Nai-Sheng Bai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/505713/publications.pdf

Version: 2024-02-01

567281 477307 36 861 15 29 citations h-index g-index papers 37 37 37 1300 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Apple Polyphenols, Phloretin and Phloridzin: New Trapping Agents of Reactive Dicarbonyl Species. Chemical Research in Toxicology, 2008, 21, 2042-2050.	3.3	156
2	Active Compounds from <i>Lagerstroemia speciosa</i> , Insulin-like Glucose Uptake-Stimulatory/Inhibitory and Adipocyte Differentiation-Inhibitory Activities in 3T3-L1 Cells. Journal of Agricultural and Food Chemistry, 2008, 56, 11668-11674.	5.2	96
3	Sesquiterpene Lactones from Inula britannica and Their Cytotoxic and Apoptotic Effects on Human Cancer Cell Lines. Journal of Natural Products, 2006, 69, 531-535.	3.0	67
4	Chemical characterization of the main bioactive constituents from fruits of Ziziphus jujuba. Food and Function, 2016, 7, 2870-2877.	4.6	57
5	Phytochemical constituents and biological activities of longan (Dimocarpus longan Lour.) fruit: a review. Food Science and Human Wellness, 2020, 9, 95-102.	4.9	49
6	Flavonoids from Rabdosia rubescens exert anti-inflammatory and growth inhibitory effect against human leukemia HL-60 cells. Food Chemistry, 2010, 122, 831-835.	8.2	48
7	Ent-Kaurane Diterpenoids fromRabdosia rubescensand Their Cytotoxic Effects on Human Cancer Cell Lines. Planta Medica, 2010, 76, 140-145.	1.3	36
8	ANTIOXIDATIVE FLAVONOIDS FROM THE FLOWER OF INULA BRITANNICA. Journal of Food Lipids, 2005, 12, 141-149.	1.0	32
9	Sesquiterpene lactones from Inula salsoloides. Phytochemistry, 1994, 36, 721-724.	2.9	28
10	ANTIOXIDANT CHEMISTRY OF GREEN TEA CATECHINS: OXIDATION PRODUCTS OF (â€)â€EPIGALLOCATECHIN GALLATE AND (â€)â€EPIGALLOCATECHIN WITH PEROXIDASE. Journal of Food Lipids, 2000, 7, 275-282.	1.0	24
11	Characterization of nine polyphenols in fruits of Malus pumila Mill by high-performance liquid chromatography. Journal of Food and Drug Analysis, 2016, 24, 293-298.	1.9	24
12	Bioactive spirans and other constituents from the leaves of <i>Cannabis sativa f. sativa </i> Journal of Asian Natural Products Research, 2017, 19, 793-802.	1.4	21
13	Hepatoprotective standardized EtOH–water extract of the leaves of Ziziphus jujuba. Food and Function, 2017, 8, 816-822.	4.6	20
14	Bioactive Constituents of F. esculentum Bee Pollen and Quantitative Analysis of Samples Collected from Seven Areas by HPLC. Molecules, 2019, 24, 2705.	3.8	19
15	Review on chemical compositions and biological activities of peanut (<i>Arachis hypogeae</i> L.). Journal of Food Biochemistry, 2022, 46, e14119.	2.9	19
16	Hepatoprotective standardized EtOH–water extract from the seeds of Fraxinus rhynchophylla Hance. Journal of Traditional and Complementary Medicine, 2017, 7, 158-164.	2.7	17
17	Chemical characterization of main bioactive constituents in ⟨i⟩Paeonia ostii⟨/i⟩ seed meal and GCâ€MS analysis of seed oil. Journal of Food Biochemistry, 2020, 44, e13088.	2.9	16
18	Synthesis and Evaluation of a Series of Oleanolic Acid Saponins as αâ€Glucosidase and αâ€Amylase Inhibitors. Archiv Der Pharmazie, 2015, 348, 615-628.	4.1	15

#	Article	IF	CITATIONS
19	Qualitative and quantitative analysis of chemical constituents of <i>Ptychopetalum olacoides</i> Benth. Natural Product Research, 2018, 32, 354-357.	1.8	14
20	Simultaneous characterization and quantification of 17 main compounds in Rabdosia rubescens by high performance liquid chromatography. Journal of Food and Drug Analysis, 2017, 25, 417-424.	1.9	13
21	Glycosides and flavonoids from the extract of <i>Pueraria thomsonii</i> Benth leaf alleviate type 2 diabetes in high-fat diet plus streptozotocin-induced mice by modulating the gut microbiota. Food and Function, 2022, 13, 3931-3945.	4.6	12
22	The anti-diabetic effect of eight <i>Lagerstroemia speciosa</i> leaf extracts based on the contents of ellagitannins and ellagic acid derivatives. Food and Function, 2020, 11, 1560-1571.	4.6	10
23	<i>Ziziphi Spinosae Semen</i> : An updated review on pharmacological activity, quality control, and application. Journal of Food Biochemistry, 2022, 46, e14153.	2.9	10
24	Analysis of bioactive constituents from the leaves of Amorpha fruticosa L Journal of Food and Drug Analysis, 2017, 25, 992-999.	1.9	8
25	Chemical characterization of the main bioactive polyphenols from the roots of <i>Morus australis </i> (mulberry). Food and Function, 2019, 10, 6915-6926.	4.6	7
26	Three New Sesquiterpene Lactones from Inula britannica. ACS Symposium Series, 2003, , 271-278.	0.5	6
27	Identification and quantification of seven sesquiterpene lactones in <i>Inula britannica</i> by HPLC-DAD-MS. Analytical Methods, 2019, 11, 1822-1833.	2.7	6
28	Simultaneous quantification of 18 bioactive constituents in Ziziphus jujuba fruits by HPLC coupled with a chemometric method. Food Science and Human Wellness, 2022, 11 , 771-780.	4.9	6
29	A new sesquiterpene lactone glucoside and other constituents from Inula salsoloides with insecticidal activities on striped flea beetle (Phyllotreta striolata Fabricius). Natural Product Research, 2018, 32, 552-557.	1.8	5
30	Simultaneous quantification of six sesquiterpene lactones and a flavonoid in the whole life stage of Inula salsoloides by high performance liquid chromatography. Analytical Methods, 2016, 8, 3587-3591.	2.7	4
31	Phytochemical analysis of Ziziphus jujuba leaves in six cultivars at the whole life stage by high performance liquid chromatography. Chemical Research in Chinese Universities, 2017, 33, 702-708.	2.6	4
32	Protective Mechanism of Fagopyrum esculentum Moench. Bee Pollen EtOH Extract Against Type II Diabetes in a High-Fat Diet/Streptozocin-Induced C57BL/6J Mice. Frontiers in Nutrition, 0, 9, .	3.7	4
33	Simultaneous characterization and quantification of flavonoids in <i>Morus australis</i> root as potential hepatoprotective nutraceutical. Journal of Food Biochemistry, 2020, 44, e13259.	2.9	2
34	Quantitative analysis and chemical fingerprint similarity for quality control of the seeds of Paeonia suffruticosa Andr. by HPLC. Chemical Research in Chinese Universities, 2017, 33, 546-551.	2.6	1
35	Mitigation of DSS-Induced Colitis Potentially via Th1/Th2 Cytokine and Immunological Function Balance Induced by Phenolic-Enriched Buckwheat (Fagopyrum esculentum Moench) Bee Pollen Extract. Foods, 2022, 11, 1293.	4.3	1
36	Characterization of Chemical Components of <i>lxeris denticulata</i> . ACS Symposium Series, 2006, , 195-211.	0.5	0