Dong K Ahn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5062492/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Behavioral Evidence for the Differential Regulation of p-p38 MAPK and p-NF-Î⁰B in Rats with Trigeminal Neuropathic Pain. Molecular Pain, 2011, 7, 1744-8069-7-57.	2.1	64
2	Intratrigeminal ganglionic injection of LPA causes neuropathic pain-like behavior and demyelination in rats. Pain, 2009, 146, 114-120.	4.2	62
3	Compression of the trigeminal ganglion produces prolonged nociceptive behavior in rats. European Journal of Pain, 2009, 13, 568-575.	2.8	49
4	Blockade of central cyclooxygenase (COX) pathways enhances the cannabinoid-induced antinociceptive effects on inflammatory temporomandibular joint (TMJ) nociception. Pain, 2007, 132, 23-32.	4.2	44
5	Role of peripheral group I and II metabotropic glutamate receptors in IL-1Î ² -induced mechanical allodynia in the orofacial area of conscious rats. Pain, 2005, 118, 53-60.	4.2	36
6	A novel trigeminal neuropathic pain model: Compression of the trigeminal nerve root produces prolonged nociception in rats. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2012, 38, 149-158.	4.8	36
7	Central cyclooxygenase inhibitors reduced IL-1Î ² -induced hyperalgesia in temporomandibular joint of freely moving rats. Pain, 2005, 117, 204-213.	4.2	33
8	Progesterone Produces Antinociceptive and Neuroprotective Effects in Rats with Microinjected Lysophosphatidic Acid in the Trigeminal Nerve Root. Molecular Pain, 2012, 8, 1744-8069-8-16.	2.1	32
9	Differential regulation of peripheral IL-1β-induced mechanical allodynia and thermal hyperalgesia in rats. Pain, 2014, 155, 723-732.	4.2	30
10	The Clial–Neuronal GRK2 Pathway Participates in the Development of Trigeminal Neuropathic Pain in Rats. Journal of Pain, 2014, 15, 250-261.	1.4	22
11	Intracisternal Administration of NR2 Subunit Antagonists Attenuates the Nociceptive Behavior and p-p38 MAPK Expression Produced by Compression of the Trigeminal Nerve Root. Molecular Pain, 2011, 7, 1744-8069-7-46.	2.1	20
12	Blockade of microglial activation reduces mechanical allodynia in rats with compression of the trigeminal ganglion. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2012, 36, 52-59.	4.8	19
13	A role for the purinergic receptor P2X3 in astrocytes in the mechanism of craniofacial neuropathic pain. Scientific Reports, 2017, 7, 13627.	3.3	18
14	Central Connectivity of Transient Receptor Potential Melastatin 8-Expressing Axons in the Brain Stem and Spinal Dorsal Horn. PLoS ONE, 2014, 9, e94080.	2.5	16
15	Blockade of spinal glutamate recycling produces paradoxical antinociception in rats with orofacial inflammatory pain. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2015, 57, 100-109.	4.8	15
16	Intracisternal administration of COX inhibitors attenuates mechanical allodynia following compression of the trigeminal ganglion in rats. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2009, 33, 589-595.	4.8	14
17	Central VEGF-A pathway plays a key role in the development of trigeminal neuropathic pain in rats. Molecular Pain, 2019, 15, 174480691987260.	2.1	14
18	<co-administered and="" antinociceptive<br="" dexamethasone="" doses="" ibuprofen="" low="" of="" produce="" synergistic="">Effects On Neuropathic Mechanical Allodynia In Rats. Journal of Pain Research, 2019, Volume 12, 2959-2968.</co-administered>	2.0	8

Dong K Ahn

#	Article	IF	CITATIONS
19	Participation of central GABA _A receptors in the trigeminal processing of mechanical allodynia in rats. Korean Journal of Physiology and Pharmacology, 2017, 21, 65.	1.2	7
20	Differential responses of intracisternal injection of interleukin-1 ? to acute and inflammatory orofacial pain model in freely moving rats. Neuroscience Research Communications, 2002, 31, 145-154.	0.2	6
21	Baicalin Activates Glycine and Î ³ -Aminobutyric Acid Receptors on Substantia Gelatinosa Neurons of the Trigeminal Subsnucleus Caudalis in Juvenile Mice. The American Journal of Chinese Medicine, 2016, 44, 389-400.	3.8	6
22	Quantitative ultrastructural analysis of fibers expressing parvalbumin, calretinin, calbindin Dâ€28k, stage specific embryonic antigenâ€4, and phosphorylated neurofilament 200 in the peripheral sensory root of the rat trigeminal ganglion. Journal of Comparative Neurology, 2018, 526, 2204-2214.	1.6	6
23	A novel computerized system for thermal stimulation of tooth in ferrets. Journal of Neuroscience Methods, 2012, 203, 305-310.	2.5	2
24	Mannitol Enhances the Antinociceptive Effects of Diphenhydramine as an Alternative Local Anesthetic. Pain Research and Management, 2020, 2020, 1-6.	1.8	2
25	TNF-α-Mediated RIPK1 Pathway Participates in the Development of Trigeminal Neuropathic Pain in Rats. International Journal of Molecular Sciences, 2022, 23, 506.	4.1	2
26	Mechanisms of bicuculline-induced hypersensitivity of medullary dorsal horn neurons in rats. Neuroscience Research Communications, 2002, 31, 123-134.	0.2	1