Martine Maron

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5059276/publications.pdf Version: 2024-02-01

MADTINE MADON

#	Article	IF	CITATIONS
1	Vocal signals of ontogeny and fledging in nestling black-cockatoos: Implications for monitoring. Bioacoustics, 2022, 31, 379-396.	1.7	4
2	Use of citizen science datasets to test effects of grazing exclusion and replanting on Australian woodland birds. Restoration Ecology, 2022, 30, e13610.	2.9	0
3	Creating past habitat maps to quantify local extirpation of Australian threatened birds. Environmental Research Letters, 2022, 17, 024032.	5.2	8
4	Aligning ecological compensation policies with the Postâ€2020 Global Biodiversity Framework to achieve real net gain in biodiversity. Conservation Science and Practice, 2022, 4, .	2.0	8
5	The consequences of coastal offsets for fisheries. Journal of Applied Ecology, 2022, 59, 1157-1167.	4.0	3
6	Quantifying the "avoided―biodiversity impacts associated with economic development. Frontiers in Ecology and the Environment, 2022, 20, 370-378.	4.0	12
7	Reduced fire frequency over three decades hastens loss of the grassy forest habitat of an endangered songbird. Biological Conservation, 2022, 270, 109570.	4.1	5
8	Fledge or fail: Nest monitoring of endangered black-cockatoos using bioacoustics and open-source call recognition. Ecological Informatics, 2022, 69, 101656.	5.2	5
9	The minimum land area requiring conservation attention to safeguard biodiversity. Science, 2022, 376, 1094-1101.	12.6	85
10	A step change needed to secure a nature-positive future—ls it in reach?. One Earth, 2022, 5, 589-592.	6.8	0
11	Improving averted loss estimates for better biodiversity outcomes from offset exchanges. Oryx, 2021, 55, 393-403.	1.0	10
12	Connecting governance interventions to ecosystem services provision: A socialâ€ecological network approach. People and Nature, 2021, 3, 266-280.	3.7	23
13	Consequences of information suppression in ecological and conservation sciences. Conservation Letters, 2021, 14, e12757.	5.7	21
14	Four steps for the Earth: mainstreaming the post-2020 global biodiversity framework. One Earth, 2021, 4, 75-87.	6.8	65
15	Widespread use of artificial habitats by shorebirds in Australia. Emu, 2021, 121, 187-197.	0.6	2
16	Deforestation and bird habitat loss in Colombia. Biological Conservation, 2021, 257, 109044.	4.1	20
17	Setting robust biodiversity goals. Conservation Letters, 2021, 14, e12816.	5.7	23
18	Achieving private conservation targets in Brazil through restoration and compensation schemes without impairing productive lands. Environmental Science and Policy, 2021, 120, 1-10.	4.9	22

#	Article	IF	CITATIONS
19	Talk is cheap: Nations must act now to achieve long-term ambitions for biodiversity. One Earth, 2021, 4, 897-900.	6.8	24
20	Scientific foundations for an ecosystem goal, milestones and indicators for the post-2020 global biodiversity framework. Nature Ecology and Evolution, 2021, 5, 1338-1349.	7.8	70
21	The mismeasure of conservation. Trends in Ecology and Evolution, 2021, 36, 808-821.	8.7	47
22	Private reserves suffer from the same location biases of public protected areas. Biological Conservation, 2021, 261, 109283.	4.1	4
23	Evaluating the evidence of culling a native species for conservation benefits. Conservation Science and Practice, 2021, 3, e549.	2.0	5
24	Offsetting impacts of development on biodiversity and ecosystem services. Ambio, 2020, 49, 892-902.	5.5	15
25	Net positive outcomes for nature. Nature Ecology and Evolution, 2020, 4, 4-7.	7.8	52
26	Vulnerable species and ecosystems are falling through the cracks of environmental impact assessments. Conservation Letters, 2020, 13, e12694.	5.7	9
27	Global no net loss of natural ecosystems. Nature Ecology and Evolution, 2020, 4, 46-49.	7.8	51
28	Set ambitious goals for biodiversity and sustainability. Science, 2020, 370, 411-413.	12.6	225
29	Area-based conservation in the twenty-first century. Nature, 2020, 586, 217-227.	27.8	438
30	Impact of 2019–2020 mega-fires on Australian fauna habitat. Nature Ecology and Evolution, 2020, 4, 1321-1326.	7.8	209
31	The hidden biodiversity risks of increasing flexibility in biodiversity offset trades. Biological Conservation, 2020, 252, 108861.	4.1	39
32	Ecosystem services at risk: integrating spatiotemporal dynamics of supply and demand to promote long-term provision. One Earth, 2020, 3, 704-713.	6.8	51
33	Professor Ralph Mac Nally. Emu, 2020, 120, 274-274.	0.6	0
34	Estimating species response to management using an integrated process: A case study from New South Wales, Australia. Conservation Science and Practice, 2020, 2, e269.	2.0	5
35	Evidence for increasing humanâ€wildlife conflict despite a financial compensation scheme on the edge of a Ugandan National Park. Conservation Science and Practice, 2020, 2, e309.	2.0	10
36	Best-practice biodiversity safeguards for Belt and Road Initiative's financiers. Nature Sustainability, 2020, 3, 650-657.	23.7	40

#	Article	IF	CITATIONS
37	Detecting early warnings of pressure on an African lion (<i>Panthera leo)</i> population in the Queen Elizabeth Conservation Area, Uganda. Ecological Solutions and Evidence, 2020, 1, e12015.	2.0	11
38	Nestâ€associated vocal behaviours of the southâ€eastern redâ€tailed black cockatoo, <i>Calyptorhynchus banksii graptogyne</i> , and the Kangaroo Island glossy black cockatoo, <i>C.Âlathami halmaturinus</i> . Austral Ecology, 2020, 45, 990-1006.	1.5	2
39	Effects of spatial autocorrelation and sampling design on estimates of protected area effectiveness. Conservation Biology, 2020, 34, 1452-1462.	4.7	40
40	Local conditions and policy design determine whether ecological compensation can achieve No Net Loss goals. Nature Communications, 2020, 11, 2072.	12.8	56
41	Moving from biodiversity offsets to a targetâ€based approach for ecological compensation. Conservation Letters, 2020, 13, e12695.	5.7	51
42	Emerging evidence that armed conflict and coca cultivation influence deforestation patterns. Biological Conservation, 2019, 239, 108176.	4.1	60
43	Corrigendum to: The threats to Australia's imperilled species and implications for a national conservation response. Pacific Conservation Biology, 2019, 25, 328.	1.0	19
44	Spending to save: What will it cost to halt Australia's extinction crisis?. Conservation Letters, 2019, 12, e12682.	5.7	69
45	Systematic definition of threatened fauna communities is critical to their conservation. Diversity and Distributions, 2019, 25, 462-477.	4.1	11
46	How to send a finch extinct. Environmental Science and Policy, 2019, 94, 163-173.	4.9	26
47	Bioacoustic monitoring of animal vocal behavior for conservation. Conservation Science and Practice, 2019, 1, e72.	2.0	42
48	Quantifying habitat losses and gains made by U.S. Species Conservation Banks to improve compensation policies and avoid perverse outcomes. Conservation Letters, 2019, 12, e12629.	5.7	20
49	Patterns of invertebrate food availability and the persistence of an avian insectivore on the brink. Austral Ecology, 2019, 44, 680-690.	1.5	3
50	A composite measure of habitat loss for entire assemblages of species. Conservation Biology, 2019, 33, 1438-1447.	4.7	13
51	Conservation implications of ecological responses to extreme weather and climate events. Diversity and Distributions, 2019, 25, 613-625.	4.1	156
52	Metrics of progress in the understanding and management of threats to Australian birds. Conservation Biology, 2019, 33, 456-468.	4.7	31
53	Landscapeâ€specific thresholds in the relationship between species richness and natural land cover. Journal of Applied Ecology, 2019, 56, 1019-1029.	4.0	14
54	The threats to Australia's imperilled species and implications for a national conservation response. Pacific Conservation Biology, 2019, 25, 231.	1.0	72

#	Article	IF	CITATIONS
55	Biodiversity offsets may miss opportunities to mitigate impacts on ecosystem services. Frontiers in Ecology and the Environment, 2018, 16, 143-148.	4.0	36
56	Cost shifting and other perverse incentives in biodiversity offsetting in India. Conservation Biology, 2018, 32, 782-788.	4.7	6
57	Reach and messages of the world's largest ivory burn. Conservation Biology, 2018, 32, 765-773.	4.7	15
58	Response—lvory crisis. Science, 2018, 360, 277-278.	12.6	0
59	Grassy patch size and structure are important for northern Eastern Bristlebird persistence in a dynamic ecosystem. Emu, 2018, 118, 269-280.	0.6	6
60	The Risks and Opportunities of Translating Terrestrial Biodiversity Offsets to the Marine Realm. BioScience, 2018, 68, 125-133.	4.9	19
61	Consequences of impediments to animal movements at different scales: A conceptual framework and review. Diversity and Distributions, 2018, 24, 448-459.	4.1	29
62	The many meanings of no net loss in environmental policy. Nature Sustainability, 2018, 1, 19-27.	23.7	146
63	Identification of fine scale and landscape scale drivers of urban aboveground carbon stocks using high-resolution modeling and mapping. Science of the Total Environment, 2018, 622-623, 57-70.	8.0	32
64	Land in balance: The scientific conceptual framework for Land Degradation Neutrality. Environmental Science and Policy, 2018, 79, 25-35.	4.9	403
65	Striking underrepresentation of biodiversity-rich regions among editors of conservation journals. Biological Conservation, 2018, 220, 330-333.	4.1	24
66	Does it matter why we do restoration? Volunteers, offset markets and the need for full disclosure. Ecological Management and Restoration, 2018, 19, 73-78.	1.5	7
67	Restoration to offset the impacts of developments at a landscape scale reveals opportunities, challenges and tough choices. Global Environmental Change, 2018, 52, 152-161.	7.8	36
68	A quantitative framework for evaluating the impact of biodiversity offset policies. Biological Conservation, 2018, 224, 162-169.	4.1	16
69	Shortâ€ŧerm response of a declining woodland bird assemblage to the removal of a despotic competitor. Ecology and Evolution, 2018, 8, 4771-4780.	1.9	22
70	Bold nature retention targets are essential for the global environment agenda. Nature Ecology and Evolution, 2018, 2, 1194-1195.	7.8	73
71	Need for conservation planning in postconflict Colombia. Conservation Biology, 2017, 31, 499.	4.7	11
72	Using individual ondition measures to predict the longâ€ŧerm importance of habitat extent for population persistence. Conservation Biology, 2017, 31, 1141-1151.	4.7	7

#	Article	IF	CITATIONS
73	Towards a Threat Assessment Framework for Ecosystem Services. Trends in Ecology and Evolution, 2017, 32, 240-248.	8.7	79
74	Science censorship is a global issue. Nature, 2017, 542, 165-165.	27.8	5
75	Australia needs a wake-up call. Science, 2017, 355, 918-918.	12.6	0
76	Non-random patterns of vegetation clearing and potential biases in studies of habitat area effects. Landscape Ecology, 2017, 32, 729-743.	4.2	12
77	The anatomy of a failed offset. Biological Conservation, 2017, 210, 286-292.	4.1	96
78	Ecological consequences of land clearing and policy reform in Queensland. Pacific Conservation Biology, 2017, 23, 219.	1.0	77
79	Need for conservation planning in postconflict Colombia. Conservation Biology, 2017, 31, 499-500.	4.7	56
80	Biodiversity offsetting in dynamic landscapes: Influence of regulatory context and counterfactual assumptions on achievement of no net loss. Biological Conservation, 2017, 206, 314-319.	4.1	27
81	Assessing the effectiveness of regulation to protect threatened forests. Biological Conservation, 2017, 216, 33-42.	4.1	23
82	Defending the scientific integrity of conservationâ€policy processes. Conservation Biology, 2017, 31, 967-975.	4.7	28
83	Breaking the deadlock on ivory. Science, 2017, 358, 1378-1381.	12.6	50
84	Spatial variation in the importance of different prey types in the diet of red foxes. Australian Zoologist, 2017, 38, 610-628.	1.1	2
85	Is "no net loss of biodiversity―a good idea?. , 2017, , .		0
86	Bolder science needed now for protected areas. Conservation Biology, 2016, 30, 243-248.	4.7	149
87	Fanning the flames of Australian wildfires. Nature, 2016, 531, 580-580.	27.8	0
88	Taming a Wicked Problem: Resolving Controversies in Biodiversity Offsetting. BioScience, 2016, 66, 489-498.	4.9	171
89	Landscape structure influences urban vegetation vertical structure. Journal of Applied Ecology, 2016, 53, 1477-1488.	4.0	19
90	A Loss-Gain Calculator for Biodiversity Offsets and the Circumstances in Which No Net Loss Is Feasible. Conservation Letters, 2016, 9, 252-259.	5.7	53

#	Article	IF	CITATIONS
91	Interactions Between Biodiversity Offsets and Protected Area Commitments: Avoiding Perverse Outcomes. Conservation Letters, 2016, 9, 384-389.	5.7	28
92	Protecting India's conservation offsets. Science, 2016, 353, 758-758.	12.6	3
93	Seeking convergence on the key concepts in â€~no net loss' policy. Journal of Applied Ecology, 2016, 53, 1686-1693.	4.0	75
94	A disaggregated biodiversity offset accounting model to improve estimation of ecological equivalency and no net loss. Biological Conservation, 2016, 204, 322-332.	4.1	36
95	How humans drive speciation as well as extinction. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160600.	2.6	51
96	Using a Bayesian network model to assess ecological responses to hydrological factor interactions. Ecohydrology, 2016, 9, 11-20.	2.4	4
97	Integrating plant―and animalâ€based perspectives for more effective restoration of biodiversity. Frontiers in Ecology and the Environment, 2016, 14, 37-45.	4.0	126
98	Does the response of bird assemblages to fire mosaic properties vary among spatial scales and foraging guilds?. Landscape Ecology, 2016, 31, 687-699.	4.2	21
99	The relative importance of habitat quality and landscape context for reptiles in regenerating landscapes. Biological Conservation, 2016, 193, 37-47.	4.1	9
100	Climateâ€induced resource bottlenecks exacerbate species vulnerability: a review. Diversity and Distributions, 2015, 21, 731-743.	4.1	65
101	The influence of a variable fire regime on woodland structure and composition. International Journal of Wildland Fire, 2015, 24, 59.	2.4	12
102	Conservation: Stop misuse of biodiversity offsets. Nature, 2015, 523, 401-403.	27.8	106
103	Matrix Intensification Affects Body and Physiological Condition of Tropical Forest-Dependent Passerines. PLoS ONE, 2015, 10, e0128521.	2.5	11
104	Long term thinning and logging in Australian cypress pine forest: Changes in habitat attributes and response of fauna. Biological Conservation, 2015, 186, 83-96.	4.1	23
105	Locking in loss: Baselines of decline in Australian biodiversity offset policies. Biological Conservation, 2015, 192, 504-512.	4.1	111
106	The development of the Australian environmental offsets policy: from theory to practice. Environmental Conservation, 2015, 42, 306-314.	1.3	44
107	Reptile abundance, but not species richness, increases with regrowth age and spatial extent in fragmented agricultural landscapes of eastern Australia. Biological Conservation, 2015, 184, 174-181.	4.1	11
108	Cascading effects of climate extremes on vertebrate fauna through changes to lowâ€latitude tree flowering and fruiting phenology. Global Change Biology, 2015, 21, 3267-3277.	9.5	108

#	Article	IF	CITATIONS
109	Reframing landscape fragmentation's effects on ecosystem services. Trends in Ecology and Evolution, 2015, 30, 190-198.	8.7	354
110	FORUM: Perverse incentives risk undermining biodiversity offset policies. Journal of Applied Ecology, 2015, 52, 532-537.	4.0	115
111	Impacts of extractive forest uses on bird assemblages vary with landscape context in lowland Nepal. Biological Conservation, 2015, 186, 167-175.	4.1	11
112	Testing the relevance of binary, mosaic and continuous landscape conceptualisations to reptiles in regenerating dryland landscapes. Landscape Ecology, 2015, 30, 715-728.	4.2	15
113	Landscape Fragmentation and Ecosystem Services: A Reply to Andrieu et al Trends in Ecology and Evolution, 2015, 30, 634-635.	8.7	6
114	Avifaunal disarray: quantifying models of the occurrence and ecological effects of a despotic bird species. Diversity and Distributions, 2015, 21, 451-464.	4.1	35
115	Current practices in the identification of critical habitat for threatened species. Conservation Biology, 2015, 29, 482-492.	4.7	68
116	Foraging guild perturbations and ecological homogenization driven by a despotic native bird species. Ibis, 2014, 156, 341-354.	1.9	17
117	The control of rank-abundance distributions by a competitive despotic species. Oecologia, 2014, 176, 849-857.	2.0	9
118	Mining matrix effects on West African rainforest birds. Biological Conservation, 2014, 169, 334-343.	4.1	28
119	An ecological paradox: More woodland predators and less artificial nest predation in landscapes colonized by noisy miners. Austral Ecology, 2014, 39, 255-266.	1.5	7
120	Biogeographical and Taxonomic Biases in Tropical Forest Fragmentation Research. Conservation Biology, 2014, 28, 1522-1531.	4.7	31
121	Bird conservation values of off-reserve forests in lowland Nepal. Forest Ecology and Management, 2014, 323, 28-38.	3.2	19
122	Regrowth woodlands are valuable habitat for reptile communities. Biological Conservation, 2013, 165, 95-103.	4.1	25
123	Incidence of competitors and landscape structure as predictors of woodland-dependent birds. Landscape Ecology, 2013, 28, 1975-1987.	4.2	7
124	Avifaunal disarray due to a single despotic species. Diversity and Distributions, 2013, 19, 1468-1479.	4.1	91
125	Calculating the benefit of conservation actions. Conservation Letters, 2013, 6, 359-367.	5.7	54
126	Effect of proximity of buloke (Allocasuarina luehmannii) trees on buloke early sapling survival in a semiarid environment. Australian Journal of Botany, 2013, 61, 302.	0.6	2

#	Article	IF	CITATIONS
127	Influence of Interspecific Competition and Landscape Structure on Spatial Homogenization of Avian Assemblages. PLoS ONE, 2013, 8, e65299.	2.5	40
128	Matrix Intensification Alters Avian Functional Group Composition in Adjacent Rainforest Fragments. PLoS ONE, 2013, 8, e74852.	2.5	11
129	MODIS time series as a tool for monitoring fires and their effects on savanna bird diversity. International Journal of Wildland Fire, 2012, 21, 680.	2.4	7
130	Faustian bargains? Restoration realities in the context of biodiversity offset policies. Biological Conservation, 2012, 155, 141-148.	4.1	394
131	Distribution and individual condition reveal a hierarchy of habitat suitability for an area-sensitive passerine. Biodiversity and Conservation, 2012, 21, 2509-2523.	2.6	23
132	Influence of landscape structure on invasive predators: feral cats and red foxes in the brigalow landscapes, Queensland, Australia. Wildlife Research, 2012, 39, 661.	1.4	29
133	Despotic, highâ€impact species and the subcontinental scale control of avian assemblage structure. Ecology, 2012, 93, 668-678.	3.2	76
134	Spurious thresholds in the relationship between species richness and vegetation cover. Global Ecology and Biogeography, 2012, 21, 682-692.	5.8	32
135	Integrating landscape ecology and conservation physiology. Landscape Ecology, 2012, 27, 1-12.	4.2	127
136	Relative influence of habitat modification and interspecific competition on woodland bird assemblages in eastern Australia. Emu, 2011, 111, 40-51.	0.6	43
137	Linking science and practice in ecological research and management: How can we do it better?. Ecological Management and Restoration, 2011, 12, 54-60.	1.5	27
138	Can a problem-solving approach strengthen landscape ecology's contribution to sustainable landscape planning?. Landscape Ecology, 2010, 25, 1155-1168.	4.2	31
139	Bayesian Networks and Adaptive Management of Wildlife Habitat. Conservation Biology, 2010, 24, 974-983.	4.7	57
140	Can offsets really compensate for habitat removal? The case of the endangered red-tailed black-cockatoo. Journal of Applied Ecology, 2010, 47, 348-355.	4.0	61
141	Carla P. Catterall. Emu, 2010, 110, 185-185.	0.6	Ο
142	Impacts of grazing, selective logging and hyperâ€aggressors on diurnal bird fauna in intact forest landscapes of the Brigalow Belt, Queensland. Austral Ecology, 2009, 34, 705-716.	1.5	48
143	Declining birds in Australian agricultural landscapes may benefit from aspects of the European agri-environment model. Biological Conservation, 2009, 142, 1981-1991.	4.1	39
144	Interspecific competition and small bird diversity in an urbanizing landscape. Landscape and Urban Planning, 2009, 92, 72-79.	7.5	52

#	Article	IF	CITATIONS
145	Interspecific competition and conservation management of continuous subtropical woodlands. Wildlife Research, 2009, 36, 617.	1.4	28
146	Nesting, foraging and aggression of Noisy Miners relative to road edges in an extensive Queensland forest. Emu, 2009, 109, 75-81.	0.6	29
147	Do arthropod assemblages display globally consistent responses to intensified agricultural land use and management?. Global Ecology and Biogeography, 2008, 17, 585-599.	5.8	148
148	MANAGING TRADE-OFFS IN LANDSCAPE RESTORATION AND REVEGETATION PROJECTS. , 2008, 18, 2041-2049.		34
149	Roads, fire and aggressive competitors: Determinants of bird distribution in subtropical production forests. Forest Ecology and Management, 2007, 240, 24-31.	3.2	44
150	Agricultural intensification and loss of matrix habitat over 23 years in the West Wimmera, south-eastern Australia. Biological Conservation, 2007, 135, 587-593.	4.1	63
151	Threshold effect of eucalypt density on an aggressive avian competitor. Biological Conservation, 2007, 136, 100-107.	4.1	60
152	Intraspecific variation in detection of bird-habitat relationships: declining birds in southern Australian woodlands. Pacific Conservation Biology, 2006, 12, 301.	1.0	7
153	Agricultural change and paddock tree loss: Implications for an endangered subspecies of Red-tailed Black-Cockatoo. Ecological Management and Restoration, 2005, 6, 206-211.	1.5	25
154	Temporal variation in bird assemblages: How representative is a one-year snapshot?. Austral Ecology, 2005, 30, 383-394.	1.5	59
155	The influence of livestock grazing and weed invasion on habitat use by birds in grassy woodland remnants. Biological Conservation, 2005, 124, 439-450.	4.1	59
156	Discrimination among potential buloke (Allocasuarina leuhmannii) feeding trees by the endangered south-eastern red-tailed black-cockatoo (Calyptorhynchus banksii graptogyne). Wildlife Research, 2004, 31, 311.	1.4	7
157	Can the biotic nestedness matrix be used predictively?. Oikos, 2004, 106, 433-444.	2.7	21