Francisco Orgaz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5061236/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Yield Responses of a Mature Olive Orchard to Water Deficits. Journal of the American Society for Horticultural Science, 2003, 128, 425-431.	1.0	343
2	The effects of regulated and continuous deficit irrigation on the water use, growth and yield of olive trees. European Journal of Agronomy, 2009, 30, 258-265.	4.1	201
3	Evapotranspiration of a young irrigated olive orchard in southern Spain. Agricultural and Forest Meteorology, 2004, 121, 1-18.	4.8	153
4	Evapotranspiration of horticultural crops in an unheated plastic greenhouse. Agricultural Water Management, 2005, 72, 81-96.	5.6	149
5	Changes in Phenolic Compounds in Garlic (Allium sativum L.) Owing to the Cultivar and Location of Growth. Plant Foods for Human Nutrition, 2011, 66, 218-223.	3.2	146
6	Measurement and estimation of plastic greenhouse reference evapotranspiration in a Mediterranean climate. Irrigation Science, 2010, 28, 497-509.	2.8	140
7	OILCROP‣UN: A Development, Growth, and Yield Model of the Sunflower Crop. Agronomy Journal, 1996, 88, 403-415.	1.8	131
8	Measurement and modeling of evapotranspiration of olive (Olea europaea L.) orchards. European Journal of Agronomy, 2000, 13, 155-163.	4.1	124
9	Modelling potential growth and yield of olive (Olea europaea L.) canopies. European Journal of Agronomy, 2006, 24, 296-303.	4.1	122
10	Deficit Irrigation Optimization of Cotton with AquaCrop. Agronomy Journal, 2009, 101, 477-487.	1.8	122
11	Modelling and measurement of radiation interception by olive canopies. Agricultural and Forest Meteorology, 2000, 100, 183-197.	4.8	105
12	Soil evaporation from drip-irrigated olive orchards. Irrigation Science, 2001, 20, 65-71.	2.8	94
13	Non-destructive measurement of leaf area in olive (Olea europaea L.) trees using a gap inversion method. Agricultural and Forest Meteorology, 1995, 73, 29-42.	4.8	84
14	Water requirements of olive orchards–II: determination of crop coefficients for irrigation scheduling. Irrigation Science, 2006, 24, 77-84.	2.8	84
15	Reflections on food security under water scarcity. Journal of Experimental Botany, 2011, 62, 4079-4086.	4.8	80
16	Influence of water deficits at different times during olive tree inflorescence and flower development. Environmental and Experimental Botany, 2012, 77, 227-233.	4.2	80
17	Season Length and Cultivar Determine the Optimum Evapotranspiration Deficit in Cotton. Agronomy Journal, 1992, 84, 700-706.	1.8	76
18	Efficiency of water use of early plantings of sunflower. European Journal of Agronomy, 2004, 21, 465-476.	4.1	73

FRANCISCO ORGAZ

#	Article	IF	CITATIONS
19	Water requirements of olive orchards: I simulation of daily evapotranspiration for scenario analysis. Irrigation Science, 2006, 24, 69-76.	2.8	69
20	Modelling canopy conductance and transpiration of fruit trees in Mediterranean areas: A simplified approach. Agricultural and Forest Meteorology, 2013, 171-172, 93-103.	4.8	66
21	Radiation-use efficiency and dry matter partitioning of a young olive (Olea europaea) orchard. Tree Physiology, 2000, 20, 65-72.	3.1	59
22	Responses of pepper to deficit irrigation for paprika production. Scientia Horticulturae, 2007, 114, 77-82.	3.6	56
23	Bowen ratio/energy balance technique for estimating crop net CO2 assimilation, and comparison with a canopy chamber. Theoretical and Applied Climatology, 1990, 42, 203-213.	2.8	53
24	Carbon exchange and water use efficiency of a growing, irrigated olive orchard. Environmental and Experimental Botany, 2008, 63, 168-177.	4.2	53
25	Measurement and simulation of evaporation from soil in olive orchards. Irrigation Science, 1999, 18, 205-211.	2.8	50
26	Assessing deficit irrigation strategies at the level of an irrigation district. Agricultural Water Management, 2007, 91, 51-60.	5.6	49
27	A large closed canopy chamber for measuring CO2 and water vapour exchange of whole trees. Environmental and Experimental Botany, 2010, 68, 131-138.	4.2	48
28	A model of daily mean canopy conductance for calculating transpiration of olive canopies. Functional Plant Biology, 2007, 34, 178.	2.1	47
29	Effect of Genetic Characteristics and Environmental Factors on Organosulfur Compounds in Garlic (Allium sativum L.) Grown in Andalusia, Spain. Journal of Agricultural and Food Chemistry, 2011, 59, 1301-1307.	5.2	47
30	Water use of irrigated almond trees when subjected to water deficits. Agricultural Water Management, 2018, 195, 84-93.	5.6	41
31	Water use and production of a greenhouse pepper crop under optimum and limited water supply. Journal of Horticultural Science and Biotechnology, 2005, 80, 87-96.	1.9	39
32	Variations in bulk canopy conductance of an irrigated olive (Olea europaea L.) orchard. Environmental and Experimental Botany, 2006, 55, 15-28.	4.2	39
33	Transpiration of young almond trees in relation to intercepted radiation. Irrigation Science, 2015, 33, 265-275.	2.8	35
34	A comparison between drip and furrow irrigation in cotton at two levels of water supply. Agricultural Water Management, 1991, 19, 313-324.	5.6	32
35	Transpiration from canopy temperature: Implications for the assessment of crop yield in almond orchards. European Journal of Agronomy, 2019, 105, 78-85.	4.1	32
36	Evapotranspiration and crop coefficients of irrigated garlic (Allium sativum L.) in a semi-arid climate. Agricultural Water Management, 2004, 64, 233-249.	5.6	31

#	Article	IF	CITATIONS
37	A dynamic model of potential growth of olive (Olea europaea L.) orchards. European Journal of Agronomy, 2016, 74, 93-102.	4.1	30

Radiation interception, radiation-use efficiency and dry matter partitioning in garlic (Allium sativum) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

39	Effects of water supply on carbon and water exchange of olive trees. European Journal of Agronomy, 2012, 40, 1-7.	4.1	28
40	Balancing crop yield and water productivity tradeoffs in herbaceous and woody crops. Functional Plant Biology, 2014, 41, 1009.	2.1	28
41	Responses of transpiration and transpiration efficiency of almond trees to moderate water deficits. Scientia Horticulturae, 2017, 225, 6-14.	3.6	28
42	Winter cereals grown for grain and for the dual purpose of forage plus grain I. Production. Field Crops Research, 1995, 44, 1-11.	5.1	26
43	Using sap flow measurements to estimate net assimilation in olive trees under different irrigation regimes. Irrigation Science, 2015, 33, 357-366.	2.8	25
44	OliveCan: A Process-Based Model of Development, Growth and Yield of Olive Orchards. Frontiers in Plant Science, 2018, 9, 632.	3.6	25
45	Evaluation of sunflower (Helianthus annuus, L.) genotypes differing in early vigour using a simulation model. European Journal of Agronomy, 1997, 7, 109-118.	4.1	24
46	The pitfalls of water potential for irrigation scheduling. Agricultural Water Management, 2021, 243, 106522.	5.6	23
47	The Influence of Irrigation Frequency on the Onset and Development of Verticillium Wilt of Olive. Plant Disease, 2015, 99, 488-495.	1.4	22
48	Long-term almond yield response to deficit irrigation. Irrigation Science, 2021, 39, 409-420.	2.8	20
49	Effect of soil temperature on root resistance: implications for different trees under Mediterranean conditions. Tree Physiology, 2016, 36, 469-478.	3.1	18
50	The Effect of Short Irrigation Frequencies on the Development of Verticillium Wilt in the Susceptible Olive Cultivar †Picual' under Field Conditions. Plant Disease, 2016, 100, 1880-1888.	1.4	17
51	Yield response of almond trees to transpiration deficits. Irrigation Science, 2018, 36, 111-120.	2.8	17
52	Analysing the combined effect of wetted area and irrigation volume on olive tree transpiration using a SPAC model with a multi-compartment soil solution. Irrigation Science, 2017, 35, 409-423.	2.8	16
53	The impact of deficit irrigation on transpiration and yield of mandarin and late oranges. Irrigation Science, 2018, 36, 227-239.	2.8	16
54	Aboveground respiratory CO2 effluxes from olive trees (Olea europaea L.). Agroforestry Systems, 2014, 88, 245-255.	2.0	15

FRANCISCO ORGAZ

#	Article	IF	CITATIONS
55	Low winter temperatures induce a disturbance of water relations in field olive trees. Trees - Structure and Function, 2015, 29, 1247-1257.	1.9	15
56	Water requirements of mature almond trees in response to atmospheric demand. Irrigation Science, 2018, 36, 271-280.	2.8	13
57	Almond tree response to a change in wetted soil volume under drip irrigation. Agricultural Water Management, 2018, 202, 57-65.	5.6	12
58	Winter cereals grown for grain and for the dual purpose of forage plus grain II. Water use and water-use efficiency. Field Crops Research, 1995, 44, 13-24.	5.1	11
59	Effects of Water Stress on Crop Production. , 2016, , 189-204.		11
60	Empirical validation of the relationship between the crop water stress index and relative transpiration in almond trees. Agricultural and Forest Meteorology, 2020, 292-293, 108128.	4.8	11
61	Water Stress Enhances the Progression of Branch Dieback and Almond Decline under Field Conditions. Plants, 2020, 9, 1213.	3.5	11
62	Stomatal oscillations in olive trees: analysis and methodological implications. Tree Physiology, 2018, 38, 531-542.	3.1	10
63	Water productivity and net profit of high-density olive orchards in San Juan, Argentina. Agricultural Water Management, 2021, 252, 106878.	5.6	10
64	Short- and mid-term tillage-induced soil CO2 efflux on irrigated permanent- and conventional-bed planting systems with controlled traffic in southern Spain. Soil Research, 2013, 51, 447.	1.1	8
65	Water Use Efficiency in Sustainable Agricultural Systems. , 0, , 83-89.		6
66	Effect of the irrigation dose on Verticillium wilt of olive. Scientia Horticulturae, 2015, 197, 564-567.	3.6	6
67	WATER DEFICIT EFFECTS DURING OLIVE TREE INFLORESCENCE AND FLOWER DEVELOPMENT. Acta Horticulturae, 2011, , 157-162.	0.2	5
68	Almond responses to a single season of severe irrigation water restrictions. Irrigation Science, 2022, 40, 1-11.	2.8	5
69	RESPONSES TO DIFFERENT IRRIGATION STRATEGIES OF A TRADITIONAL AND AN INTENSIVE OLIVE ORCHARD CULTIVAR 'PICUAL' IN ANDALUSIA, SPAIN. Acta Horticulturae, 2011, , 53-62.	0.2	4
70	Evaluation of sunflower (Helianthus annuus, L.) genotypes differing in early vigour using a simulation model. Developments in Crop Science, 1997, , 145-154.	0.1	2
71	Estimation of evapotranspiration on discontinuous crop canopies using high resolution thermal imagery. , 2007, , .		1
72	Pre- and post-harvest evapotranspiration, carbon exchange and water use efficiency of a mature peach orchard in semi-arid climate. Irrigation Science, 2022, 40, 407-422.	2.8	1