Steve Bourgault

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5059437/publications.pdf

Version: 2024-02-01

45 papers 2,158 citations

394421 19 h-index 223800 46 g-index

46 all docs

46 docs citations

times ranked

46

2833 citing authors

#	Article	IF	Citations
1	Recombinant Bacillus subtilis flagellin Hag is a potent immunostimulant with reduced proinflammatory properties compared to Salmonella enterica serovar Typhimurium FljB. Vaccine, 2022, 40, 11-17.	3.8	7
2	Self-Assembly of Flagellin into Immunostimulatory Ring-like Nanostructures as an Antigen Delivery System. ACS Biomaterials Science and Engineering, 2022, 8, 694-707.	5.2	4
3	Molecular Interactions of Tannic Acid with Proteins Associated with SARS-CoV-2 Infectivity. International Journal of Molecular Sciences, 2022, 23, 2643.	4.1	21
4	In situ solid-state NMR study of antimicrobial peptide interactions with erythrocyte membranes. Biophysical Journal, 2022, 121, 1512-1524.	0.5	6
5	Supramolecular Nanostructures Based on Perylene Diimide Bioconjugates: From Self-Assembly to Applications. Nanomaterials, 2022, 12, 1223.	4.1	16
6	Corilagin and 1,3,6-Tri-O-galloy- \hat{l}^2 -d-glucose: potential inhibitors of SARS-CoV-2 variants. Physical Chemistry Chemical Physics, 2021, 23, 14873-14888.	2.8	12
7	Degradable Spirocyclic Polyacetal-Based Core-Amphiphilic Assemblies for Encapsulation and Release of Hydrophobic Cargo. Nanomaterials, 2021, 11, 161.	4.1	5
8	Cell surface glycosaminoglycans exacerbate plasma membrane perturbation induced by the islet amyloid polypeptide. FASEB Journal, 2021, 35, e21306.	0.5	10
9	Self-assembled peptide nanorod vaccine confers protection against influenza A virus. Biomaterials, 2021, 269, 120672.	11.4	20
10	Functional interaction of ubiquitin ligase RNF167 with UBE2D1 and UBE2N promotes ubiquitination of AMPA receptor. FEBS Journal, 2021, 288, 4849-4868.	4.7	10
11	Myeloidâ€resident neuropilinâ€1 promotes choroidal neovascularization while mitigating inflammation. EMBO Molecular Medicine, 2021, 13, e11754.	6.9	9
12	Site-Specific Alkylation of the Islet Amyloid Polypeptide Accelerates Self-Assembly and Potentiates Perturbation of Lipid Membranes. Biochemistry, 2021, 60, 2285-2299.	2.5	6
13	Identification of transmissible proteotoxic oligomer-like fibrils that expand conformational diversity of amyloid assemblies. Communications Biology, 2021, 4, 939.	4.4	15
14	Immunogenicity and Protective Potential of Mucosal Vaccine Formulations Based on Conserved Epitopes of Influenza A Viruses Fused to an Innovative Ring Nanoplatform in Mice and Chickens. Frontiers in Immunology, 2021, 12, 772550.	4.8	1
15	Harnessing the Activation of Toll-Like Receptor $2/6$ by Self-Assembled Cross- \hat{l}^2 Fibrils to Design Adjuvanted Nanovaccines. Nanomaterials, 2020, 10, 1981.	4.1	14
16	Identification of a novel TLR5 agonist derived from the P97 protein of Mycoplasma hyopneumoniae. Immunobiology, 2020, 225, 151962.	1.9	6
17	Protein Supramolecular Structures: From Self-Assembly to Nanovaccine Design. Nanomaterials, 2020, 10, 1008.	4.1	40
18	Compartmentalized processing of catechols during mussel byssus fabrication determines the destiny of DOPA. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7613-7621.	7.1	42

#	Article	IF	Citations
19	Guiding the Morphology of Amyloid Assemblies by Electrostatic Capping: from Polymorphic Twisted Fibrils to Uniform Nanorods. Small, 2019, 15, e1901806.	10.0	23
20	Nanoparticle-Based Vaccines Against Respiratory Viruses. Frontiers in Immunology, 2019, 10, 22.	4.8	213
21	Identification of a hinge residue controlling islet amyloid polypeptide self-assembly and cytotoxicity. Journal of Biological Chemistry, 2019, 294, 8452-8463.	3.4	31
22	Glycosaminoglycans Induce Amyloid Self-Assembly of a Peptide Hormone by Concerted Secondary and Quaternary Conformational Transitions. Biochemistry, 2019, 58, 1214-1225.	2.5	9
23	HIV-1 Antisense Protein of Different Clades Induces Autophagy and Associates with the Autophagy Factor p62. Journal of Virology, 2019, 93, .	3.4	20
24	Amyloid selfâ€assembling peptides: Potential applications in nanovaccine engineering and biosensing. Peptide Science, 2019, 111, e24095.	1.8	23
25	Synthesis of Analogs of Trans-Fagaramide and Their Cytotoxic Activity. Pharmaceutical Chemistry Journal, 2018, 51, 995-1004.	0.8	1
26	Kinetic and Conformational Insights into Islet Amyloid Polypeptide Self-Assembly Using a Biarsenical Fluorogenic Probe. Bioconjugate Chemistry, 2018, 29, 517-527.	3.6	11
27	Engineering and evaluation of amyloid assemblies as a nanovaccine against the Chikungunya virus. Nanoscale, 2018, 10, 19547-19556.	5.6	31
28	Modulation of amyloid assembly by glycosaminoglycans: from mechanism to biological significance. Biochemistry and Cell Biology, 2017, 95, 329-337.	2.0	30
29	Thioflavin T fluorescence to analyse amyloid formation kinetics: Measurement frequency as a factor explaining irreproducibility. Analytical Biochemistry, 2017, 532, 83-86.	2.4	43
30	Identification of a conformational heparin-recognition motif on the peptide hormone secretin: key role for cell surface binding. Biochemical Journal, 2017, 474, 2249-2260.	3.7	3
31	Comparative study of the structure and interaction of the pore helices of the hERG and Kv1.5 potassium channels in model membranes. European Biophysics Journal, 2017, 46, 549-559.	2.2	2
32	Role of Site-Specific Asparagine Deamidation in Islet Amyloid Polypeptide Amyloidogenesis: Key Contributions of Residues 14 and 21. Biochemistry, 2017, 56, 3808-3817.	2.5	39
33	Effects of oxidative post-translational modifications on structural stability and self-assembly of λ6 immunoglobulin light chain. Biophysical Chemistry, 2016, 219, 59-68.	2.8	8
34	Probing the role of î»6 immunoglobulin light chain dimerization in amyloid formation. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 409-418.	2.3	19
35	Low generation anionic dendrimers modulate islet amyloid polypeptide self-assembly and inhibit pancreatic \hat{l}^2 -cell toxicity. RSC Advances, 2016, 6, 76360-76369.	3.6	8
36	Delineating the Role of Helical Intermediates in Natively Unfolded Polypeptide Amyloid Assembly and Cytotoxicity. Angewandte Chemie - International Edition, 2015, 54, 14383-14387.	13.8	59

#	Article	IF	CITATIONS
37	Cell-Penetrating Ability of Peptide Hormones: Key Role of Glycosaminoglycans Clustering. International Journal of Molecular Sciences, 2015, 16, 27391-27400.	4.1	9
38	Mechanistic Contributions of Biological Cofactors in Islet Amyloid Polypeptide Amyloidogenesis. Journal of Diabetes Research, 2015, 2015, 1-13.	2.3	17
39	Secondary conformational conversion is involved in glycosaminoglycansâ€mediated cellular uptake of the cationic cellâ€penetrating peptide PACAP. FEBS Letters, 2014, 588, 4590-4596.	2.8	27
40	New insights into the roles of sulfated glycosaminoglycans in islet amyloid polypeptide amyloidogenesis and cytotoxicity. Biopolymers, 2013, 100, 645-655.	2.4	43
41	Heparin Binds 8 kDa Gelsolin Cross-Î ² -Sheet Oligomers and Accelerates Amyloidogenesis by Hastening Fibril Extension. Biochemistry, 2011, 50, 2486-2498.	2.5	42
42	Sulfated Glycosaminoglycans Accelerate Transthyretin Amyloidogenesis by Quaternary Structural Conversion. Biochemistry, 2011, 50, 1001-1015.	2.5	89
43	Mechanisms of transthyretin cardiomyocyte toxicity inhibition by resveratrol analogs. Biochemical and Biophysical Research Communications, 2011, 410, 707-713.	2.1	85
44	Molecular and Conformational Determinants of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) for Activation of the PAC1 Receptor. Journal of Medicinal Chemistry, 2009, 52, 3308-3316.	6.4	76
45	Pituitary Adenylate Cyclase-Activating Polypeptide and Its Receptors: 20 Years after the Discovery. Pharmacological Reviews, 2009, 61, 283-357.	16.0	948