Jianyuan Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/505884/publications.pdf

Version: 2024-02-01

147801 123424 9,638 63 31 61 h-index citations g-index papers 64 64 64 12180 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Negative Control of p53 by Sir2α Promotes Cell Survival under Stress. Cell, 2001, 107, 137-148.	28.9	2,014
2	Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature, 2002, 416, 648-653.	27.8	913
3	Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature, 2000, 408, 377-381.	27.8	754
4	SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell, 2007, 6, 759-767.	6.7	656
5	Tip60-Dependent Acetylation of p53 Modulates the Decision between Cell-Cycle Arrest and Apoptosis. Molecular Cell, 2006, 24, 827-839.	9.7	635
6	Tumor Suppressor HIC1 Directly Regulates SIRT1 to Modulate p53-Dependent DNA-Damage Responses. Cell, 2005, 123, 437-448.	28.9	591
7	The function of PML in p53-dependent apoptosis. Nature Cell Biology, 2000, 2, 730-736.	10.3	432
8	Acetylation of p53 Inhibits Its Ubiquitination by Mdm2. Journal of Biological Chemistry, 2002, 277, 50607-50611.	3.4	414
9	Acetylation of p53 augments its site-specific DNA binding both in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2259-2264.	7.1	381
10	Direct Interactions between HIF-1 \hat{l}_{\pm} and Mdm2 Modulate p53 Function. Journal of Biological Chemistry, 2003, 278, 13595-13598.	3.4	283
11	SIRT1 and p53, effect on cancer, senescence and beyond. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 1684-1689.	2.3	256
12	Activation of Stat3 Sequence-specific DNA Binding and Transcription by p300/CREB-binding Protein-mediated Acetylation. Journal of Biological Chemistry, 2005, 280, 11528-11534.	3.4	231
13	SIRT1 Regulates UV-Induced DNA Repair through Deacetylating XPA. Molecular Cell, 2010, 39, 247-258.	9.7	195
14	Tumor suppressor p53 cooperates with SIRT6 to regulate gluconeogenesis by promoting FoxO1 nuclear exclusion. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10684-10689.	7.1	193
15	Regulation of WRN Protein Cellular Localization and Enzymatic Activities by SIRT1-mediated Deacetylation. Journal of Biological Chemistry, 2008, 283, 7590-7598.	3.4	159
16	SHMT2 Desuccinylation by SIRT5 Drives Cancer Cell Proliferation. Cancer Research, 2018, 78, 372-386.	0.9	150
17	<scp>NAT</scp> 10 regulates p53 activation through acetylating p53 at K120 and ubiquitinating Mdm2. EMBO Reports, 2016, 17, 349-366.	4.5	116
18	Parkin Regulates the Activity of Pyruvate Kinase M2. Journal of Biological Chemistry, 2016, 291, 10307-10317.	3.4	85

#	Article	IF	Citations
19	RecQ4 Facilitates UV Light-induced DNA Damage Repair through Interaction with Nucleotide Excision Repair Factor Xeroderma Pigmentosum Group A (XPA). Journal of Biological Chemistry, 2008, 283, 29037-29044.	3.4	67
20	<scp>SIRT</scp> 2â€dependent <scp>IDH</scp> 1 deacetylation inhibits colorectal cancer and liver metastases. EMBO Reports, 2020, 21, e48183.	4.5	67
21	Deacetylation of NAT10 by Sirt1 promotes the transition from rRNA biogenesis to autophagy upon energy stress. Nucleic Acids Research, 2018, 46, 9601-9616.	14.5	64
22	PCAF-mediated acetylation of transcriptional factor HOXB9 suppresses lung adenocarcinoma progression by targeting oncogenic protein JMJD6. Nucleic Acids Research, 2016, 44, 10662-10675.	14.5	62
23	Downregulation of SIRT7 by 5-fluorouracil induces radiosensitivity in human colorectal cancer. Theranostics, 2017, 7, 1346-1359.	10.0	59
24	USP11 Is a Negative Regulator to \hat{I}^3 H2AX Ubiquitylation by RNF8/RNF168. Journal of Biological Chemistry, 2016, 291, 959-967.	3.4	53
25	Acetylation of PHF5A Modulates Stress Responses and Colorectal Carcinogenesis through Alternative Splicing-Mediated Upregulation of KDM3A. Molecular Cell, 2019, 74, 1250-1263.e6.	9.7	53
26	Acetylation of WRN Protein Regulates Its Stability by Inhibiting Ubiquitination. PLoS ONE, 2010, 5, e10341.	2.5	49
27	C1QBP Promotes Homologous Recombination by Stabilizing MRE11 and Controlling the Assembly and Activation of MRE11/RAD50/NBS1 Complex. Molecular Cell, 2019, 75, 1299-1314.e6.	9.7	49
28	The deubiquitinase USP11 regulates cell proliferation and ferroptotic cell death via stabilization of NRF2 USP11 deubiquitinates and stabilizes NRF2. Oncogene, 2021, 40, 1706-1720.	5.9	43
29	SIRT3 regulates cancer cell proliferation through deacetylation of PYCR1 in proline metabolism. Neoplasia, 2019, 21, 665-675.	5.3	42
30	Dynamics of the p53 Acetylation Pathway. Novartis Foundation Symposium, 2008, , 197-207.	1.1	38
31	Increased Amino Acid Uptake Supports Autophagy-Deficient Cell Survival upon Glutamine Deprivation. Cell Reports, 2018, 23, 3006-3020.	6.4	37
32	The Role of SIRT1 in Tumorigenesis. North American Journal of Medicine & Science, 2011, 4, 104.	3.8	36
33	SIRT4 regulates PTEN stability through IDE in response to cellular stresses. FASEB Journal, 2019, 33, 5535-5547.	0.5	30
34	Global-scale profiling of differential expressed lysine acetylated proteins in colorectal cancer tumors and paired liver metastases. Journal of Proteomics, 2016, 142, 24-32.	2.4	28
35	Pregnane X receptor regulates the AhR/Cyp1A1 pathway and protects liver cells from benzo- $[\hat{1}\pm]$ -pyrene-induced DNA damage. Toxicology Letters, 2017, 275, 67-76.	0.8	27
36	Regulation of Histone Acetyltransferase TIP60 Function by Histone Deacetylase 3. Journal of Biological Chemistry, 2014, 289, 33878-33886.	3.4	26

#	Article	IF	CITATIONS
37	Citrate synthase desuccinylation by SIRT5 promotes colon cancer cell proliferation and migration. Biological Chemistry, 2020, 401, 1031-1039.	2.5	26
38	Sirtuin 7–mediated deacetylation of WD repeat domain 77 (WDR77) suppresses cancer cell growth by reducing WDR77/PRMT5 transmethylase complex activity. Journal of Biological Chemistry, 2018, 293, 17769-17779.	3.4	24
39	Oxidative stress-CBP axis modulates MOB1 acetylation and activates the Hippo signaling pathway. Nucleic Acids Research, 2022, 50, 3817-3834.	14.5	22
40	Long non-coding RNA p10247, high expressed in breast cancer (lncRNA-BCHE), is correlated with metastasis. Clinical and Experimental Metastasis, 2018, 35, 109-121.	3.3	21
41	PYCR, a key enzyme in proline metabolism, functions in tumorigenesis. Amino Acids, 2021, 53, 1841-1850.	2.7	21
42	Protein post-translational modifications in the regulation of cancer hallmarks. Cancer Gene Therapy, 2023, 30, 529-547.	4.6	21
43	MDM2-mediated degradation of WRN promotes cellular senescence in a p53-independent manner. Oncogene, 2019, 38, 2501-2515.	5.9	19
44	Acetylation of FOXM1 is essential for its transactivation and tumor growth stimulation. Oncotarget, 2016, 7, 60366-60382.	1.8	19
45	RBM15 Functions in Blood Diseases. Current Cancer Drug Targets, 2016, 16, 579-585.	1.6	19
46	NAT10 regulates mitotic cell fate by acetylating Eg5 to control bipolar spindle assembly and chromosome segregation. Cell Death and Differentiation, 2022, 29, 846-860.	11.2	15
47	MiR-17 Partly Promotes Hematopoietic Cell Expansion through Augmenting HIF- $1\hat{l}\pm$ in Osteoblasts. PLoS ONE, 2013, 8, e70232.	2.5	14
48	SIRT5, functions in cellular metabolism with a multiple enzymatic activities. Science China Life Sciences, 2015, 58, 912-914.	4.9	13
49	SIRT7 Deacetylates STRAP to Regulate p53 Activity and Stability. International Journal of Molecular Sciences, 2020, 21, 4122.	4.1	13
50	SIRTing through Breast Cancer Is Just a Survivin' Game. Molecular Cell, 2008, 32, 159-160.	9.7	12
51	The Batten disease gene CLN3 confers resistance to endoplasmic reticulum stress induced by tunicamycin. Biochemical and Biophysical Research Communications, 2014, 447, 115-120.	2.1	12
52	Deacetylation of HSD17B10 by SIRT3 regulates cell growth and cell resistance under oxidative and starvation stresses. Cell Death and Disease, 2020, 11, 563.	6.3	12
53	Exosomal microRNAs induce tumor-associated macrophages via PPARγ during tumor progression in SHH medulloblastoma. Cancer Letters, 2022, 535, 215630.	7.2	12
54	Acetylation of Werner syndrome protein (WRN): relationships with DNA damage, DNA replication and DNA metabolic activities. Biogerontology, 2014, 15, 347-366.	3.9	11

#	Article	IF	Citations
55	MIB1â€mediated degradation of WRN promotes cellular senescence in response to camptothecin treatment. FASEB Journal, 2020, 34, 11488-11497.	0.5	11
56	Identification of diagnostic markers and lipid dysregulation in oesophageal squamous cell carcinoma through lipidomic analysis and machine learning. British Journal of Cancer, 2021, 125, 351-357.	6.4	10
57	WRN Protein and Werner Syndrome. North American Journal of Medicine & Science, 2010, 3, 205.	3.8	9
58	Acetylation dependent translocation of EWSR1 regulates CHK2 alternative splicing in response to DNA damage. Oncogene, 0 , , .	5.9	5
59	Acetylation of BLM protein regulates its function in response to DNA damage. RSC Advances, 2017, 7, 55301-55308.	3.6	4
60	miR-17 promotes expansion and adhesion of human cord blood CD34+ cells in vitro. Stem Cell Research and Therapy, 2015, 6, 168.	5.5	2
61	<i>miR-22</i> Inhibits CD34 ⁺ Cell Expansion Through Decreasing β-Catenin in Osteoblasts. Human Gene Therapy, 2017, 28, 135-145.	2.7	2
62	Quantitative proteomic analysis of aberrant expressed lysine acetylation in gastrointestinal stromal tumors. Clinical Proteomics, 2021, 18, 16.	2.1	1
63	Regulation of Rothmund–Thomson syndrome protein RecQL4 functions in DNA replication by SIRT1-mediated deacetylation. Genome Instability & Disease, 2021, 2, 240-252.	1.1	0