
Mehmet Senbayram

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5061257/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Land use conversion and soil moisture affect the magnitude and pattern of soil-borne N2, NO, and N2O emissions. Geoderma, 2022, 407, 115568.	5.1	14
2	Climate Overrides Effects of Fertilizer and Straw Management as Controls of Nitrous Oxide Emissions After Oilseed Rape Harvest. Frontiers in Environmental Science, 2022, 9, .	3.3	2
3	Inhibitory effect of high nitrate on N2O reduction is offset by long moist spells in heavily N loaded arable soils. Biology and Fertility of Soils, 2022, 58, 77-90.	4.3	11
4	Optimization of Potassium Supply under Osmotic Stress Mitigates Oxidative Damage in Barley. Plants, 2022, 11, 55.	3.5	10
5	Microbial potential for denitrification in the hyperarid Atacama Desert soils. Soil Biology and Biochemistry, 2021, 157, 108248.	8.8	13
6	Regulation of the product stoichiometry of denitrification in intensively managed soils. Food and Energy Security, 2020, 9, e251.	4.3	7
7	Rhizosphere processes in nitrate-rich barley soil tripled both N2O and N2 losses due to enhanced bacterial and fungal denitrification. Plant and Soil, 2020, 448, 509-522.	3.7	18
8	Sulfur-enriched leonardite and humic acid soil amendments enhance tolerance to drought and phosphorus deficiency stress in maize (Zea mays L.). Scientific Reports, 2020, 10, 6432.	3.3	95
9	A critique of the paper †Estimate of bacterial and fungal N2O production processes after crop residue input and fertilizer application to an agricultural field by 15N isotopomer analysis', by Yamamoto et al. (2017), Soil Biology & Biochemistry 108, 9†16. Soil Biology and Biochemistry, 2019, 135, 450-451.	8.8	2
10	Effect of biochar origin and soil type on the greenhouse gas emission and the bacterial community structure in N fertilised acidic sandy and alkaline clay soil. Science of the Total Environment, 2019, 660, 69-79.	8.0	54
11	Soil NO3â^ level and O2 availability are key factors in controlling N2O reduction to N2 following long-term liming of an acidic sandy soil. Soil Biology and Biochemistry, 2019, 132, 165-173.	8.8	61
12	Post-harvest N 2 O and CO 2 emissions related to plant residue incorporation of oilseed rape and barley straw depend on soil NO 3 - content. Soil and Tillage Research, 2018, 179, 105-113.	5.6	18
13	Leaf, canopy and agronomic waterâ€use efficiency of fieldâ€grown sugar beet in response to potassium fertilization. Journal of Agronomy and Crop Science, 2018, 204, 99-110.	3.5	17
14	Straw amendment with nitrate-N decreased N2O/(N2O+N2) ratio but increased soil N2O emission: A case study of direct soil-born N2 measurements. Soil Biology and Biochemistry, 2018, 127, 301-304.	8.8	49
15	Interaction of straw amendment and soil NO3â^' content controls fungal denitrification and denitrification product stoichiometry in a sandy soil. Soil Biology and Biochemistry, 2018, 126, 204-212.	8.8	61
16	Effect of biochar origin and soil pH on greenhouse gas emissions from sandy and clay soils. Applied Soil Ecology, 2018, 129, 121-127.	4.3	98
17	Optimized potassium nutrition improves plant-water-relations of barley under PEG-induced osmotic stress. Plant and Soil, 2018, 430, 23-35.	3.7	29
18	Studying CO2 from plant respiration in controlled and natural environment: How can plant breeding industry benefit from it? (Conference Presentation). , 2018, , .		0

Mehmet Senbayram

#	Article	IF	CITATIONS
19	Quantitative limitations to photosynthesis in K deficient sunflower and their implications on water-use efficiency. Journal of Plant Physiology, 2017, 209, 20-30.	3.5	83
20	Nitrification inhibitors mitigate N2O emissions more effectively under straw-induced conditions favoring denitrification. Soil Biology and Biochemistry, 2017, 104, 197-207.	8.8	98
21	Adequate supply of potassium improves plant waterâ€use efficiency but not leaf waterâ€use efficiency of spring wheat. Journal of Plant Nutrition and Soil Science, 2016, 179, 733-745.	1.9	30
22	Magnesium deficiency decreases biomass water-use efficiency and increases leaf water-use efficiency and oxidative stress in barley plants. Plant and Soil, 2016, 406, 409-423.	3.7	54
23	Legume-based mixed intercropping systems may lower agricultural born N2O emissions. Energy, Sustainability and Society, 2015, 6, .	3.8	35
24	Potential use of rare earth oxides as tracers of organic matter in grassland. Journal of Plant Nutrition and Soil Science, 2015, 178, 288-296.	1.9	9
25	Role of magnesium fertilisers in agriculture: plant–soil continuum. Crop and Pasture Science, 2015, 66, 1219.	1.5	195
26	Anaerobic digestates lower N2O emissions compared to cattle slurry by affecting rate and product stoichiometry of denitrification – An N2O isotopomer case study. Soil Biology and Biochemistry, 2015, 84, 65-74.	8.8	57
27	Fast responses of metabolites in Vicia faba L. to moderate NaCl stress. Plant Physiology and Biochemistry, 2015, 92, 19-29.	5.8	19
28	Daytime leaf water use efficiency does not explain the relationship between plant N status and biomass water-use efficiency of tobacco under non-limiting water supply. Journal of Plant Nutrition and Soil Science, 2015, 178, 682-692.	1.9	8
29	The Activity of Nodules of the Supernodulating Mutant Mtsunn Is not Limited by Photosynthesis under Optimal Growth Conditions. International Journal of Molecular Sciences, 2014, 15, 6031-6045.	4.1	15
30	Effect of mineral nitrogen fertilizer forms on N ₂ O emissions from arable soils in winter wheat production. Journal of Plant Nutrition and Soil Science, 2014, 177, 722-732.	1.9	26
31	Life-cycle assessment of biogas production under the environmental conditions of northern Germany: greenhouse gas balance. Journal of Agricultural Science, 2014, 152, 172-181.	1.3	17
32	Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories. Global Change Biology, 2014, 20, 2356-2367.	9.5	758
33	Experimental determinations of isotopic fractionation factors associated with N2O production and reduction during denitrification in soils. Geochimica Et Cosmochimica Acta, 2014, 134, 55-73.	3.9	81
34	Potassium in agriculture – Status and perspectives. Journal of Plant Physiology, 2014, 171, 656-669.	3.5	725
35	Impact of mineral N fertilizer application rates on N2O emissions from arable soils under winter wheat. Nutrient Cycling in Agroecosystems, 2014, 100, 111-120.	2.2	30
36	Emission of N2O from Biogas Crop Production Systems in Northern Germany. Bioenergy Research, 2014, 7, 1223-1236.	3.9	34

Mehmet Senbayram

#	Article	IF	CITATIONS
37	Legume-based forage production systems reduce nitrous oxide emissions. Soil and Tillage Research, 2014, 143, 17-25.	5.6	49
38	Soil denitrification potential and its influence on N ₂ O reduction and N ₂ O isotopomer ratios. Rapid Communications in Mass Spectrometry, 2013, 27, 2363-2373.	1.5	46
39	Decomposition of biogas residues in soil and their effects on microbial growth kinetics and enzyme activities. Biomass and Bioenergy, 2012, 45, 221-229.	5.7	90
40	N2O emission and the N2O/(N2O+N2) product ratio of denitrification as controlled by available carbon substrates and nitrate concentrations. Agriculture, Ecosystems and Environment, 2012, 147, 4-12.	5.3	313
41	Rapid shift from denitrification to nitrification in soil after biogas residue application as indicated by nitrous oxide isotopomers. Soil Biology and Biochemistry, 2011, 43, 1671-1677.	8.8	62
42	Origin of positive δ13C of emitted CO2 from soils after application of biogas residues. Soil Biology and Biochemistry, 2011, 43, 2194-2199.	8.8	7
43	Contribution of nitrification and denitrification to nitrous oxide emissions from soils after application of biogas waste and other fertilizers. Rapid Communications in Mass Spectrometry, 2009, 23, 2489-2498.	1.5	111
44	Low nitrogen supply decreases waterâ€use efficiency of oriental tobacco. Journal of Plant Nutrition and Soil Science, 2009, 172, 216-223.	1.9	26
45	Longâ€ŧerm influence of manure and mineral nitrogen applications on plant and soil ¹⁵ N and ¹³ C values from the Broadbalk Wheat Experiment. Rapid Communications in Mass Spectrometry, 2008, 22, 1735-1740.	1.5	56