List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5061631/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global maps of soil temperature. Global Change Biology, 2022, 28, 3110-3144.	9.5	113
2	Effects of climate change on regeneration of plants from seeds in boreal, subarctic, and subalpine regions. , 2022, , 19-32.		2
3	Functional trait variation of <i>Anemone nemorosa</i> along macro―and microclimatic gradients close to the northern range edge. Nordic Journal of Botany, 2022, 2022, .	0.5	3
4	Directional turnover towards largerâ€ranged plants over time and across habitats. Ecology Letters, 2022, 25, 466-482.	6.4	39
5	The European Forest Plant Species List (EuForPlant): Concept and applications. Journal of Vegetation Science, 2022, 33, .	2.2	23
6	Soil seed bank responses to edge effects in temperate European forests. Global Ecology and Biogeography, 2022, 31, 1877-1893.	5.8	5
7	Small scale environmental variation modulates plant defence syndromes of understorey plants in deciduous forests of Europe. Global Ecology and Biogeography, 2021, 30, 205-219.	5.8	15
8	Drivers of carbon stocks in forest edges across Europe. Science of the Total Environment, 2021, 759, 143497.	8.0	25
9	Determinants of tree seedling establishment in alpine tundra. Journal of Vegetation Science, 2021, 32, e12948.	2.2	2
10	Herbivores reduce seedling recruitment in alpine plant communities. Nordic Journal of Botany, 2021, 39, .	0.5	2
11	Lichens buffer tundra microclimate more than the expanding shrub <i>Betula nana</i> . Annals of Botany, 2021, 128, 407-418.	2.9	16
12	Biological flora of Central Europe: Impatiens glandulifera Royle. Perspectives in Plant Ecology, Evolution and Systematics, 2021, 50, 125609.	2.7	8
13	The burning question: does fire affect habitat selection and forage preference of the black rhinoceros <i>Diceros bicornis</i> in East African savannahs?. Oryx, 2020, 54, 234-243.	1.0	12
14	Remote sensing of ploidy level in quaking aspen (<i>Populus tremuloides</i> Michx.). Journal of Ecology, 2020, 108, 175-188.	4.0	18
15	Contrasting microclimates among hedgerows and woodlands across temperate Europe. Agricultural and Forest Meteorology, 2020, 281, 107818.	4.8	27
16	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
17	Edge influence on understorey plant communities depends on forest management. Journal of Vegetation Science, 2020, 31, 281-292.	2.2	40
18	Savannah trees buffer herbaceous plant biomass against wild and domestic herbivores. Applied Vegetation Science, 2020, 23, 185-196.	1.9	8

#	Article	IF	CITATIONS
19	Teatime in the Serengeti: macrodetritivores sustain recalcitrant plant litter decomposition across human-modified tropical savannahs. Plant and Soil, 2020, 456, 241-258.	3.7	3
20	Spatio-Temporal Changes in Wildlife Habitat Quality in the Greater Serengeti Ecosystem. Sustainability, 2020, 12, 2440.	3.2	28
21	Plant diversity in hedgerows and road verges across Europe. Journal of Applied Ecology, 2020, 57, 1244-1257.	4.0	42
22	Earlier onset of flowering and increased reproductive allocation of an annual invasive plant in the north of its novel range. Annals of Botany, 2020, 126, 1005-1016.	2.9	7
23	Hedging against biodiversity loss: Forest herbs' performance in hedgerows across temperate Europe. Journal of Vegetation Science, 2020, 31, 817-829.	2.2	8
24	Structural variation of forest edges across Europe. Forest Ecology and Management, 2020, 462, 117929.	3.2	35
25	Inter―and intraspecific trait variation shape multidimensional trait overlap between two plant invaders and the invaded communities. Oikos, 2020, 129, 677-688.	2.7	17
26	SoilTemp: A global database of nearâ€ s urface temperature. Global Change Biology, 2020, 26, 6616-6629.	9.5	122
27	Reviewing the potential for including habitat fragmentation to improve life cycle impact assessments for land use impacts on biodiversity. International Journal of Life Cycle Assessment, 2019, 24, 2206-2219.	4.7	9
28	Lichens facilitate seedling recruitment in alpine heath. Journal of Vegetation Science, 2019, 30, 868-880.	2.2	17
29	Drivers of C cycling in three arctic-alpine plant communities. Arctic, Antarctic, and Alpine Research, 2019, 51, 128-147.	1.1	9
30	Functional group contributions to carbon fluxes in arctic-alpine ecosystems. Arctic, Antarctic, and Alpine Research, 2019, 51, 58-68.	1.1	9
31	No genetic erosion after five generations for Impatiens glandulifera populations across the invaded range in Europe. BMC Genetics, 2019, 20, 20.	2.7	12
32	Moose effects on soil temperatures, tree canopies, and understory vegetation: a path analysis. Ecosphere, 2019, 10, e02966.	2.2	7
33	Litter type and termites regulate root decomposition across contrasting savanna landâ€uses. Oikos, 2019, 128, 596-607.	2.7	10
34	Impact of an invasive alien plant on litter decomposition along a latitudinal gradient. Ecosphere, 2018, 9, e02097.	2.2	26
35	Impacts of an invasive plant on primary production: Testing a functional traitâ€based framework with a greenhouse experiment. Journal of Vegetation Science, 2018, 29, 157-166.	2.2	7
36	Draining the Pool? Carbon Storage and Fluxes in Three Alpine Plant Communities. Ecosystems, 2018, 21, 316-330.	3.4	43

#	Article	IF	CITATIONS
37	Stay or go – how topographic complexity influences alpine plant population and community responses to climate change. Perspectives in Plant Ecology, Evolution and Systematics, 2018, 30, 41-50.	2.7	141
38	Experimental herbivore exclusion, shrub introduction, and carbon sequestration in alpine plant communities. BMC Ecology, 2018, 18, 29.	3.0	7
39	Late Quaternary climate legacies in contemporary plant functional composition. Clobal Change Biology, 2018, 24, 4827-4840.	9.5	48
40	Microenvironment and functionalâ€ŧrait context dependence predict alpine plant community dynamics. Journal of Ecology, 2018, 106, 1323-1337.	4.0	60
41	Predictability in community dynamics. Ecology Letters, 2017, 20, 293-306.	6.4	68
42	Biological Flora of the British Isles: <i>Milium effusum</i> . Journal of Ecology, 2017, 105, 839-858.	4.0	7
43	Latitudinal variation of life-history traits of an exotic and a native impatiens species in Europe. Acta Oecologica, 2017, 81, 40-47.	1.1	3
44	Where does the community start, and where does it end? Including the seed bank to reassess forest herb layer responses to the environment. Journal of Vegetation Science, 2017, 28, 424-435.	2.2	21
45	Impact of climate change on alpine vegetation of mountain summits in Norway. Ecological Research, 2017, 32, 579-593.	1.5	71
46	Biotic and abiotic drivers of intraspecific trait variation within plant populations of three herbaceous plant species along a latitudinal gradient. BMC Ecology, 2017, 17, 38.	3.0	38
47	Pre-adaptation or genetic shift after introduction in the invasive species Impatiens glandulifera?. Acta Oecologica, 2016, 70, 60-66.	1.1	18
48	Disjunct populations of <scp>E</scp> uropean vascular plant species keep the same climatic niches. Global Ecology and Biogeography, 2015, 24, 1401-1412.	5.8	39
49	Low genetic diversity despite multiple introductions of the invasive plant species Impatiens glandulifera in Europe. BMC Genetics, 2015, 16, 103.	2.7	62
50	Synchronous flowering despite differences in snowmelt timing among habitats of Empetrum hermaphroditum. Acta Oecologica, 2015, 69, 129-136.	1.1	13
51	Linking small-scale topography with microclimate, plant species diversity and intra-specific trait variation in an alpine landscape. Plant Ecology and Diversity, 2015, 8, 305-315.	2.4	115
52	Plant movements and climate warming: intraspecific variation in growth responses to nonlocal soils. New Phytologist, 2014, 202, 431-441.	7.3	29
53	Snow cover consistently affects growth and reproduction of Empetrum hermaphroditum across latitudinal and local climatic gradients. Alpine Botany, 2014, 124, 115-129.	2.4	18
54	Rodent population dynamics affect seedling recruitment in alpine habitats. Journal of Vegetation Science, 2014, 25, 1004-1014.	2.2	18

#	Article	IF	CITATIONS
55	Microclimate moderates plant responses to macroclimate warming. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18561-18565.	7.1	523
56	Plant community type and smallâ€scale disturbances, but not altitude, influence the invasibility in subarctic ecosystems. New Phytologist, 2013, 197, 1002-1011.	7.3	62
57	Climatic control of forest herb seed banks along a latitudinal gradient. Global Ecology and Biogeography, 2013, 22, 1106-1117.	5.8	24
58	Latitudinal gradients as natural laboratories to infer species' responses to temperature. Journal of Ecology, 2013, 101, 784-795.	4.0	315
59	Decoupled phenotypic variation between floral and vegetative traits: distinguishing between developmental and environmental correlations. Annals of Botany, 2013, 111, 935-944.	2.9	23
60	Correlations between physical and chemical defences in plants: tradeoffs, syndromes, or just many different ways to skin a herbivorous cat?. New Phytologist, 2013, 198, 252-263.	7.3	124
61	Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across <scp>N</scp> orthern <scp>E</scp> urope. Global Change Biology, 2013, 19, 1470-1481.	9.5	200
62	The response of forest plant regeneration to temperature variation along a latitudinal gradient. Annals of Botany, 2012, 109, 1037-1046.	2.9	41
63	On the use of weather data in ecological studies along altitudinal and latitudinal gradients. Oikos, 2012, 121, 3-19.	2.7	135
64	Phosphorus availability and microbial respiration across different tundra vegetation types. Biogeochemistry, 2012, 108, 429-445.	3.5	48
65	Interregional variation in the floristic recovery of postâ€agricultural forests. Journal of Ecology, 2011, 99, 600-609.	4.0	50
66	Temperature effects on forest herbs assessed by warming and transplant experiments along a latitudinal gradient. Global Change Biology, 2011, 17, 3240-3253.	9.5	112
67	How do bryophytes govern generative recruitment of vascular plants?. New Phytologist, 2011, 190, 1019-1031.	7.3	96
68	Putting plant resistance traits on the map: a test of the idea that plants are better defended at lower latitudes. New Phytologist, 2011, 191, 777-788.	7.3	155
69	An intraspecific application of the leaf-height-seed ecology strategy scheme to forest herbs along a latitudinal gradient. Ecography, 2011, 34, 132-140.	4.5	41
70	Interactive effects of vegetation type and elevation on aboveground and belowground properties in a subarctic tundra. Oikos, 2011, 120, 128-142.	2.7	68
71	Strong microsite control of seedling recruitment in tundra. Oecologia, 2011, 166, 565-576.	2.0	99
72	Predicted changes in vegetation structure affect the susceptibility to invasion of bryophyte-dominated subarctic heath. Annals of Botany, 2011, 108, 177-183.	2.9	17

#	Article	IF	CITATIONS
73	The use of openâ€ŧop chambers in forests for evaluating warming effects on herbaceous understorey plants. Ecological Research, 2010, 25, 163-171.	1.5	61
74	Ontogenetic niche shifts in three <i>Vaccinium</i> species on a sub-alpine mountain side. Plant Ecology and Diversity, 2010, 3, 131-139.	2.4	12
75	Forest herbs in the face of global change: a single-species-multiple-threats approach for Anemone nemorosa. Plant Ecology and Evolution, 2010, 143, 19-30.	0.7	31
76	Effects of a warmer climate on seed germination in the subarctic. Annals of Botany, 2009, 104, 287-296.	2.9	145
77	A hierarchical framework for integrating invasibility experiments incorporating different factors and spatial scales. Biological Invasions, 2009, 11, 941-950.	2.4	90
78	The effect of an early-season short-term heat pulse on plant recruitment in the Arctic. Polar Biology, 2009, 32, 1117-1126.	1.2	28
79	Critical periods for impact of climate warming on early seedling establishment in subarctic tundra. Global Change Biology, 2009, 15, 2662-2680.	9.5	75
80	Germination requirements and seed mass of slow- and fast- colonizing temperate forest herbs along a latitudinal gradient. Ecoscience, 2009, 16, 248-257.	1.4	33
81	Homogenization of forest plant communities and weakening of species?environment relationships via agricultural land use. Journal of Ecology, 2007, 95, 565-573.	4.0	300
82	COMMUNITY ASSEMBLY IN EXPERIMENTAL GRASSLANDS: SUITABLE ENVIRONMENT OR TIMELY ARRIVAL?. Ecology, 2006, 87, 1225-1233.	3.2	110
83	An Experimental Evaluation of the Arctic Fox (Alopex lagopus) as a Seed Disperser. Arctic, Antarctic, and Alpine Research, 2004, 36, 468-473.	1.1	39
84	The role of epizoochorous seed dispersal of forest plant species in a fragmented landscape. Seed Science Research, 2002, 12, 113-121.	1.7	84
85	The impact of forest continuity and management on forest floor vegetation evaluated by species traits. Ecography, 2000, 23, 720-731.	4.5	24
86	A comparison of understorey vegetation between untouched and managed deciduous forest in Denmark. Forest Ecology and Management, 1997, 96, 111-123.	3.2	85