Satoshi Ogata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5060906/publications.pdf Version: 2024-02-01

SATOSHI ΩCATA

#	Article	IF	CITATIONS
1	3-D thermodynamic analysis of superhydrophobic surfaces. Journal of Colloid and Interface Science, 2008, 326, 471-477.	9.4	45
2	Flow between two coaxial rotating cylinders with a highly water-repellent wall. AICHE Journal, 2003, 49, 1956-1963.	3.6	35
3	Effects of T-junction size on bubble generation and flow instability for two-phase flows in circular microchannels. International Journal of Multiphase Flow, 2013, 49, 24-30.	3.4	35
4	Initiation of the Worthington jet on the droplet impact. Applied Physics Letters, 2018, 112, .	3.3	22
5	Drag Reduction for a Rotating Disk with Highly Water-Repellent Wall JSME International Journal Series B, 1998, 41, 556-560.	0.3	13
6	Effect of surfactant solutions on the drag and the flow pattern of a circular cylinder. AICHE Journal, 2006, 52, 49-57.	3.6	13
7	Drag reduction of slug flows in microchannels by modifying the size of T-junctions. International Journal of Multiphase Flow, 2014, 62, 67-72.	3.4	10
8	Limiting maximum drag-reduction asymptote for the moment coefficient of a rotating disk in drag-reducing surfactant solution. Journal of Fluid Mechanics, 2002, 457, 325-337.	3.4	8
9	Effect of Surfactant Additives on Centrifugal Pump Performance. Journal of Fluids Engineering, Transactions of the ASME, 2006, 128, 794-798.	1.5	8
10	Flow Characteristics of the Drag Reducing Solid Wall. Journal of Environment and Engineering, 2007, 2, 108-114.	0.2	8
11	Effect of Surface Textures and Wettability on Droplet Impact on a Heated Surface. Processes, 2021, 9, 350.	2.8	8
12	Formation of Taylor Vortex Flow of Polymer Solutions. Journal of Fluids Engineering, Transactions of the ASME, 2006, 128, 95-100.	1.5	7
13	Drag Reduction of Bacterial Cellulose Suspensions. Advances in Mechanical Engineering, 2011, 3, 528373.	1.6	7
14	Drag Reduction of a Pipe Flow Using <i>Nata de Coco</i> Suspensions. Advances in Mechanical Engineering, 2014, 6, 651260.	1.6	6
15	Drag Reduction of an Enclosed Rotating Disk with Fine Spiral Grooves. Journal of Environment and Engineering, 2007, 2, 97-107.	0.2	4
16	Highly responsive multi-flow pattern generation by multi-electrode plasma actuator using a single power supply. Journal Physics D: Applied Physics, 2022, 55, 105201.	2.8	4
17	Drag Reduction by Hydrophobic Microstructures. Journal of Environment and Engineering, 2011, 6, 291-301.	0.2	3
18	Study on Drag Reduction of Surfactant Solutions (Effects of Additives and Solvents on a Circular) Tj ETQq0 0	0 rgBT /Over 0.2	lock 10 Tf 50

Engineers Series B B-hen, 2013, 79, 879-887.

#	Article	IF	CITATIONS
19	Development of Micro Metallic Valve for µTAS. Journal of Solid Mechanics and Materials Engineering, 2009, 3, 729-738.	0.5	2
20	Control of the Jet Induced by the Plasma Actuators (Effect of the Applied Voltage Characteristics on) Tj ETQq0 0 0 Engineers Series B B-hen, 2011, 77, 672-679.	rgBT /Ove 0.2	erlock 10 Tf 2
21	Flow Properties of Bamboo Fiber Suspensions. , 2012, , .		2
22	Effect of Surfactant Additives on Centrifugal Pump Performance. , 2003, , 771.		1
23	Flow around a Cylinder in Surfactant Solutions (Effect of Surfactant Solutions on the Drag and the) Tj ETQq1 1 0.7 Mechanical Engineers Series B B-hen, 2005, 71, 2414-2420.	′84314 rg 0.2	BT /Overloc 1
24	Drag Reduction by Culture Solutions of Dry Malted Rice. , 2009, , .		1
25	Control of the bubble departure diameter by saw-tooth surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 460, 377-385.	4.7	1
26	Formation Process of Taylor Cells of a Surfactant Solution. , 2002, , .		1
27	Velocity Field Measurements in a Near-Wall Flow of Drag Reducing Solution in Microchannel. , 2006, , 851.		0
28	Flow Characteristics of Dilute Polymer Solutions in Micro Tubes. , 2007, , .		0
29	Flow Measurements in a Near Wall Flow Using Evanescent Wave Illumination (Effect of Polymer) Tj ETQq1 1 0.784 Society of Mechanical Engineers Series B B-hen, 2008, 74, 2452-2458.	314 rgBT 0.2	/Overlock 0
30	Effect of Surfactant Additives on Generation and Development of Laminar Boundary Layer on a Flat Plate. Journal of Fluid Science and Technology, 2009, 4, 558-566.	0.6	0
31	Effect of Textured Hydrophobic Surfaces on Laminar Drag Reduction(Fluids Engineering). 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2009, 75, 1960-1966.	0.2	0
32	Near-wall nanoparticles perpendicular distribution measured using evanescent illumination. Proceedings of SPIE, 2009, , .	0.8	0
33	Measurement and control of motion of nanoparticles in microchannel. Proceedings of SPIE, 2009, , .	0.8	0
34	Control of the Flow Direction Induced by Plasma Actuator. , 2012, , .		0
35	Velocity Oscillation and Pressure Drop in Water–Air Slug Flow. , 2012, , .		0
36	Experimental investigations of induced flow by DBD plasma actuators with fine structure electrodes. Transactions of the JSME (in Japanese), 2016, 82, 16-00068-16-00068.	0.2	0

SATOSHI OGATA

#	Article	IF	CITATIONS
37	Visualization of the formation process of slip flows by the air entrapment in microchannels. Transactions of the JSME (in Japanese), 2016, 82, 16-00164-16-00164.	0.2	0
38	Forming Process of Taylor Vortex Flow of Polymer Solutions. , 2004, , .		0
39	Flow of Surfactant Solutions Past a Circular Cylinder. , 2004, , .		0
40	Measurement of the Velocity Profile Near the Wall in Bio-Fluid Flow Using Evanescent Light Source. , 2005, , .		0
41	Effect of Surfactant Additives on a Boundary Layer on a Flat Plate. , 2005, , .		0
42	Effect of Textured Hydrophobic Surfaces on Microchannel Flow. , 2009, , .		0
43	S0520305 Effect of surface roughness on microchannel flow of drag reducing fluids. The Proceedings of Mechanical Engineering Congress Japan, 2014, 2014, _S0520305S0520305	0.0	0
44	Drag reduction and heat transfer characteristics of graphene oxide nanosheet suspensions. Transactions of the JSME (in Japanese), 2020, 86, 20-00047-20-00047.	0.2	0