.                                                                                   | 2.5 | 12        |

| #   | Article                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Cross-modal matching by amnesic subjects. Neuropsychologia, 1990, 28, 665-671.                                                                                                                | 1.6 | 12        |
| 236 | Suppression to visual, auditory, and gustatory stimuli habituates normally in rats with excitotoxic lesions of the perirhinal cortex Behavioral Neuroscience, 2009, 123, 1238-1250.           | 1.2 | 12        |
| 237 | Precommissural and postcommissural fornix microstructure in healthy aging and cognition. Brain and Neuroscience Advances, 2020, 4, 239821281989931.                                           | 3.4 | 12        |
| 238 | Does pretraining spare the spatial deficit associated with anterior thalamic damage in rats?.<br>Behavioral Neuroscience, 1999, 113, 956-967.                                                 | 1.2 | 12        |
| 239 | Is Eichenbaum et al.'s proposal testable and how extensive is the hippocampal memory system?.<br>Behavioral and Brain Sciences, 1994, 17, 472-473.                                            | 0.7 | 11        |
| 240 | Memory: Looking back and looking forward. Brain and Neuroscience Advances, 2018, 2, 239821281879483.                                                                                          | 3.4 | 11        |
| 241 | Proximal perimeter encoding in the rat rostral thalamus. Scientific Reports, 2019, 9, 2865.                                                                                                   | 3.3 | 11        |
| 242 | Medial temporal pathways for contextual learning: Network c- <i>fos</i> mapping in rats with or without perirhinal cortex lesions. Brain and Neuroscience Advances, 2017, 1, 239821281769416. | 3.4 | 9         |
| 243 | Anterior thalamic nuclei, but not retrosplenial cortex, lesions abolish latent inhibition in rats<br>Behavioral Neuroscience, 2018, 132, 378-387.                                             | 1.2 | 9         |
| 244 | Measuring Musical Aptitude in Children: On the Role of Age, Handedness, Scholastic Achievement, and<br>Socioeconomic Status. Psychology of Music, 1997, 25, 57-69.                            | 1.6 | 8         |
| 245 | The effects of cytotoxic perirhinal cortex lesions on spatial learning by rats: A comparison of the dark Agouti and Sprague-Dawley strains Behavioral Neuroscience, 2006, 120, 150-161.       | 1.2 | 8         |
| 246 | Memory formation: Its changing face. Neuroscience and Biobehavioral Reviews, 2012, 36, 1577-1578.                                                                                             | 6.1 | 8         |
| 247 | The irregular firing properties of thalamic head direction cells mediate turn-specific modulation of the directional tuning curve. Journal of Neurophysiology, 2014, 112, 2316-2331.          | 1.8 | 8         |
| 248 | APOE-ε4-related differences in left thalamic microstructure in cognitively healthy adults. Scientific<br>Reports, 2020, 10, 19787.                                                            | 3.3 | 8         |
| 249 | Delayed non matching to sample in a novel automated visual memory apparatus using mixed retention intervals. , 1997, 20, 103-111.                                                             |     | 7         |
| 250 | Excitotoxic lesions of the rostral thalamic reticular nucleus do not affect the performance of spatial learning and memory tasks in the rat. Behavioural Brain Research, 2001, 120, 177-187.  | 2.2 | 7         |
| 251 | Perirhinal cortex lesions that impair object recognition memory spare landmark discriminations.<br>Behavioural Brain Research, 2016, 313, 255-259.                                            | 2.2 | 7         |
| 252 | NeuroChaT: A toolbox to analyse the dynamics of neuronal encoding in freely-behaving rodents in vivo. Wellcome Open Research, 2019, 4, 196.                                                   | 1.8 | 7         |

| #   | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Do the rat anterior thalamic nuclei contribute to behavioural flexibility?. Behavioural Brain<br>Research, 2019, 359, 536-549.                                                                                                                                       | 2.2 | 6         |
| 254 | Analysis of the automated delayed nonmatching-to-position task: The effects of changing contiguity between stimulus, response and reinforcement, and of providing a salient spatial cue within the apparatus. Neuroscience Research Communications, 1998, 22, 21-29. | 0.2 | 5         |
| 255 | An attempt to overcome the problem of motor mediation by rats in the delayed non matching-to-position task. , 1998, 22, 153-162.                                                                                                                                     |     | 5         |
| 256 | Thanks for the memories: Extending the hippocampal-diencephalic mnemonic system. Behavioral and Brain Sciences, 1999, 22, 471-479.                                                                                                                                   | 0.7 | 5         |
| 257 | On the specificity of expert knowledge about a soap opera: an everyday story of farming folk. Applied<br>Cognitive Psychology, 1998, 12, 35-42.                                                                                                                      | 1.6 | 4         |
| 258 | Lesions of retrosplenial cortex spare immediate-early gene activity in related limbic regions in the rat.<br>Brain and Neuroscience Advances, 2018, 2, 239821281881123.                                                                                              | 3.4 | 4         |
| 259 | Organisation of cingulum bundle fibres connecting the anterior thalamic nuclei with the rodent anterior cingulate and retrosplenial cortices. Brain and Neuroscience Advances, 2020, 4, 239821282095716.                                                             | 3.4 | 4         |
| 260 | A Direct Comparison of Afferents to the Rat Anterior Thalamic Nuclei and Nucleus Reuniens:<br>Overlapping But Different. ENeuro, 2021, 8, ENEURO.0103-20.2021.                                                                                                       | 1.9 | 3         |
| 261 | Mapping recognition memory in the primate brain: why it's sometimes right to be wrong. Brain<br>Research Bulletin, 1999, 50, 447-448.                                                                                                                                | 3.0 | 2         |
| 262 | Subiculum–BNST structural connectivity in humans and macaques. NeuroImage, 2022, 253, 119096.                                                                                                                                                                        | 4.2 | 2         |
| 263 | Response from Young and Aggleton. Trends in Cognitive Sciences, 1997, 1, 47-48.                                                                                                                                                                                      | 7.8 | 1         |
| 264 | Chapter 5.2 Using hippocampal amnesia to understand the neural basis of diencephalic amnesia.<br>Handbook of Behavioral Neuroscience, 2008, , 503-632.                                                                                                               | 0.7 | 1         |
| 265 | P1-217: CINGULUM MICROSTRUCTURE INFLUENCES COGNITIVE CONTROL THROUGH EFFECTS ON GLOBAL<br>NETWORK ARCHITECTURE IN MILD COGNITIVE IMPAIRMENT. , 2014, 10, P383-P384.                                                                                                  |     | 1         |
| 266 | A welcome to <i>Brain and Neuroscience Advances</i> from the President of the BNA and the journal's Editor-in-Chief. Brain and Neuroscience Advances, 2017, 1, 239821281666430.                                                                                      | 3.4 | 1         |
| 267 | Perirhinal Cortex Lesions and Spontaneous Object Recognition Memory in Rats. Handbook of<br>Behavioral Neuroscience, 2018, 27, 185-195.                                                                                                                              | 0.7 | 1         |
| 268 | Reply: Posterior cingulate hypometabolism in early Alzheimer's disease: what is the contribution of local atrophy versus disconnection?. Brain, 2009, 132, e134-e134.                                                                                                | 7.6 | 0         |
| 269 | P1-218: DISRUPTION OF WHITE MATTER STRUCTURAL NETWORKS AND COGNITIVE DECLINE IN MILD COGNITIVE IMPAIRMENT. , 2014, 10, P384-P384.                                                                                                                                    |     | 0         |
| 270 | Refining the bigger picture: On the integrative memory model. Behavioral and Brain Sciences, 2019, 42, e282.                                                                                                                                                         | 0.7 | 0         |

| #   | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Organisation of cingulum bundle fibres connecting the anterior thalamic nuclei with the rodent<br>anterior cingulate and retrosplenial cortices. Brain and Neuroscience Advances, 2020, 4,<br>2398212820957160. | 3.4 | 0         |
| 272 | Apolipoprotein ε4 modifies obesity-related atrophy in the hippocampal formation of cognitively healthy adults. Neurobiology of Aging, 2022, 113, 39-54.                                                         | 3.1 | 0         |