
Alfredo Angeles-Boza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5057760/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DNA Binding and Photocleavage in Vitro by New Dirhodium(II) dppz Complexes:Â Correlation to Cytotoxicity and Photocytotoxicity. Inorganic Chemistry, 2004, 43, 8510-8519.	4.0	178
2	Dirhodium(II,II) Complexes:Â Molecular Characteristics that Affect in Vitro Activity. Journal of Medicinal Chemistry, 2006, 49, 6841-6847.	6.4	110
3	Membrane Oxidation in Cell Delivery and Cell Killing Applications. ACS Chemical Biology, 2017, 12, 1170-1182.	3.4	103
4	Live Cell Cytotoxicity Studies: Documentation of the Interactions of Antitumor Active Dirhodium Compounds with Nuclear DNA. Journal of the American Chemical Society, 2009, 131, 11353-11360.	13.7	92
5	Ultrafast Ligand Exchange: Detection of a Pentacoordinate Ru(II) Intermediate and Product Formation. Journal of the American Chemical Society, 2009, 131, 26-27.	13.7	89
6	Studies of the Di-iron(VI) Intermediate in Ferrate-Dependent Oxygen Evolution from Water. Journal of the American Chemical Society, 2012, 134, 15371-15386.	13.7	86
7	Nuclease activity gives an edge to hostâ€defense peptide piscidin 3 over piscidin 1, rendering it more effective against persisters and biofilms. FEBS Journal, 2017, 284, 3662-3683.	4.7	86
8	Synthesis, Structures, and Conformational Characteristics of Calixarene Monoanions and Dianions. Journal of the American Chemical Society, 2003, 125, 6228-6238.	13.7	82
9	Direct DNA Photocleavage by a New Intercalating Dirhodium(II/II) Complex:Â Comparison to Rh2(μ-O2CCH3)4. Inorganic Chemistry, 2004, 43, 2450-2452.	4.0	76
10	Mesoporous Copper/Manganese Oxide Catalyzed Coupling of Alkynes: Evidence for Synergistic Cooperative Catalysis. ACS Catalysis, 2016, 6, 5069-5080.	11.2	75
11	Photophysical Properties, DNA Photocleavage, and Photocytotoxicity of a Series of Dppn Dirhodium(II,II) Complexes. Inorganic Chemistry, 2010, 49, 5371-5376.	4.0	73
12	Inhibition of Transcription in Vitro by Anticancer Active Dirhodium(II) Complexes. Inorganic Chemistry, 2003, 42, 1267-1271.	4.0	70
13	Antimicrobial Susceptibility Testing of Antimicrobial Peptides to Better Predict Efficacy. Frontiers in Cellular and Infection Microbiology, 2020, 10, 326.	3.9	70
14	Photocytotoxicity of a New Rh2(II,II) Complex:Â Increase in Cytotoxicity upon Irradiation Similar to That of PDT Agent Hematoporphyrin. Inorganic Chemistry, 2005, 44, 7262-7264.	4.0	65
15	Mechanism of Photocatalytic Reduction of CO ₂ by Re(bpy)(CO) ₃ Cl from Differences in Carbon Isotope Discrimination. ACS Catalysis, 2016, 6, 5473-5481.	11.2	58
16	Direct oxygen isotope effect identifies the rate-determining step of electrocatalytic OER at an oxidic surface. Nature Communications, 2018, 9, 4565.	12.8	58
17	Effect of Axial Coordination on the Electronic Structure and Biological Activity of Dirhodium(II,II) Complexes. Inorganic Chemistry, 2007, 46, 7494-7502.	4.0	57
18	Antimicrobial Peptides and Copper(II) Ions: Novel Therapeutic Opportunities. Chemical Reviews, 2021, 121–2648-2712	47.7	55

#	Article	IF	CITATIONS
19	Generation of Endosomolytic Reagents by Branching of Cell-Penetrating Peptides: Tools for the Delivery of Bioactive Compounds to Live Cells in Cis or Trans. Bioconjugate Chemistry, 2010, 21, 2164-2167.	3.6	54
20	Improved Bioactivity of Antimicrobial Peptides by Addition of Aminoâ€Terminal Copper and Nickel (ATCUN) Binding Motifs. ChemMedChem, 2014, 9, 1892-1901.	3.2	53
21	Anticancer activity of heteroleptic diimine complexes of dirhodium: A study of intercalating properties, hydrophobicity and in cellulo activity. Dalton Transactions, 2009, , 10806.	3.3	48
22	Electrochemical Reduction of CO ₂ Catalyzed by Re(pyridine-oxazoline)(CO) ₃ Cl Complexes. Inorganic Chemistry, 2017, 56, 3214-3226.	4.0	48
23	Complementary Effects of Host Defense Peptides Piscidin 1 and Piscidin 3 on DNA and Lipid Membranes: Biophysical Insights into Contrasting Biological Activities. Journal of Physical Chemistry B, 2015, 119, 15235-15246.	2.6	46
24	Copper-binding tripeptide motif increases potency of the antimicrobial peptide Anoplin via Reactive Oxygen Species generation. Biochemical and Biophysical Research Communications, 2015, 456, 446-451.	2.1	46
25	Heterogeneous mesoporous manganese oxide catalyst for aerobic and additive-free oxidative aromatization of N-heterocycles. Chemical Communications, 2017, 53, 2256-2259.	4.1	40
26	Single Chain Polymeric Nanoparticles to Promote Selective Hydroxylation Reactions of Phenol Catalyzed by Copper. ACS Macro Letters, 2017, 6, 652-656.	4.8	38
27	Competitive oxygen-18 kinetic isotope effects expose O–O bond formation in water oxidation catalysis by monomeric and dimeric ruthenium complexes. Chemical Science, 2014, 5, 1141-1152.	7.4	37
28	Ullmann Reaction Catalyzed by Heterogeneous Mesoporous Copper/Manganese Oxide: A Kinetic and Mechanistic Analysis. Inorganic Chemistry, 2017, 56, 10290-10297.	4.0	36
29	Antimicrobial and Antibiofilm Activities of Helical Antimicrobial Peptide Sequences Incorporating Metal-Binding Motifs. Biochemistry, 2019, 58, 3802-3812.	2.5	32
30	Synthetic Polymers To Promote Cooperative Cu Activity for O ₂ Activation: <i>Poly vs Mono</i> . Journal of the American Chemical Society, 2019, 141, 4252-4256.	13.7	32
31	Central Role of the Copper-Binding Motif in the Complex Mechanism of Action of Ixosin: Enhancing Oxidative Damage and Promoting Synergy with Ixosin B. ACS Infectious Diseases, 2016, 2, 71-81.	3.8	30
32	Redox-Regulated Inhibition of T7 RNA Polymerase via Establishment of Disulfide Linkages by Substituted Dppz Dirhodium(II,II) Complexes. Inorganic Chemistry, 2009, 48, 4435-4444.	4.0	29
33	Hybrid peptide ATCUN-sh-Buforin: Influence of the ATCUN charge andÂstereochemistry on antimicrobial activity. Biochimie, 2015, 113, 143-155.	2.6	29
34	Peptide–Ruthenium Conjugate as an Efficient Photosensitizer for the Inactivation of Multidrug-Resistant Bacteria. Inorganic Chemistry, 2020, 59, 14866-14870.	4.0	29
35	Exploration of the Innate Immune System ofStyela clava: Zn2+Binding Enhances the Antimicrobial Activity of the Tunicate Peptide Clavanin A. Biochemistry, 2017, 56, 1403-1414.	2.5	28
36	Phagosomal Copper-Promoted Oxidative Attack on Intracellular <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2018, 4, 1623-1634.	3.8	27

#	Article	IF	CITATIONS
37	Experimental and Computational Evidence of Metal-O2Activation and Rate-Limiting Proton-Coupled Electron Transfer in a Copper Amine Oxidase. Journal of Physical Chemistry B, 2013, 117, 218-229.	2.6	25
38	Oxygen Kinetic Isotope Effects upon Catalytic Water Oxidation by a Monomeric Ruthenium Complex. Inorganic Chemistry, 2012, 51, 4722-4729.	4.0	24
39	"Enzymatic―Photoreduction of Carbon Dioxide using Polymeric Metallofoldamers Containing Nickel–Thiolate Cofactors. ChemCatChem, 2017, 9, 1157-1162.	3.7	22
40	How Does Membrane Oxidation Affect Cell Delivery and Cell Killing?. Trends in Biotechnology, 2017, 35, 686-690.	9.3	22
41	Facile access to versatile functional groups from alcohol by single multifunctional reusable catalyst. Applied Catalysis B: Environmental, 2017, 203, 607-614.	20.2	21
42	Catalytic Mechanism of a Heme and Tyrosyl Radical-Containing Fatty Acid α-(Di)oxygenase. Journal of the American Chemical Society, 2011, 133, 227-238.	13.7	19
43	Competitive ¹³ C and ¹⁸ O kinetic isotope effects on CO ₂ reduction catalyzed by Re(bpy)(CO) ₃ Cl. Dalton Transactions, 2015, 44, 8784-8787.	3.3	19
44	Methane Generation from CO ₂ with a Molecular Rhenium Catalyst. Inorganic Chemistry, 2021, 60, 3572-3584.	4.0	19
45	Structural evidence for monodentate binding of guanine to the dirhodium(ii,ii) core in a manner akin to that of cisplatin. Dalton Transactions, 2003, , 4426-4430.	3.3	18
46	Molecular Dynamics Investigation into the Effect of Zinc(II) on the Structure and Membrane Interactions of the Antimicrobial Peptide Clavanin A. Journal of Physical Chemistry B, 2019, 123, 3163-3176.	2.6	18
47	Enhanced antimicrobial activity of silver nanoparticles conjugated with synthetic peptide by click chemistry. Journal of Nanoparticle Research, 2020, 22, 1.	1.9	17
48	The Antimicrobial Peptide Gadâ€1 Clears <i>Pseudomonas aeruginosa</i> Biofilms under Cystic Fibrosis Conditions. ChemBioChem, 2021, 22, 1646-1655.	2.6	16
49	Experimental and Computational Investigations of Oxygen Reactivity in a Heme and Tyrosyl Radical-Containing Fatty Acid α-(Di)oxygenase. Biochemistry, 2011, 50, 7375-7389.	2.5	14
50	Antimicrobial Susceptibility Testing of Antimicrobial Peptides Requires New and Standardized Testing Structures. ACS Infectious Diseases, 2021, 7, 2205-2208.	3.8	14
51	A Potent Host Defense Peptide Triggers DNA Damage and Is Active against Multidrug-Resistant Gram-Negative Pathogens. ACS Infectious Diseases, 2020, 6, 1250-1263.	3.8	13
52	(1,2-Azole)bis(bipyridyl)ruthenium(II) Complexes: Electrochemistry, Luminescent Properties, And Electro- And Photocatalysts for CO ₂ Reduction. Inorganic Chemistry, 2021, 60, 692-704.	4.0	13
53	[Ru ^{II} (tpy)(bpy)Cl] ⁺ -Catalyzed reduction of carbon dioxide. Mechanistic insights by carbon-13 kinetic isotope effects. Chemical Communications, 2018, 54, 8518-8521.	4.1	11
54	Bioinorganic Chemistry of Antimicrobial and Host-Defense Peptides. Comments on Inorganic Chemistry, 2014, 34, 42-58.	5.2	10

#	Article	IF	CITATIONS
55	Unraveling the implications of multiple histidine residues in the potent antimicrobial peptide Gaduscidin-1. Journal of Inorganic Biochemistry, 2021, 219, 111391.	3.5	10
56	Copper-binding anticancer peptides from the piscidin family: an expanded mechanism that encompasses physical and chemical bilayer disruption. Scientific Reports, 2021, 11, 12620.	3.3	9
57	β-Oxochlorin cobalt(<scp>ii</scp>) complexes catalyze the electrochemical reduction of CO ₂ . Chemical Communications, 2021, 57, 4396-4399.	4.1	6
58	Exploring synergy and its role in antimicrobial peptide biology. Methods in Enzymology, 2022, 663, 99-130.	1.0	5
59	Impact of Metallation and Oxidized Lipids on the Structure and Membrane Disruptive Effects of Host Defense Peptides Piscidin 1 and PiscidinÂ3. Biophysical Journal, 2018, 114, 453a-454a.	0.5	0
60	Synthesis and Characterization of Preacinetobactin and 5-Phenyl Preacinetobactin. Molecules, 2022, 27, 3688.	3.8	0