Xiong Wen David Lou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5056292/publications.pdf

Version: 2024-02-01

411 papers

122,222 citations

205 h-index 341 g-index

424 all docs

424 docs citations

times ranked

424

59469 citing authors

#	Article	IF	CITATIONS
1	Hollow Microâ€ Nanostructures: Synthesis and Applications. Advanced Materials, 2008, 20, 3987-4019.	11.1	2,820
2	Defectâ€Rich MoS ₂ Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution. Advanced Materials, 2013, 25, 5807-5813.	11.1	2,705
3	Recent Advances in Metal Oxideâ€based Electrode Architecture Design for Electrochemical Energy Storage. Advanced Materials, 2012, 24, 5166-5180.	11.1	2,251
4	Mixed Transitionâ€Metal Oxides: Design, Synthesis, and Energyâ€Related Applications. Angewandte Chemie - International Edition, 2014, 53, 1488-1504.	7.2	2,019
5	A metal–organic framework-derived bifunctional oxygenÂelectrocatalyst. Nature Energy, 2016, 1, .	19.8	1,974
6	Ultrathin Mesoporous NiCo ₂ O ₄ Nanosheets Supported on Ni Foam as Advanced Electrodes for Supercapacitors. Advanced Functional Materials, 2012, 22, 4592-4597.	7.8	1,545
7	Metal Oxide Hollow Nanostructures for Lithiumâ€ion Batteries. Advanced Materials, 2012, 24, 1903-1911.	11.1	1,414
8	Constructing Hierarchical Spheres from Large Ultrathin Anatase TiO ₂ Nanosheets with Nearly 100% Exposed (001) Facets for Fast Reversible Lithium Storage. Journal of the American Chemical Society, 2010, 132, 6124-6130.	6.6	1,215
9	Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Nature Communications, 2015, 6, 6512.	5.8	1,194
10	Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nature Communications, 2015, 6, 6694.	5.8	1,101
11	Designed Formation of Co ₃ O ₄ Double-Shelled Nanocages with Enhanced Pseudocapacitive and Electrocatalytic Properties. Journal of the American Chemical Society, 2015, 137, 5590-5595.	6.6	1,059
12	Designed Synthesis of Coaxial SnO ₂ @carbon Hollow Nanospheres for Highly Reversible Lithium Storage. Advanced Materials, 2009, 21, 2536-2539.	11.1	1,013
13	Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale, 2012, 4, 2526.	2.8	1,012
14	Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science, 2019, 366, 850-856.	6.0	1,005
15	General Solution Growth of Mesoporous NiCo ₂ O ₄ Nanosheets on Various Conductive Substrates as Highâ€Performance Electrodes for Supercapacitors. Advanced Materials, 2013, 25, 976-979.	11.1	963
16	Formation of Fe ₂ O ₃ Microboxes with Hierarchical Shell Structures from Metal–Organic Frameworks and Their Lithium Storage Properties. Journal of the American Chemical Society, 2012, 134, 17388-17391.	6.6	935
17	Construction of ZnIn ₂ S ₄ –In ₂ O ₃ Hierarchical Tubular Heterostructures for Efficient CO ₂ Photoreduction. Journal of the American Chemical Society, 2018, 140, 5037-5040.	6.6	934
18	Enhancing lithium–sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nature Communications, 2014, 5, 5002.	5.8	892

#	Article	IF	Citations
19	Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy and Environmental Science, 2011, 4, 717-724.	15.6	852
20	Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction. Energy and Environmental Science, 2016, 9, 1246-1250.	15.6	839
21	Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges. Science Advances, 2017, 3, eaap9252.	4.7	824
22	Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors. Energy and Environmental Science, 2017, 10, 1777-1783.	15.6	782
23	Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries. Chemical Communications, 2011, 47, 12578.	2.2	781
24	Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors. Energy and Environmental Science, 2012, 5, 7883.	15.6	780
25	Construction of hierarchical Ni–Co–P hollow nanobricks with oriented nanosheets for efficient overall water splitting. Energy and Environmental Science, 2018, 11, 872-880.	15.6	773
26	Assembling carbon-coated î±-Fe ₂ O ₃ hollow nanohorns on the CNT backbone for superior lithium storage capability. Energy and Environmental Science, 2012, 5, 5252-5256.	15.6	767
27	Hollow Carbon Nanofibers Filled with MnO ₂ Nanosheets as Efficient Sulfur Hosts for Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2015, 54, 12886-12890.	7.2	765
28	Nonâ€Nobleâ€Metalâ€Based Electrocatalysts toward the Oxygen Evolution Reaction. Advanced Functional Materials, 2020, 30, 1910274.	7.8	760
29	Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors. Energy and Environmental Science, 2012, 5, 9453.	15.6	754
30	Quasiemulsion-Templated Formation of α-Fe ₂ O ₃ Hollow Spheres with Enhanced Lithium Storage Properties. Journal of the American Chemical Society, 2011, 133, 17146-17148.	6.6	750
31	SnO ₂ â€Based Nanomaterials: Synthesis and Application in Lithiumâ€ion Batteries. Small, 2013, 9, 1877-1893.	5. 2	729
32	Carbonâ€Incorporated Nickel–Cobalt Mixed Metal Phosphide Nanoboxes with Enhanced Electrocatalytic Activity for Oxygen Evolution. Angewandte Chemie - International Edition, 2017, 56, 3897-3900.	7.2	725
33	Selfâ€Templated Formation of Uniform NiCo ₂ O ₄ Hollow Spheres with Complex Interior Structures for Lithiumâ€ion Batteries and Supercapacitors. Angewandte Chemie - International Edition, 2015, 54, 1868-1872.	7.2	71 3
34	Confining Sulfur in Doubleâ€Shelled Hollow Carbon Spheres for Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2012, 51, 9592-9595.	7.2	692
35	Metal-Organic-Framework-Based Materials as Platforms for Renewable Energy and Environmental Applications. Joule, 2017, 1, 77-107.	11.7	673
36	Doubleâ€Shelled CoMn ₂ O ₄ Hollow Microcubes as Highâ€Capacity Anodes for Lithiumâ€Ion Batteries. Advanced Materials, 2012, 24, 745-748.	11.1	665

#	Article	IF	CITATIONS
37	Metal Sulfide Hollow Nanostructures for Electrochemical Energy Storage. Advanced Energy Materials, 2016, 6, 1501333.	10.2	663
38	Mixed Metal Sulfides for Electrochemical Energy Storage and Conversion. Advanced Energy Materials, 2018, 8, 1701592.	10.2	647
39	Formation of Hierarchical Co ₉ S ₈ @Znln ₂ S ₄ Heterostructured Cages as an Efficient Photocatalyst for Hydrogen Evolution. Journal of the American Chemical Society, 2018, 140, 15145-15148.	6.6	642
40	Complex Nanostructures from Materials based on Metal–Organic Frameworks for Electrochemical Energy Storage and Conversion. Advanced Materials, 2017, 29, 1703614.	11.1	629
41	Complex Hollow Nanostructures: Synthesis and Energyâ€Related Applications. Advanced Materials, 2017, 29, 1604563.	11.1	627
42	Hierarchical NiCo ₂ O ₄ @MnO ₂ core–shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. Chemical Communications, 2013, 49, 137-139.	2.2	622
43	Formation of ZnMn ₂ O ₄ Ballâ€inâ€Ball Hollow Microspheres as a Highâ€Performance Anode for Lithiumâ€ion Batteries. Advanced Materials, 2012, 24, 4609-4613.	11.1	603
44	Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium–sulfur batteries. Energy and Environmental Science, 2016, 9, 3061-3070.	15.6	598
45	Ultrathin MoS ₂ Nanosheets Supported on Nâ€doped Carbon Nanoboxes with Enhanced Lithium Storage and Electrocatalytic Properties. Angewandte Chemie - International Edition, 2015, 54, 7395-7398.	7.2	596
46	Advanced Electrocatalysts for the Oxygen Reduction Reaction in Energy Conversion Technologies. Joule, 2020, 4, 45-68.	11.7	596
47	Nanostructured Conversion-type Anode Materials for Advanced Lithium-Ion Batteries. CheM, 2018, 4, 972-996.	5.8	591
48	A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium–sulfur batteries. Nature Communications, 2016, 7, 13065.	5.8	590
49	Formation of Hierarchical In ₂ S ₃ â€"CdIn ₂ S ₄ Heterostructured Nanotubes for Efficient and Stable Visible Light CO ₂ Reduction. Journal of the American Chemical Society, 2017, 139, 17305-17308.	6.6	585
50	One-Pot Synthesis of Cubic PtCu ₃ Nanocages with Enhanced Electrocatalytic Activity for the Methanol Oxidation Reaction. Journal of the American Chemical Society, 2012, 134, 13934-13937.	6.6	581
51	Controlled Growth of NiMoO ₄ Nanosheet and Nanorod Arrays on Various Conductive Substrates as Advanced Electrodes for Asymmetric Supercapacitors. Advanced Energy Materials, 2015, 5, 1401172.	10.2	559
52	High-performance flexible asymmetric supercapacitors based on a new graphene foam/carbon nanotube hybrid film. Energy and Environmental Science, 2014, 7, 3709-3719.	15.6	557
53	Mesoporous Co ₃ O ₄ and CoO@C Topotactically Transformed from Chrysanthemumâ€ike Co(CO ₃) _{0.5} (OH)·0.11H ₂ O and Their Lithiumâ€5torage Properties. Advanced Functional Materials, 2012, 22, 861-871.	7.8	554
54	Formation of Prussianâ€Blueâ€Analog Nanocages via a Direct Etching Method and their Conversion into Ni–Coâ€Mixed Oxide for Enhanced Oxygen Evolution. Advanced Materials, 2016, 28, 4601-4605.	11.1	550

#	Article	IF	CITATIONS
55	Hierarchical βâ€Mo ₂ C Nanotubes Organized by Ultrathin Nanosheets as a Highly Efficient Electrocatalyst for Hydrogen Production. Angewandte Chemie - International Edition, 2015, 54, 15395-15399.	7.2	546
56	Formation of Onionâ€Like NiCo ₂ S ₄ Particles via Sequential Ionâ€Exchange for Hybrid Supercapacitors. Advanced Materials, 2017, 29, 1605051.	11.1	539
57	Fast Formation of SnO ₂ Nanoboxes with Enhanced Lithium Storage Capability. Journal of the American Chemical Society, 2011, 133, 4738-4741.	6.6	521
58	Metal–Organic-Frameworks-Derived General Formation of Hollow Structures with High Complexity. Journal of the American Chemical Society, 2013, 135, 10664-10672.	6.6	520
59	Formation of Ni–Co–MoS ₂ Nanoboxes with Enhanced Electrocatalytic Activity for Hydrogen Evolution. Advanced Materials, 2016, 28, 9006-9011.	11.1	511
60	Highly crystalline Ni-doped FeP/carbon hollow nanorods as all-pH efficient and durable hydrogen evolving electrocatalysts. Science Advances, 2019, 5, eaav6009.	4.7	508
61	Hierarchical Hollow Nanoprisms Based on Ultrathin Niâ€Fe Layered Double Hydroxide Nanosheets with Enhanced Electrocatalytic Activity towards Oxygen Evolution. Angewandte Chemie - International Edition, 2018, 57, 172-176.	7.2	507
62	Doubleâ€Shelled Nanocages with Cobalt Hydroxide Inner Shell and Layered Double Hydroxides Outer Shell as Highâ€Efficiency Polysulfide Mediator for Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2016, 55, 3982-3986.	7.2	505
63	Templateâ€free Formation of Uniform Urchinâ€like <i>α</i> â€FeOOH Hollow Spheres with Superior Capability for Water Treatment. Advanced Materials, 2012, 24, 1111-1116.	11.1	504
64	Metal–organic-framework-engaged formation of Co nanoparticle-embedded carbon@Co ₉ S ₈ double-shelled nanocages for efficient oxygen reduction. Energy and Environmental Science, 2016, 9, 107-111.	15.6	499
65	Ironâ€Oxideâ€Based Advanced Anode Materials for Lithiumâ€lon Batteries. Advanced Energy Materials, 2014, 4, 1300958.	10.2	498
66	Structure-designed synthesis of FeS ₂ @C yolk–shell nanoboxes as a high-performance anode for sodium-ion batteries. Energy and Environmental Science, 2017, 10, 1576-1580.	15.6	475
67	Hierarchical MoS ₂ microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting. Energy and Environmental Science, 2014, 7, 3302-3306.	15.6	471
68	Bowlâ€like SnO ₂ @Carbon Hollow Particles as an Advanced Anode Material for Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2014, 53, 12803-12807.	7.2	463
69	Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. Science Advances, 2018, 4, eaao6657.	4.7	460
70	Metal–Organic Frameworks Based Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2020, 59, 4634-4650.	7.2	457
71	Pie-like electrode design for high-energy density lithium–sulfur batteries. Nature Communications, 2015, 6, 8850.	5.8	453
72	Hollow Structures Based on Prussian Blue and Its Analogs for Electrochemical Energy Storage and Conversion. Advanced Materials, 2019, 31, e1706825.	11.1	445

#	Article	IF	Citations
73	Freeâ€Standing Nitrogenâ€Doped Carbon Nanofiber Films: Integrated Electrodes for Sodiumâ€Ion Batteries with Ultralong Cycle Life and Superior Rate Capability. Advanced Energy Materials, 2016, 6, 1502217.	10.2	440
74	Formation of Nickel Sulfide Nanoframes from Metal–Organic Frameworks with Enhanced Pseudocapacitive and Electrocatalytic Properties. Angewandte Chemie - International Edition, 2015, 54, 5331-5335.	7.2	439
75	Shape-Controlled Synthesis of MnO ₂ Nanostructures with Enhanced Electrocatalytic Activity for Oxygen Reduction. Journal of Physical Chemistry C, 2010, 114, 1694-1700.	1.5	432
76	Formation of Ni–Fe Mixed Diselenide Nanocages as a Superior Oxygen Evolution Electrocatalyst. Advanced Materials, 2017, 29, 1703870.	11.1	428
77	Facile synthesis of hierarchical MoS ₂ microspheres composed of few-layered nanosheets and their lithium storage properties. Nanoscale, 2012, 4, 95-98.	2.8	425
78	Ultrathin and Ultralong Single-Crystal Platinum Nanowire Assemblies with Highly Stable Electrocatalytic Activity. Journal of the American Chemical Society, 2013, 135, 9480-9485.	6.6	425
79	Self-supported formation of hierarchical NiCo ₂ O ₄ tetragonal microtubes with enhanced electrochemical properties. Energy and Environmental Science, 2016, 9, 862-866.	15.6	422
80	One-Pot Synthesis of Carbon-Coated SnO ₂ Nanocolloids with Improved Reversible Lithium Storage Properties. Chemistry of Materials, 2009, 21, 2868-2874.	3.2	421
81	Controlled Growth of NiCo2O4 Nanorods and Ultrathin Nanosheets on Carbon Nanofibers for High-performance Supercapacitors. Scientific Reports, 2013, 3, 1470.	1.6	417
82	Formation of Ni _{<i>x</i>} Co _{3â^'<i>x</i>} S ₄ Hollow Nanoprisms with Enhanced Pseudocapacitive Properties. Angewandte Chemie - International Edition, 2014, 53, 3711-3714.	7.2	417
83	Sb@C coaxial nanotubes as a superior long-life and high-rate anode for sodium ion batteries. Energy and Environmental Science, 2016, 9, 2314-2318.	15.6	414
84	Hierarchical Tubular Structures Composed of Co ₃ O ₄ Hollow Nanoparticles and Carbon Nanotubes for Lithium Storage. Angewandte Chemie - International Edition, 2016, 55, 5990-5993.	7.2	413
85	Preparation of SnO ₂ /Carbon Composite Hollow Spheres and Their Lithium Storage Properties. Chemistry of Materials, 2008, 20, 6562-6566.	3.2	410
86	Oneâ€Pot Synthesis of Pt–Co Alloy Nanowire Assemblies with Tunable Composition and Enhanced Electrocatalytic Properties. Angewandte Chemie - International Edition, 2015, 54, 3797-3801.	7.2	407
87	Formation of Hierarchical Cuâ€Doped CoSe ₂ Microboxes via Sequential Ion Exchange for Highâ€Performance Sodiumâ€ion Batteries. Advanced Materials, 2018, 30, e1706668.	11.1	402
88	Self-Templated Formation of Hollow Structures for Electrochemical Energy Applications. Accounts of Chemical Research, 2017, 50, 293-301.	7.6	397
89	Formation of Uniform Fe ₃ O ₄ Hollow Spheres Organized by Ultrathin Nanosheets and Their Excellent Lithium Storage Properties. Advanced Materials, 2015, 27, 4097-4101.	11.1	396
90	Formation of SnO ₂ Hollow Nanospheres inside Mesoporous Silica Nanoreactors. Journal of the American Chemical Society, 2011, 133, 21-23.	6.6	391

#	Article	IF	Citations
91	SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties. Chemical Communications, 2011, 47, 7155.	2.2	387
92	Metal–Organic Framework Hybridâ€Assisted Formation of Co ₃ O ₄ /Coâ€Fe Oxide Doubleâ€Shelled Nanoboxes for Enhanced Oxygen Evolution. Advanced Materials, 2018, 30, e1801211.	11.1	374
93	Formation of Doubleâ€Shelled Zinc–Cobalt Sulfide Dodecahedral Cages from Bimetallic Zeolitic Imidazolate Frameworks for Hybrid Supercapacitors. Angewandte Chemie - International Edition, 2017, 56, 7141-7145.	7.2	371
94	Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science, 2022, 375, 739-745.	6.0	368
95	Mesoporous Li ₄ Ti ₅ O ₁₂ Hollow Spheres with Enhanced Lithium Storage Capability. Advanced Materials, 2013, 25, 2296-2300.	11.1	364
96	General Formation of M–MoS ₃ (M = Co, Ni) Hollow Structures with Enhanced Electrocatalytic Activity for Hydrogen Evolution. Advanced Materials, 2016, 28, 92-97.	11.1	364
97	Interfacing Manganese Oxide and Cobalt in Porous Graphitic Carbon Polyhedrons Boosts Oxygen Electrocatalysis for Zn–Air Batteries. Advanced Materials, 2019, 31, e1902339.	11.1	363
98	Flexible Hybrid Paper Made of Monolayer Co ₃ O ₄ Microsphere Arrays on rGO/CNTs and Their Application in Electrochemical Capacitors. Advanced Functional Materials, 2012, 22, 2560-2566.	7.8	362
99	Hierarchical MoS ₂ tubular structures internally wired by carbon nanotubes as a highly stable anode material for lithium-ion batteries. Science Advances, 2016, 2, e1600021.	4.7	362
100	Top-Down Fabrication of \hat{l}_{\pm} -Fe ₂ O ₃ Single-Crystal Nanodiscs and Microparticles with Tunable Porosity for Largely Improved Lithium Storage Properties. Journal of the American Chemical Society, 2010, 132, 13162-13164.	6.6	359
101	Rationally designed hierarchical N-doped carbon@NiCo ₂ O ₄ double-shelled nanoboxes for enhanced visible light CO ₂ reduction. Energy and Environmental Science, 2018, 11, 306-310.	15.6	357
102	Carbonâ€Coated CdS Petalous Nanostructures with Enhanced Photostability and Photocatalytic Activity. Angewandte Chemie - International Edition, 2013, 52, 5636-5639.	7.2	355
103	Embedding Sulfur in MOFâ€Derived Microporous Carbon Polyhedrons for Lithium–Sulfur Batteries. Chemistry - A European Journal, 2013, 19, 10804-10808.	1.7	355
104	Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability. Nanoscale, 2011, 3, 1084-1089.	2.8	352
105	Metal–Organic Frameworks Derived Functional Materials for Electrochemical Energy Storage and Conversion: A Mini Review. Nano Letters, 2021, 21, 1555-1565.	4.5	351
106	Facile synthesis of mesoporous Ni0.3Co2.7O4 hierarchical structures for high-performance supercapacitors. Energy and Environmental Science, 2013, 6, 3619.	15.6	347
107	Formation of CoS ₂ Nanobubble Hollow Prisms for Highly Reversible Lithium Storage. Angewandte Chemie - International Edition, 2016, 55, 13422-13426.	7.2	346
108	Construction of CoO/Co u‧ Hierarchical Tubular Heterostructures for Hybrid Supercapacitors. Angewandte Chemie - International Edition, 2019, 58, 15441-15447.	7.2	346

#	Article	IF	Citations
109	Coordination Polymers Derived General Synthesis of Multishelled Mixed Metalâ€Oxide Particles for Hybrid Supercapacitors. Advanced Materials, 2017, 29, 1605902.	11.1	345
110	A dual-metal–organic-framework derived electrocatalyst for oxygen reduction. Energy and Environmental Science, 2016, 9, 3092-3096.	15.6	344
111	Hydrothermal Synthesis of α-MoO3 Nanorods via Acidification of Ammonium Heptamolybdate Tetrahydrate. Chemistry of Materials, 2002, 14, 4781-4789.	3.2	342
112	Shape-controlled synthesis of porous Co3O4 nanostructures for application in supercapacitors. Journal of Materials Chemistry, 2010, 20, 7015.	6.7	341
113	Amorphous CoSnO ₃ @C nanoboxes with superior lithium storage capability. Energy and Environmental Science, 2013, 6, 87-91.	15.6	337
114	Glucoseâ€Assisted Growth of MoS ₂ Nanosheets on CNT Backbone for Improved Lithium Storage Properties. Chemistry - A European Journal, 2011, 17, 13142-13145.	1.7	334
115	Metal Atomâ€Doped Co ₃ O ₄ Hierarchical Nanoplates for Electrocatalytic Oxygen Evolution. Advanced Materials, 2020, 32, e2002235.	11.1	332
116	A bi-functional device for self-powered electrochromic window and self-rechargeable transparent battery applications. Nature Communications, 2014, 5, 4921.	5.8	328
117	SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries. Journal of Materials Chemistry, 2011, 21, 9912.	6.7	327
118	Two-dimensional nanosheets for photoelectrochemical water splitting: Possibilities and opportunities. Nano Today, 2013, 8, 598-618.	6.2	326
119	Confining SnS2 Ultrathin Nanosheets in Hollow Carbon Nanostructures for Efficient Capacitive Sodium Storage. Joule, 2018, 2, 725-735.	11.7	324
120	Hierarchical nickel sulfide hollow spheres for high performance supercapacitors. RSC Advances, 2011, 1, 397.	1.7	322
121	Efficient Electrochemical Reduction of CO ₂ to HCOOH over Subâ€2â€nm SnO ₂ Quantum Wires with Exposed Grain Boundaries. Angewandte Chemie - International Edition, 2019, 58, 8499-8503.	7.2	322
122	Formation of 1D Hierarchical Structures Composed of Ni ₃ S ₂ Nanosheets on CNTs Backbone for Supercapacitors and Photocatalytic H ₂ Production. Advanced Energy Materials, 2012, 2, 1497-1502.	10.2	321
123	A general dual-templating approach to biomass-derived hierarchically porous heteroatom-doped carbon materials for enhanced electrocatalytic oxygen reduction. Energy and Environmental Science, 2019, 12, 648-655.	15.6	318
124	A General Route to Nonspherical Anatase TiO ₂ Hollow Colloids and Magnetic Multifunctional Particles. Advanced Materials, 2008, 20, 1853-1858.	11.1	315
125	Surface Modulation of Hierarchical MoS ₂ Nanosheets by Ni Single Atoms for Enhanced Electrocatalytic Hydrogen Evolution. Advanced Functional Materials, 2018, 28, 1807086.	7.8	314
126	Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties. Journal of Materials Chemistry, 2008, 18, 4397.	6.7	312

#	Article	IF	CITATIONS
127	Ultrafine Dualâ€Phased Carbide Nanocrystals Confined in Porous Nitrogenâ€Doped Carbon Dodecahedrons for Efficient Hydrogen Evolution Reaction. Advanced Materials, 2019, 31, e1900699.	11.1	311
128	Unusual Formation of CoSe@carbon Nanoboxes, which have an Inhomogeneous Shell, for Efficient Lithium Storage. Angewandte Chemie - International Edition, 2016, 55, 9514-9518.	7.2	308
129	Design of Heterostructured Hollow Photocatalysts for Solarâ€toâ€Chemical Energy Conversion. Advanced Materials, 2019, 31, e1900281.	11.1	307
130	Graphene-supported anatase TiO2 nanosheets for fast lithium storage. Chemical Communications, 2011, 47, 5780.	2.2	305
131	Designed Formation of Doubleâ€Shelled Ni–Fe Layeredâ€Doubleâ€Hydroxide Nanocages for Efficient Oxygen Evolution Reaction. Advanced Materials, 2020, 32, e1906432.	11.1	305
132	Hierarchical Tubular Structures Constructed by Carbonâ€Coated SnO ₂ Nanoplates for Highly Reversible Lithium Storage. Advanced Materials, 2013, 25, 2589-2593.	11,1	304
133	Recent progress on graphene-based hybrid electrocatalysts. Materials Horizons, 2014, 1, 379-399.	6.4	303
134	The Design and Synthesis of Hollow Micro†Nanostructures: Present and Future Trends. Advanced Materials, 2018, 30, e1800939.	11.1	301
135	Rational Design of Threeâ€Layered TiO ₂ @Carbon@MoS ₂ Hierarchical Nanotubes for Enhanced Lithium Storage. Advanced Materials, 2017, 29, 1702724.	11.1	300
136	Supporting Ultrathin ZnIn ₂ S ₄ Nanosheets on Co/Nâ€Doped Graphitic Carbon Nanocages for Efficient Photocatalytic H ₂ Generation. Advanced Materials, 2019, 31, e1903404.	11,1	300
137	Formation of Asymmetric Bowl-Like Mesoporous Particles via Emulsion-Induced Interface Anisotropic Assembly. Journal of the American Chemical Society, 2016, 138, 11306-11311.	6.6	299
138	Green Synthesis of NiO Nanobelts with Exceptional Pseudoâ€Capacitive Properties. Advanced Energy Materials, 2012, 2, 1188-1192.	10.2	297
139	Glucose-Assisted One-Pot Synthesis of FeOOH Nanorods and Their Transformation to Fe ₃ O ₄ @Carbon Nanorods for Application in Lithium Ion Batteries. Journal of Physical Chemistry C, 2011, 115, 9814-9820.	1.5	295
140	Synthesis of Highly Uniform Molybdenum–Glycerate Spheres and Their Conversion into Hierarchical MoS ₂ Hollow Nanospheres for Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2016, 55, 7423-7426.	7.2	288
141	Shell-by-Shell Synthesis of Tin Oxide Hollow Colloids with Nanoarchitectured Walls: Cavity Size Tuning and Functionalization. Small, 2007, 3, 261-265.	5.2	286
142	A Flexible TiO ₂ (B)â€Based Battery Electrode with Superior Power Rate and Ultralong Cycle Life. Advanced Materials, 2013, 25, 3462-3467.	11.1	286
143	Formation of Yolkâ€Shelled Ni–Co Mixed Oxide Nanoprisms with Enhanced Electrochemical Performance for Hybrid Supercapacitors and Lithium Ion Batteries. Advanced Energy Materials, 2015, 5, 1500981.	10.2	286
144	Strongly Coupled NiCo ₂ O ₄ â€rGO Hybrid Nanosheets as a Methanolâ€Tolerant Electrocatalyst for the Oxygen Reduction Reaction. Advanced Materials, 2014, 26, 2408-2412.	11,1	283

#	Article	IF	Citations
145	General Formation of MS (M = Ni, Cu, Mn) Boxâ€inâ€Box Hollow Structures with Enhanced Pseudocapacitive Properties. Advanced Functional Materials, 2014, 24, 7440-7446.	7.8	281
146	Controlled synthesis of hierarchical NiO nanosheet hollow spheres with enhanced supercapacitive performance. Journal of Materials Chemistry, 2011, 21, 6602.	6.7	280
147	A Hierarchically Nanostructured Composite of MnO ₂ /Conjugated Polymer/Graphene for Highâ€Performance Lithium Ion Batteries. Advanced Energy Materials, 2011, 1, 736-741.	10.2	279
148	Templateâ€Free Synthesis of VO ₂ Hollow Microspheres with Various Interiors and Their Conversion into V ₂ 6 ₅ for Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2013, 52, 2226-2230.	7.2	275
149	Direct Synthesis of Anatase TiO ₂ Nanowires with Enhanced Photocatalytic Activity. Advanced Materials, 2012, 24, 2567-2571.	11.1	271
150	Formation of Mesoporous Heterostructured BiVO ₄ /Bi ₂ S ₃ Hollow Discoids with Enhanced Photoactivity. Angewandte Chemie - International Edition, 2014, 53, 5917-5921.	7.2	269
151	Nickel–Iron Layered Double Hydroxide Hollow Polyhedrons as a Superior Sulfur Host for Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2018, 57, 10944-10948.	7.2	269
152	Nanostructured Electrode Materials for Advanced Sodium-Ion Batteries. Matter, 2019, 1, 90-114.	5.0	266
153	α-Fe2O3 nanotubes with superior lithium storage capability. Chemical Communications, 2011, 47, 8061.	2.2	265
154	Controlled synthesis of hierarchical Co _x Mn _{3â^'x} O ₄ array micro-/nanostructures with tunable morphology and composition as integrated electrodes for lithium-ion batteries. Energy and Environmental Science, 2013, 6, 2664-2671.	15.6	265
155	Construction of Co–Mn Prussian Blue Analog Hollow Spheres for Efficient Aqueous Znâ€ion Batteries. Angewandte Chemie - International Edition, 2021, 60, 22189-22194.	7.2	265
156	A magnetically separable photocatalyst based on nest-like \hat{l}^3 -Fe ₂ O ₃ /ZnO double-shelled hollow structures with enhanced photocatalytic activity. Nanoscale, 2012, 4, 183-187.	2.8	262
157	Formation of Uniform Nâ€doped Carbonâ€Coated SnO ₂ Submicroboxes with Enhanced Lithium Storage Properties. Advanced Energy Materials, 2016, 6, 1600451.	10.2	262
158	Construction of Complex Co ₃ V ₂ O ₈ Hollow Structures from Metal–Organic Frameworks with Enhanced Lithium Storage Properties. Advanced Materials, 2018, 30, 1702875.	11.1	262
159	General Synthesis of Multishell Mixedâ€Metal Oxyphosphide Particles with Enhanced Electrocatalytic Activity in the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2017, 56, 2386-2389.	7.2	257
160	Oneâ€Dimensional Hierarchical Structures Composed of Novel Metal Oxide Nanosheets on a Carbon Nanotube Backbone and Their Lithiumâ€Storage Properties. Advanced Functional Materials, 2011, 21, 4120-4125.	7.8	256
161	Uniform V2O5 nanosheet-assembled hollow microflowers with excellent lithium storage properties. Energy and Environmental Science, 2013, 6, 1476.	15.6	256
162	Unveiling the Activity Origin of Electrocatalytic Oxygen Evolution over Isolated Ni Atoms Supported on a Nâ€Doped Carbon Matrix. Advanced Materials, 2019, 31, e1904548.	11.1	256

#	Article	IF	CITATIONS
163	A Compact Nanoconfined Sulfur Cathode for High-Performance Lithium-Sulfur Batteries. Joule, 2017, 1, 576-587.	11.7	255
164	Confining Subâ€Nanometer Pt Clusters in Hollow Mesoporous Carbon Spheres for Boosting Hydrogen Evolution Activity. Advanced Materials, 2020, 32, e1901349.	11.1	255
165	Bi ₂ O ₃ Nanosheets Grown on Multiâ€Channel Carbon Matrix to Catalyze Efficient CO ₂ Electroreduction to HCOOH. Angewandte Chemie - International Edition, 2019, 58, 13828-13833.	7.2	254
166	Arrays of ultrafine CuS nanoneedles supported on a CNT backbone for application in supercapacitors. Journal of Materials Chemistry, 2012, 22, 7851.	6.7	253
167	Doping high-surface-area mesoporous TiO ₂ microspheres with carbonate for visible light hydrogen production. Energy and Environmental Science, 2014, 7, 2592.	15.6	253
168	Porous Co3O4 nanowires derived from long Co(CO3)0.5(OH) \hat{A} ·0.11H2O nanowires with improved supercapacitive properties. Nanoscale, 2012, 4, 2145.	2.8	251
169	TiO ₂ Nanocages: Fast Synthesis, Interior Functionalization and Improved Lithium Storage Properties. Advanced Materials, 2012, 24, 4124-4129.	11.1	250
170	General Formation of M _{<i>x</i>} Co _{3â^'<i>x</i>} S ₄ (M=Ni, Mn, Zn) Hollow Tubular Structures for Hybrid Supercapacitors. Angewandte Chemie - International Edition, 2015, 54, 10521-10524.	7.2	247
171	Trimetallic Spinel NiCo _{2â^'<i>x</i>} Fe _{<i>x</i>} O ₄ Nanoboxes for Highly Efficient Electrocatalytic Oxygen Evolution. Angewandte Chemie - International Edition, 2021, 60, 11841-11846.	7.2	247
172	Ultralong α-MoO ₃ Nanobelts: Synthesis and Effect of Binder Choice on Their Lithium Storage Properties. Journal of Physical Chemistry C, 2012, 116, 12508-12513.	1.5	246
173	Engineering Nonspherical Hollow Structures with Complex Interiors by Template-Engaged Redox Etching. Journal of the American Chemical Society, 2010, 132, 16271-16277.	6.6	241
174	Facile preparation of ZnMn ₂ O ₄ hollow microspheres as high-capacity anodes for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 827-829.	6.7	236
175	Encapsulating Sn Nanoparticles in Amorphous Carbon Nanotubes for Enhanced Lithium Storage Properties. Advanced Energy Materials, 2016, 6, 1601177.	10.2	234
176	Intramolecular electronic coupling in porous iron cobalt (oxy)phosphide nanoboxes enhances the electrocatalytic activity for oxygen evolution. Energy and Environmental Science, 2019, 12, 3348-3355.	15.6	234
177	Recent Advances on Mixed Metal Sulfides for Advanced Sodiumâ€lon Batteries. Advanced Materials, 2020, 32, e2002976.	11.1	234
178	Flexible Films Derived from Electrospun Carbon Nanofibers Incorporated with Co ₃ O ₄ Hollow Nanoparticles as Selfâ€supported Electrodes for Electrochemical Capacitors. Advanced Functional Materials, 2013, 23, 3909-3915.	7.8	233
179	Hierarchical NiCo ₂ O ₄ Nanosheets Grown on Ni Nanofoam as High-Performance Electrodes for Supercapacitors. Small, 2015, 11, 804-808.	5.2	232
180	NiMnâ∈Based Bimetalâ∈"Organic Framework Nanosheets Supported on Multiâ∈Channel Carbon Fibers for Efficient Oxygen Electrocatalysis. Angewandte Chemie - International Edition, 2020, 59, 18234-18239.	7.2	232

#	Article	IF	Citations
181	Rationally Designed Threeâ€Layered Cu ₂ S@Carbon@MoS ₂ Hierarchical Nanoboxes for Efficient Sodium Storage. Angewandte Chemie - International Edition, 2020, 59, 7178-7183.	7.2	232
182	Single-atom catalysts for photocatalytic energy conversion. Joule, 2022, 6, 92-133.	11.7	229
183	Anatase TiO2 nanosheet: An ideal host structure for fast and efficient lithium insertion/extraction. Electrochemistry Communications, 2009, 11, 2332-2335.	2.3	228
184	Unusual CoS2 ellipsoids with anisotropic tube-like cavities and their application in supercapacitors. Chemical Communications, 2012, 48, 6912.	2.2	228
185	Citrateâ€Assisted Growth of NiCo ₂ O ₄ Nanosheets on Reduced Graphene Oxide for Highly Reversible Lithium Storage. Advanced Energy Materials, 2014, 4, 1400422.	10.2	227
186	Porous Iron–Cobalt Alloy/Nitrogenâ€Doped Carbon Cages Synthesized via Pyrolysis of Complex Metal–Organic Framework Hybrids for Oxygen Reduction. Advanced Functional Materials, 2018, 28, 1706738.	7.8	227
187	A modular strategy for decorating isolated cobalt atoms into multichannel carbon matrix for electrocatalytic oxygen reduction. Energy and Environmental Science, 2018, 11, 1980-1984.	15.6	225
188	A pyrolyzed polyacrylonitrile/selenium disulfide composite cathode with remarkable lithium and sodium storage performances. Science Advances, 2018, 4, eaat1687.	4.7	225
189	Graphene-wrapped TiO2 hollow structures with enhanced lithium storage capabilities. Nanoscale, 2011, 3, 2158.	2.8	223
190	SnO ₂ Nanoparticles with Controlled Carbon Nanocoating as High-Capacity Anode Materials for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2009, 113, 20504-20508.	1.5	222
191	Synthesis, Characterization, and Lithium Storage Capability of AMoO ₄ (A = Ni, Co) Nanorods. Chemistry of Materials, 2010, 22, 746-754.	3.2	222
192	Selfâ€Supported Construction of Uniform Fe ₃ O ₄ Hollow Microspheres from Nanoplate Building Blocks. Angewandte Chemie - International Edition, 2013, 52, 4165-4168.	7.2	222
193	General Synthesis of Multiâ€Shelled Mixed Metal Oxide Hollow Spheres with Superior Lithium Storage Properties. Angewandte Chemie - International Edition, 2014, 53, 9041-9044.	7.2	222
194	Ultrasmall MoO _x Clusters as a Novel Cocatalyst for Photocatalytic Hydrogen Evolution. Advanced Materials, 2019, 31, e1804883.	11.1	222
195	Highly Efficient Removal of Organic Dyes from Waste Water Using Hierarchical NiO Spheres with High Surface Area. Journal of Physical Chemistry C, 2012, 116, 6873-6878.	1.5	221
196	Formation of porous SnO2 microboxes via selective leaching for highly reversible lithium storage. Energy and Environmental Science, 2014, 7, 1013.	15.6	221
197	Additive-free synthesis of 3D porous V2O5 hierarchical microspheres with enhanced lithium storage properties. Energy and Environmental Science, 2013, 6, 974.	15.6	217
198	Fabrication of CdS hierarchical multi-cavity hollow particles for efficient visible light CO ₂ reduction. Energy and Environmental Science, 2019, 12, 164-168.	15.6	217

#	Article	IF	Citations
199	Higher charge/discharge rates of lithium-ions across engineered TiO2 surfaces leads to enhanced battery performance. Chemical Communications, 2010, 46, 6129.	2.2	216
200	Hierarchically Structured One-Dimensional TiO ₂ for Protein Immobilization, Direct Electrochemistry, and Mediator-Free Glucose Sensing. ACS Nano, 2011, 5, 7617-7626.	7. 3	215
201	Microwaveâ€Assisted Synthesis of Porous Ag ₂ S–Ag Hybrid Nanotubes with High Visibleâ€Light Photocatalytic Activity. Angewandte Chemie - International Edition, 2012, 51, 11501-11504.	7.2	215
202	Construction of hybrid bowl-like structures by anchoring NiO nanosheets on flat carbon hollow particles with enhanced lithium storage properties. Energy and Environmental Science, 2015, 8, 1707-1711.	15.6	215
203	Bismuth oxide: a versatile high-capacity electrode material for rechargeable aqueous metal-ion batteries. Energy and Environmental Science, 2016, 9, 2881-2891.	15.6	215
204	A highly stable lithium metal anode enabled by Ag nanoparticle–embedded nitrogen-doped carbon macroporous fibers. Science Advances, 2021, 7, .	4.7	212
205	Selfâ€Supported Interconnected Pt Nanoassemblies as Highly Stable Electrocatalysts for Lowâ€Temperature Fuel Cells. Angewandte Chemie - International Edition, 2012, 51, 7213-7216.	7.2	211
206	Fast Synthesis of $\hat{l}\pm\text{-MoO}$ (sub> 3 Nanorods with Controlled Aspect Ratios and Their Enhanced Lithium Storage Capabilities. Journal of Physical Chemistry C, 2010, 114, 8675-8678.	1.5	208
207	Construction of Hierarchical Co–Fe Oxyphosphide Microtubes for Electrocatalytic Overall Water Splitting. Advanced Science, 2019, 6, 1900576.	5.6	208
208	Nitrogenâ€Doped Cobalt Pyrite Yolk–Shell Hollow Spheres for Longâ€Life Rechargeable Zn–Air Batteries. Advanced Science, 2020, 7, 2001178.	5.6	206
209	Graphene Layersâ€Wrapped Fe/Fe ₅ C ₂ Nanoparticles Supported on Nâ€doped Graphene Nanosheets for Highly Efficient Oxygen Reduction. Advanced Energy Materials, 2018, 8, 1702476.	10.2	205
210	One-pot formation of SnO2 hollow nanospheres and $\hat{l}\pm$ -Fe2O3@SnO2 nanorattles with large void space and their lithium storage properties. Nanoscale, 2009, 1, 280.	2.8	204
211	Sandwichâ€Like, Stacked Ultrathin Titanate Nanosheets for Ultrafast Lithium Storage. Advanced Materials, 2011, 23, 998-1002.	11.1	204
212	Complex α-MoO3Nanostructures with External Bonding Capacity for Self-Assembly. Journal of the American Chemical Society, 2003, 125, 2697-2704.	6.6	203
213	Facile Synthesis of Multi-shelled ZnS-CdS Cages with Enhanced Photoelectrochemical Performance for Solar Energy Conversion. CheM, 2018, 4, 162-173.	5.8	202
214	Formation of Hierarchical FeCoS ₂ â€"CoS ₂ Doubleâ€Shelled Nanotubes with Enhanced Performance for Photocatalytic Reduction of CO ₂ . Angewandte Chemie - International Edition, 2020, 59, 11918-11922.	7.2	202
215	Synthesis of SnO ₂ Hierarchical Structures Assembled from Nanosheets and Their Lithium Storage Properties. Journal of Physical Chemistry C, 2011, 115, 24605-24610.	1.5	200
216	Isolated Cobalt Centers on W ₁₈ O ₄₉ Nanowires Perform as a Reaction Switch for Efficient CO ₂ Photoreduction. Journal of the American Chemical Society, 2021, 143, 2173-2177.	6.6	199

#	Article	IF	Citations
217	A Flexible Quasiâ€Solidâ€State Asymmetric Electrochemical Capacitor Based on Hierarchical Porous V ₂ O ₅ Nanosheets on Carbon Nanofibers. Advanced Energy Materials, 2015, 5, 1500753.	10.2	198
218	A Practical Highâ€Energy Cathode for Sodiumâ€Ion Batteries Based on Uniform P2â€Na _{0.7} CoO ₂ Microspheres. Angewandte Chemie - International Edition, 2017, 56, 5801-5805.	7.2	197
219	Ellipsoidal hollow nanostructures assembled from anatase TiO2 nanosheets as a magnetically separable photocatalyst. Chemical Communications, 2011, 47, 2631.	2.2	195
220	General Formation of Complex Tubular Nanostructures of Metal Oxides for the Oxygen Reduction Reaction and Lithium″on Batteries. Angewandte Chemie - International Edition, 2013, 52, 8643-8647.	7.2	194
221	Formation of Singleâ∈Holed Cobalt/Nâ€Doped Carbon Hollow Particles with Enhanced Electrocatalytic Activity toward Oxygen Reduction Reaction in Alkaline Media. Advanced Science, 2017, 4, 1700247.	5.6	194
222	Highly Concave Platinum Nanoframes with Highâ€Index Facets and Enhanced Electrocatalytic Properties. Angewandte Chemie - International Edition, 2013, 52, 12337-12340.	7.2	193
223	Phosphorized CoNi ₂ S ₄ Yolkâ€Shell Spheres for Highly Efficient Hydrogen Production via Water and Urea Electrolysis. Angewandte Chemie - International Edition, 2021, 60, 22885-22891.	7.2	191
224	A Ternary Fe _{1â^'} <i></i> S@Porous Carbon Nanowires/Reduced Graphene Oxide Hybrid Film Electrode with Superior Volumetric and Gravimetric Capacities for Flexible Sodium Ion Batteries. Advanced Energy Materials, 2019, 9, 1803052.	10.2	189
225	Hierarchical Nanotubes Constructed by Carbonâ€Coated Ultrathin SnS Nanosheets for Fast Capacitive Sodium Storage. Angewandte Chemie - International Edition, 2017, 56, 12202-12205.	7.2	188
226	One-pot synthesis of uniform carbon-coated MoO2 nanospheres for high-rate reversible lithium storage. Chemical Communications, 2010, 46, 6906.	2.2	185
227	Formation of Tripleâ€Shelled Molybdenum–Polydopamine Hollow Spheres and Their Conversion into MoO ₂ /Carbon Composite Hollow Spheres for Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2016, 55, 14668-14672.	7.2	185
228	Biointerface by Cell Growth on Layered Graphene–Artificial Peroxidase–Protein Nanostructure for In Situ Quantitative Molecular Detection. Advanced Materials, 2010, 22, 5164-5167.	11.1	184
229	Realization of Walnutâ€Shaped Particles with Macroâ€/Mesoporous Open Channels through Pore Architecture Manipulation and Their Use in Electrocatalytic Oxygen Reduction. Angewandte Chemie - International Edition, 2018, 57, 6176-6180.	7.2	184
230	Dispersed Nickel Cobalt Oxyphosphide Nanoparticles Confined in Multichannel Hollow Carbon Fibers for Photocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2019, 58, 17236-17240.	7.2	184
231	Synthesis of CuS@CoS ₂ Doubleâ€Shelled Nanoboxes with Enhanced Sodium Storage Properties. Angewandte Chemie - International Edition, 2019, 58, 7739-7743.	7.2	184
232	Synthesis of MoS ₂ –C One-Dimensional Nanostructures with Improved Lithium Storage Properties. ACS Applied Materials & Samp; Interfaces, 2012, 4, 3765-3768.	4.0	183
233	Hierarchical tubular structures constructed from ultrathin TiO ₂ (B) nanosheets for highly reversible lithium storage. Energy and Environmental Science, 2015, 8, 1480-1483.	15.6	183
234	Exposing unsaturated Cu \cdot sub \cdot 1 \cdot /sub \cdot -O \cdot sub \cdot 2 \cdot /sub \cdot sites in nanoscale Cu-MOF for efficient electrocatalytic hydrogen evolution. Science Advances, 2021, 7, .	4.7	183

#	Article	IF	Citations
235	TiO ₂ hollow spheres with large amount of exposed (001) facets for fast reversible lithium storage. Journal of Materials Chemistry, 2011, 21, 1677-1680.	6.7	182
236	Synthesis of Cobalt Sulfide Multiâ€shelled Nanoboxes with Precisely Controlled Two to Five Shells for Sodiumâ€ion Batteries. Angewandte Chemie - International Edition, 2019, 58, 2675-2679.	7.2	182
237	Synthesis of Copperâ€Substituted CoS ₂ @Cu _{<i>x</i>} S Doubleâ€Shelled Nanoboxes by Sequential Ion Exchange for Efficient Sodium Storage. Angewandte Chemie - International Edition, 2020, 59, 2644-2648.	7.2	182
238	TiO2 and SnO2@TiO2 hollow spheres assembled from anatase TiO2 nanosheets with enhanced lithium storage properties. Chemical Communications, 2010, 46, 8252.	2.2	181
239	A Nanosheetsâ€onâ€Channel Architecture Constructed from MoS ₂ and CMKâ€3 for Highâ€Capacity and Longâ€Cycleâ€Life Lithium Storage. Advanced Energy Materials, 2014, 4, 1400902.	10.2	180
240	Ordered Macroporous BiVO ₄ Architectures with Controllable Dual Porosity for Efficient Solar Water Splitting. Angewandte Chemie - International Edition, 2013, 52, 8579-8583.	7.2	179
241	Shape-Controlled Synthesis of Cobalt-based Nanocubes, Nanodiscs, and Nanoflowers and Their Comparative Lithium-Storage Properties. ACS Applied Materials & Interfaces, 2010, 2, 3628-3635.	4.0	177
242	Carbonâ€Incorporated Nickel–Cobalt Mixed Metal Phosphide Nanoboxes with Enhanced Electrocatalytic Activity for Oxygen Evolution. Angewandte Chemie, 2017, 129, 3955-3958.	1.6	177
243	Co ₃ O ₄ Hollow Nanoparticles Embedded in Mesoporous Walls of Carbon Nanoboxes for Efficient Lithium Storage. Angewandte Chemie - International Edition, 2020, 59, 19914-19918.	7.2	177
244	CuO nanostructures supported on Cu substrate as integrated electrodes for highly reversible lithium storage. Nanoscale, 2011, 3, 1618.	2.8	174
245	Formation of Polypyrroleâ€Coated Sb ₂ Se ₃ Microclips with Enhanced Sodiumâ€Storage Properties. Angewandte Chemie - International Edition, 2018, 57, 9859-9863.	7.2	173
246	Bulletâ€like Cu ₉ S ₅ Hollow Particles Coated with Nitrogenâ€Doped Carbon for Sodiumâ€lon Batteries. Angewandte Chemie - International Edition, 2019, 58, 7744-7748.	7.2	173
247	Co–Fe Alloy/Nâ€Doped Carbon Hollow Spheres Derived from Dual Metal–Organic Frameworks for Enhanced Electrocatalytic Oxygen Reduction. Small, 2019, 15, e1805324.	5.2	172
248	Carbon-supported ultra-thin anatase TiO2 nanosheets for fast reversible lithium storage. Journal of Materials Chemistry, 2011, 21, 5687.	6.7	171
249	SnO2 nanosheet hollow spheres with improved lithium storage capabilities. Nanoscale, 2011, 3, 3586.	2.8	169
250	Rutile TiO ₂ Submicroboxes with Superior Lithium Storage Properties. Angewandte Chemie - International Edition, 2015, 54, 4001-4004.	7.2	169
251	Interconnected MoO ₂ Nanocrystals with Carbon Nanocoating as High-Capacity Anode Materials for Lithium-ion Batteries. ACS Applied Materials & Samp; Interfaces, 2011, 3, 4853-4857.	4.0	167
252	Synthesis of one-dimensional hierarchical NiO hollow nanostructures with enhanced supercapacitive performance. Nanoscale, 2013, 5, 877-881.	2.8	166

#	Article	IF	Citations
253	Hierarchical MoS ₂ Shells Supported on Carbon Spheres for Highly Reversible Lithium Storage. Chemistry - A European Journal, 2014, 20, 5219-5223.	1.7	164
254	TiO ₂ Hollow Spheres Composed of Highly Crystalline Nanocrystals Exhibit Superior Lithium Storage Properties. Angewandte Chemie - International Edition, 2014, 53, 12590-12593.	7.2	164
255	One-Pot Synthesis of Uniform Fe ₃ O ₄ Nanospheres with Carbon Matrix Support for Improved Lithium Storage Capabilities. ACS Applied Materials & Interfaces, 2011, 3, 3276-3279.	4.0	162
256	SnO2 and TiO2 nanosheets for lithium-ion batteries. Materials Today, 2012, 15, 246-254.	8.3	162
257	Direct probing of atomically dispersed Ru species over multi-edged TiO ₂ for highly efficient photocatalytic hydrogen evolution. Science Advances, 2020, 6, .	4.7	161
258	Emerging Multifunctional Single-Atom Catalysts/Nanozymes. ACS Central Science, 2020, 6, 1288-1301.	5. 3	159
259	Oriented assembly of anisotropic nanoparticles into frame-like superstructures. Science Advances, 2017, 3, e1700732.	4.7	158
260	Synthesis of Hierarchical Three-Dimensional Vanadium Oxide Microstructures as High-Capacity Cathode Materials for Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2012, 4, 3874-3879.	4.0	157
261	Hierarchical Hollow Heterostructures for Photocatalytic CO ₂ Reduction and Water Splitting. Small Methods, 2020, 4, 1900586.	4.6	157
262	An ultrastable lithium metal anode enabled by designed metal fluoride spansules. Science Advances, 2020, 6, eaaz3112.	4.7	157
263	Biomass-based materials for green lithium secondary batteries. Energy and Environmental Science, 2021, 14, 1326-1379.	15.6	157
264	Templateâ€Assisted Formation of Rattleâ€type V ₂ O ₅ Hollow Microspheres with Enhanced Lithium Storage Properties. Advanced Functional Materials, 2013, 23, 5669-5674.	7.8	154
265	Porosityâ€Controlled TiNb ₂ O ₇ Microspheres with Partial Nitridation as A Practical Negative Electrode for Highâ€Power Lithiumâ€Ion Batteries. Advanced Energy Materials, 2015, 5, 1401945.	10.2	153
266	Growth of Ultrathin ZnCo ₂ O ₄ Nanosheets on Reduced Graphene Oxide with Enhanced Lithium Storage Properties. Advanced Science, 2015, 2, 1400014.	5.6	153
267	Electrolytic Formation of Crystalline Silicon/Germanium Alloy Nanotubes and Hollow Particles with Enhanced Lithiumâ€Storage Properties. Angewandte Chemie - International Edition, 2016, 55, 7427-7431.	7.2	153
268	Embedding CoS2 nanoparticles in N-doped carbon nanotube hollow frameworks for enhanced lithium storage properties. Nano Research, 2017, 10, 4298-4304.	5.8	153
269	Hierarchical Microboxes Constructed by SnS Nanoplates Coated with Nitrogenâ€Doped Carbon for Efficient Sodium Storage. Angewandte Chemie - International Edition, 2019, 58, 760-763.	7.2	152
270	Facile synthesis of carbon-coated MoS2 nanorods with enhanced lithium storage properties. Electrochemistry Communications, 2012, 20, 7-10.	2.3	151

#	Article	IF	CITATIONS
271	Confining Sn nanoparticles in interconnected N-doped hollow carbon spheres as hierarchical zincophilic fibers for dendrite-free Zn metal anodes. Science Advances, 2022, 8, eabm5766.	4.7	150
272	Engineering Platinum–Cobalt Nanoâ€ølloys in Porous Nitrogenâ€Doped Carbon Nanotubes for Highly Efficient Electrocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2021, 60, 19068-19073.	7.2	149
273	Nitrogenâ€Doped Carbon Fibers Embedded with Zincophilic Cu Nanoboxes for Stable Znâ€Metal Anodes. Advanced Materials, 2022, 34, e2200342.	11.1	149
274	Magnetic-field induced formation of 1D Fe3O4/C/CdS coaxial nanochains as highly efficient and reusable photocatalysts for water treatment. Journal of Materials Chemistry, 2011, 21, 18359.	6.7	145
275	Silver Nanoparticles Deposited Layered Double Hydroxide Nanoporous Coatings with Excellent Antimicrobial Activities. Advanced Functional Materials, 2012, 22, 780-787.	7.8	145
276	Nanowire-templated formation of SnO ₂ /carbon nanotubes with enhanced lithium storage properties. Nanoscale, 2016, 8, 8384-8389.	2.8	145
277	Construction of Single-Crystalline Prussian Blue Analog Hollow Nanostructures with Tailorable Topologies. CheM, 2018, 4, 1967-1982.	5 . 8	145
278	Necklaceâ€Like Structures Composed of Fe ₃ N@C Yolk–Shell Particles as an Advanced Anode for Sodiumâ€lon Batteries. Advanced Materials, 2018, 30, e1800525.	11.1	145
279	Strongly coupled carbon nanofiber–metal oxide coaxial nanocables with enhanced lithium storage properties. Energy and Environmental Science, 2014, 7, 302-305.	15.6	144
280	Implanting Isolated Ru Atoms into Edgeâ€Rich Carbon Matrix for Efficient Electrocatalytic Hydrogen Evolution. Advanced Energy Materials, 2020, 10, 2000882.	10.2	144
281	Atomically Dispersed Reactive Centers for Electrocatalytic CO ₂ Reduction and Water Splitting. Angewandte Chemie - International Edition, 2021, 60, 13177-13196.	7.2	143
282	Manipulating the Local Coordination and Electronic Structures for Efficient Electrocatalytic Oxygen Evolution. Advanced Materials, 2021, 33, e2103004.	11.1	142
283	Mesoporous Single-crystal CoSn(OH)6 Hollow Structures with Multilevel Interiors. Scientific Reports, 2013, 3, 1391.	1.6	131
284	Formation of NiCo ₂ V ₂ O ₈ Yolk–Double Shell Spheres with Enhanced Lithium Storage Properties. Angewandte Chemie - International Edition, 2018, 57, 2899-2903.	7.2	131
285	TiO ₂ nanotube arrays grafted with Fe ₂ O ₃ hollow nanorods as integrated electrodes for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 122-127.	5.2	130
286	Construction of Heterostructured Fe ₂ O ₃ â€TiO ₂ Microdumbbells for Photoelectrochemical Water Oxidation. Angewandte Chemie - International Edition, 2018, 57, 15076-15080.	7.2	130
287	Porous Fe2O3 nanocubes derived from MOFs for highly reversible lithium storage. CrystEngComm, 2013, 15, 9332.	1.3	124
288	Hierarchical Tubular Structures Composed of Mnâ€Based Mixed Metal Oxide Nanoflakes with Enhanced Electrochemical Properties. Advanced Functional Materials, 2015, 25, 5184-5189.	7.8	124

#	Article	IF	CITATIONS
289	Unusual Na ⁺ Ion Intercalation/Deintercalation in Metal-Rich Cu _{1.8} S for Na-Ion Batteries. ACS Nano, 2018, 12, 2827-2837.	7.3	123
290	Rational Design and Engineering of Oneâ€Dimensional Hollow Nanostructures for Efficient Electrochemical Energy Storage. Angewandte Chemie - International Edition, 2021, 60, 20102-20118.	7.2	123
291	Oneâ€Pot Magnetic Field Induced Formation of Fe ₃ O ₄ /C Composite Microrods with Enhanced Lithium Storage Capability. Small, 2014, 10, 2815-2819.	5.2	120
292	One-dimensional metal oxide–carbon hybrid nanostructures for electrochemical energy storage. Nanoscale Horizons, 2016, 1, 27-40.	4.1	119
293	Hierarchical αâ€MnO ₂ Nanowires@Ni _{1â€x} Mn _x O _y Nanoflakes Core–Shell Nanostructures for Supercapacitors. Small, 2014, 10, 3181-3186.	5.2	118
294	Nitrogenâ€Doped Amorphous Zn–Carbon Multichannel Fibers for Stable Lithium Metal Anodes. Angewandte Chemie - International Edition, 2021, 60, 8515-8520.	7.2	115
295	Metal–Organic Frameworks Based Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie, 2020, 132, 4662-4678.	1.6	114
296	Recent Advances on Transition Metal Dichalcogenides for Electrochemical Energy Conversion. Advanced Materials, 2021, 33, e2008376.	11.1	114
297	DNA Bending Stiffness on Small Length Scales. Physical Review Letters, 2008, 100, 018102.	2.9	113
298	A Freestanding Selenium Disulfide Cathode Based on Cobalt Disulfideâ€Decorated Multichannel Carbon Fibers with Enhanced Lithium Storage Performance. Angewandte Chemie - International Edition, 2017, 56, 14107-14112.	7.2	113
299	Sandwich-structured TiO2–Pt–graphene ternary hybrid electrocatalysts with high efficiency and stability. Journal of Materials Chemistry, 2012, 22, 16499.	6.7	112
300	An Improved Li–SeS ₂ Battery with High Energy Density and Long Cycle Life. Advanced Energy Materials, 2017, 7, 1700281.	10.2	111
301	Mesoporous Carbon@Titanium Nitride Hollow Spheres as an Efficient SeS ₂ Host for Advanced Li–SeS ₂ Batteries. Angewandte Chemie - International Edition, 2017, 56, 16003-16007.	7.2	111
302	An Inorganic Route for Controlled Synthesis of W18O49Nanorods and Nanofibers in Solution. Inorganic Chemistry, 2003, 42, 6169-6171.	1.9	110
303	The superior lithium storage capabilities of ultra-fine rutile TiO2 nanoparticles. Journal of Power Sources, 2010, 195, 2905-2908.	4.0	110
304	Design and Synthesis of Hollow Nanostructures for Electrochemical Water Splitting. Advanced Science, 2022, 9, e2105135.	5.6	110
305	Hierarchical Tubular Structures Constructed by Carbonâ€coated αâ€Fe ₂ O ₃ Nanorods for Highly Reversible Lithium Storage. Small, 2014, 10, 1741-1745.	5.2	105
306	Synergetic Cobaltâ€Copperâ€Based Bimetal–Organic Framework Nanoboxes toward Efficient Electrochemical Oxygen Evolution. Angewandte Chemie - International Edition, 2021, 60, 26397-26402.	7.2	105

#	Article	IF	Citations
307	Unusual Formation of Singleâ€Crystal Manganese Sulfide Microboxes Coâ€mediated by the Cubic Crystal Structure and Shape. Angewandte Chemie - International Edition, 2012, 51, 7267-7270.	7.2	103
308	Fabrication of CdS Frameâ€inâ€Cage Particles for Efficient Photocatalytic Hydrogen Generation under Visibleâ€Light Irradiation. Advanced Materials, 2020, 32, e2004561.	11.1	102
309	Loading Singleâ€Ni Atoms on Assembled Hollow Nâ€Rich Carbon Plates for Efficient CO ₂ Electroreduction. Advanced Materials, 2022, 34, e2105204.	11.1	100
310	Chemically Assisted Formation of Monolayer Colloidosomes on Functional Particles. Advanced Materials, 2016, 28, 9596-9601.	11.1	99
311	Lotusâ€Rootâ€Like Carbon Fibers Embedded with Ni–Co Nanoparticles for Dendriteâ€Free Lithium Metal Anodes. Advanced Materials, 2021, 33, e2100608.	11.1	99
312	Preparation of Carbon-Coated NiCo ₂ Hetero-nanostructures and Their Reversible Lithium Storage Properties. Small, 2015, 11, 432-436.	5.2	97
313	Templateâ€Free Synthesis of Hierarchical Vanadiumâ€Glycolate Hollow Microspheres and Their Conversion to V ₂ O ₅ with Improved Lithium Storage Capability. Chemistry - A European Journal, 2013, 19, 494-500.	1.7	96
314	Metal–Organic Framework-Assisted Synthesis of Compact Fe2O3 Nanotubes in Co3O4 Host with Enhanced Lithium Storage Properties. Nano-Micro Letters, 2018, 10, 44.	14.4	93
315	Platinum-Functionalized Octahedral Silica Nanocages: Synthesis and Characterization. Angewandte Chemie - International Edition, 2006, 45, 3825-3829.	7.2	91
316	Building Hematite Nanostructures by Oriented Attachment. Angewandte Chemie - International Edition, 2011, 50, 650-653.	7.2	91
317	Porous Spheres Assembled from Polythiophene (PTh)-Coated Ultrathin MnO ₂ Nanosheets with Enhanced Lithium Storage Capabilities. Journal of Physical Chemistry C, 2010, 114, 12048-12051.	1.5	90
318	Operando Monitoring and Deciphering the Structural Evolution in Oxygen Evolution Electrocatalysis. Advanced Energy Materials, 2022, 12, .	10.2	90
319	An Unusual Example of Hyperbranched Metal Nanocrystals and Their Shape Evolution. Chemistry of Materials, 2006, 18, 3921-3923.	3.2	88
320	Hollow Nanostructures of Molybdenum Sulfides for Electrochemical Energy Storage and Conversion. Small Methods, 2017, 1, 1600020.	4.6	87
321	In situ activation of Br-confined Ni-based metal-organic framework hollow prisms toward efficient electrochemical oxygen evolution. Science Advances, 2021, 7, eabk0919.	4.7	87
322	Platinum Multicubes Prepared by Ni ²⁺ â€Mediated Shape Evolution Exhibit High Electrocatalytic Activity for Oxygen Reduction. Angewandte Chemie - International Edition, 2015, 54, 5666-5671.	7.2	84
323	Rationally Designed Mn ₂ O ₃ –ZnMn ₂ O ₄ Hollow Heterostructures from Metal–Organic Frameworks for Stable Znâ€lon Storage. Angewandte Chemie - International Edition, 2021, 60, 25793-25798.	7.2	82
324	Construction of CoO/Co u‧ Hierarchical Tubular Heterostructures for Hybrid Supercapacitors. Angewandte Chemie, 2019, 131, 15587-15593.	1.6	80

#	Article	IF	Citations
325	Doubleâ€Shelled C@MoS ₂ Structures Preloaded with Sulfur: An Additive Reservoir for Stable Lithium Metal Anodes. Angewandte Chemie - International Edition, 2020, 59, 15839-15843.	7.2	7 9
326	Direct Conversion of Rice Husks to Nanostructured SiC/C for CO ₂ Photoreduction. Advanced Materials, 2020, 32, e2001560.	11.1	78
327	Formation of Superâ€Assembled TiO _{<i>x</i>} /Zn/Nâ€Doped Carbon Inverse Opal Towards Dendriteâ€Free Zn Anodes. Angewandte Chemie - International Edition, 2022, 61, e202115649.	7.2	76
328	High-performance biofuel cell made with hydrophilic ordered mesoporous carbon as electrode material. Journal of Power Sources, 2010, 195, 4090-4097.	4.0	74
329	Synthesis of Uniform Layered Protonated Titanate Hierarchical Spheres and Their Transformation to Anatase TiO ₂ for Lithiumâ€lon Batteries. Chemistry - A European Journal, 2012, 18, 2094-2099.	1.7	74
330	A General Method to Grow Porous αâ€Fe ₂ O ₃ Nanosheets on Substrates as Integrated Electrodes for Lithiumâ€lon Batteries. Advanced Materials Interfaces, 2014, 1, 1400050.	1.9	74
331	Construction of Ni(CN) ₂ /NiSe ₂ Heterostructures by Stepwise Topochemical Pathways for Efficient Electrocatalytic Oxygen Evolution. Advanced Materials, 2022, 34, e2104405.	11.1	7 3
332	Formation of large 2D nanosheets via PVP-assisted assembly of anatase TiO2 nanomosaics. Chemical Communications, 2011, 47, 10443.	2.2	72
333	Hierarchical Hollow Nanoprisms Based on Ultrathin Niâ€Fe Layered Double Hydroxide Nanosheets with Enhanced Electrocatalytic Activity towards Oxygen Evolution. Angewandte Chemie, 2018, 130, 178-182.	1.6	72
334	Formation of Doubleâ€Shelled Zinc–Cobalt Sulfide Dodecahedral Cages from Bimetallic Zeolitic Imidazolate Frameworks for Hybrid Supercapacitors. Angewandte Chemie, 2017, 129, 7247-7251.	1.6	70
335	Synthesis of Nitrogenâ€Doped KMn ₈ O ₁₆ with Oxygen Vacancy for Stable Zincâ€lon Batteries. Advanced Science, 2022, 9, e2106067.	5.6	70
336	Formation of Pt–TiO ₂ –rGO 3-phase junctions with significantly enhanced electro-activity for methanol oxidation. Physical Chemistry Chemical Physics, 2012, 14, 473-476.	1.3	67
337	DNA-directed growth of FePO4 nanostructures on carbon nanotubes to achieve nearly 100% theoretical capacity for lithium-ion batteries. Energy and Environmental Science, 2012, 5, 6919.	15.6	67
338	One-Step Synthesis of SnO2and TiO2Hollow Nanostructures with Various Shapes and Their Enhanced Lithium Storage Properties. Chemistry - A European Journal, 2012, 18, 7561-7567.	1.7	67
339	Titelbild: Hierarchical Hollow Nanoprisms Based on Ultrathin Niâ€Fe Layered Double Hydroxide Nanosheets with Enhanced Electrocatalytic Activity towards Oxygen Evolution (Angew. Chem. 1/2018). Angewandte Chemie, 2018, 130, 1-1.	1.6	67
340	Growth of SnO ₂ nanosheet arrays on various conductive substrates as integrated electrodes for lithium-ion batteries. Materials Horizons, 2014, 1, 133-138.	6.4	66
341	Synthesis of micro-sized SnO2@carbon hollow spheres with enhanced lithium storage properties. Nanoscale, 2012, 4, 3651.	2.8	64
342	Synthesis of Nâ€Doped Highly Graphitic Carbon Urchinâ€Like Hollow Structures Loaded with Singleâ€Ni Atoms towards Efficient CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	64

#	Article	IF	CITATIONS
343	Synthesis of CuS@CoS ₂ Doubleâ€Shelled Nanoboxes with Enhanced Sodium Storage Properties. Angewandte Chemie, 2019, 131, 7821-7825.	1.6	63
344	Doubleâ€Shelled Nanocages with Cobalt Hydroxide Inner Shell and Layered Double Hydroxides Outer Shell as Highâ€Efficiency Polysulfide Mediator for Lithium–Sulfur Batteries. Angewandte Chemie, 2016, 128, 4050-4054.	1.6	62
345	Ordered colloidal clusters constructed by nanocrystals with valence for efficient CO ₂ photoreduction. Science Advances, 2019, 5, eaax5095.	4.7	62
346	Asymmetric anatase TiO2 nanocrystals with exposed high-index facets and their excellent lithium storage properties. Nanoscale, $2011, 3, 4082$.	2.8	61
347	SBA-15 derived carbon-supported SnO2 nanowire arrays with improved lithium storage capabilities. Journal of Materials Chemistry, 2011, 21, 13860.	6.7	61
348	CNTs@SnO ₂ @Carbon Coaxial Nanocables with High Mass Fraction of SnO ₂ for Improved Lithium Storage. Chemistry - an Asian Journal, 2011, 6, 2278-2281.	1.7	58
349	Fabrication of Heterostructured Fe ₂ TiO ₅ –TiO ₂ Nanocages with Enhanced Photoelectrochemical Performance for Solar Energy Conversion. Angewandte Chemie - International Edition, 2020, 59, 8128-8132.	7.2	58
350	Rewritable multicolor fluorescent patterns for multistate memory devices with high data storage capacity. Chemical Communications, 2011, 47, 9609.	2.2	55
351	Carbon-coated Fe ₃ O ₄ microspheres with a porous multideck-cage structure for highly reversible lithium storage. Chemical Communications, 2015, 51, 6921-6924.	2.2	54
352	Self-organized sheaf-like Fe ₃ O ₄ /C hierarchical microrods with superior lithium storage properties. Nanoscale, 2015, 7, 4411-4414.	2.8	53
353	Unusual rutile TiO2 nanosheets with exposed (001) facets. Chemical Science, 2011, 2, 2219.	3.7	52
354	Synthesis of octahedral Mn3O4 crystals and their derived Mn3O4–MnO2 heterostructures via oriented growth. CrystEngComm, 2011, 13, 5685.	1.3	52
355	Metallic Porous Iron Nitride and Tantalum Nitride Single Crystals with Enhanced Electrocatalysis Performance. Advanced Materials, 2019, 31, e1806552.	11.1	51
356	Synthesis of phase-pure SnO2 nanosheets with different organized structures and their lithium storage properties. CrystEngComm, 2012, 14, 5133.	1.3	50
357	Formation of CoS ₂ Nanobubble Hollow Prisms for Highly Reversible Lithium Storage. Angewandte Chemie, 2016, 128, 13620-13624.	1.6	49
358	Hierarchical Nanotubes Constructed by Carbonâ€Coated Ultrathin SnS Nanosheets for Fast Capacitive Sodium Storage. Angewandte Chemie, 2017, 129, 12370-12373.	1.6	47
359	Oneâ€Pot Synthesis of Ultraâ€Light Nickel Nanofoams Composed of Nanowires and Their Transformation into Various Functional Nanofoams. Small, 2012, 8, 3432-3437.	5.2	46
360	α-Fe ₂ O ₃ -mediated growth and carbon nanocoating of ultrafine SnO ₂ nanorods as anode materials for Li-ion batteries. Journal of Materials Chemistry, 2012, 22, 2526-2531.	6.7	46

#	Article	IF	CITATIONS
361	The comparative lithium storage properties of urchin-like hematite spheres: hollow vs. solid. Journal of Materials Chemistry, 2012, 22, 9466.	6.7	46
362	Formation of MSâ \in Ag and MS (M = Pb, Cd, Zn) nanotubes via microwave-assisted cation exchange and their enhanced photocatalytic activities. Nanoscale, 2013, 5, 10864.	2.8	46
363	Bi ₂ O ₃ Nanosheets Grown on Multiâ€Channel Carbon Matrix to Catalyze Efficient CO ₂ Electroreduction to HCOOH. Angewandte Chemie, 2019, 131, 13966-13971.	1.6	45
364	Titania Nanosheets Hierarchically Assembled on Carbon Nanotubes as Highâ€Rate Anodes for Lithiumâ€lon Batteries. Chemistry - A European Journal, 2012, 18, 3132-3135.	1.7	43
365	Bulletâ€like Cu ₉ S ₅ Hollow Particles Coated with Nitrogenâ€Doped Carbon for Sodiumâ€lon Batteries. Angewandte Chemie, 2019, 131, 7826-7830.	1.6	43
366	Silica-based complex nanorattles as multifunctional carrier for anticancer drug. Journal of Materials Chemistry, 2011, 21, 8052.	6.7	42
367	Rationally Designed Threeâ€Layered Cu ₂ S@Carbon@MoS ₂ Hierarchical Nanoboxes for Efficient Sodium Storage. Angewandte Chemie, 2020, 132, 7245-7250.	1.6	42
368	Fabrication of Heterostructured Fe ₂ TiO ₅ â€"TiO ₂ Nanocages with Enhanced Photoelectrochemical Performance for Solar Energy Conversion. Angewandte Chemie, 2020, 132, 8205-8209.	1.6	42
369	Hierarchical Microboxes Constructed by SnS Nanoplates Coated with Nitrogenâ€Doped Carbon for Efficient Sodium Storage. Angewandte Chemie, 2019, 131, 770-773.	1.6	40
370	Hydrothermal synthesis and electrochemical properties of α-MoO3 nanobelts used as cathode materials for Li-ion batteries. Applied Physics A: Materials Science and Processing, 2012, 107, 249-254.	1.1	38
371	Efficient Electrochemical Reduction of CO ₂ to HCOOH over Subâ€2â€nm SnO ₂ Quantum Wires with Exposed Grain Boundaries. Angewandte Chemie, 2019, 131, 8587-8591.	1.6	38
372	Unusual Formation of CoSe@carbon Nanoboxes, which have an Inhomogeneous Shell, for Efficient Lithium Storage. Angewandte Chemie, 2016, 128, 9666-9670.	1.6	37
373	General Synthesis of Multishell Mixedâ€Metal Oxyphosphide Particles with Enhanced Electrocatalytic Activity in the Oxygen Evolution Reaction. Angewandte Chemie, 2017, 129, 2426-2429.	1.6	37
374	Spontaneous sharp bending of DNA: role of melting bubbles. Nucleic Acids Research, 2006, 34, 4554-4560.	6.5	36
375	On the Origin and Underappreciated Effects of Ion Doping in Silica. Small, 2015, 11, 4351-4365.	5.2	35
376	Formation of Tripleâ€Shelled Molybdenum–Polydopamine Hollow Spheres and Their Conversion into MoO ₂ /Carbon Composite Hollow Spheres for Lithiumâ€Ion Batteries. Angewandte Chemie, 2016, 128, 14888-14892.	1.6	35
377	Nickel–Iron Layered Double Hydroxide Hollow Polyhedrons as a Superior Sulfur Host for Lithium–Sulfur Batteries. Angewandte Chemie, 2018, 130, 11110-11114.	1.6	35
378	Complex Cobalt Sulfide Nanobubble Cages with Enhanced Electrochemical Properties. Small Methods, 2017, 1, 1700158.	4.6	33

#	Article	IF	CITATIONS
379	Trimetallic Spinel NiCo _{2â^'<i>x</i>} Fe _{<i>x</i>} O ₄ Nanoboxes for Highly Efficient Electrocatalytic Oxygen Evolution. Angewandte Chemie, 2021, 133, 11947-11952.	1.6	33
380	Synthesis of Highly Uniform Molybdenum–Glycerate Spheres and Their Conversion into Hierarchical MoS ₂ Hollow Nanospheres for Lithiumâ€lon Batteries. Angewandte Chemie, 2016, 128, 7549-7552.	1.6	32
381	Formation of Polypyrroleâ€Coated Sb ₂ Se ₃ Microclips with Enhanced Sodiumâ€Storage Properties. Angewandte Chemie, 2018, 130, 10007-10011.	1.6	31
382	Synthesis of Cobalt Sulfide Multiâ€shelled Nanoboxes with Precisely Controlled Two to Five Shells for Sodiumâ€ion Batteries. Angewandte Chemie, 2019, 131, 2701-2705.	1.6	29
383	Synthesis of Copperâ€Substituted CoS ₂ @Cu _{<i>x</i>} S Doubleâ€Shelled Nanoboxes by Sequential Ion Exchange for Efficient Sodium Storage. Angewandte Chemie, 2020, 132, 2666-2670.	1.6	29
384	Co ₃ O ₄ Hollow Nanoparticles Embedded in Mesoporous Walls of Carbon Nanoboxes for Efficient Lithium Storage. Angewandte Chemie, 2020, 132, 20086-20090.	1.6	29
385	Rationally designed nitrogen-doped carbon macroporous fibers with loading of single cobalt sites for efficient aqueous Zn-CO2 batteries. Chem Catalysis, 2022, 2, 1480-1493.	2.9	26
386	A Practical Highâ€Energy Cathode for Sodiumâ€Ion Batteries Based on Uniform P2â€Na _{0.7} CoO ₂ Microspheres. Angewandte Chemie, 2017, 129, 5895-5899.	1.6	25
387	T4 DNA ligase is more than an effective trap of cyclized dsDNA. Nucleic Acids Research, 2007, 35, 5294-5302.	6.5	24
388	Formation of Hierarchical FeCoS 2 –CoS 2 Doubleâ€Shelled Nanotubes with Enhanced Performance for Photocatalytic Reduction of CO 2. Angewandte Chemie, 2020, 132, 12016-12020.	1.6	24
389	NiMnâ∈Based Bimetalâ∈"Organic Framework Nanosheets Supported on Multiâ∈Channel Carbon Fibers for Efficient Oxygen Electrocatalysis. Angewandte Chemie, 2020, 132, 18391-18396.	1.6	24
390	Construction of Heterostructured Fe ₂ O ₃ ‶iO ₂ Microdumbbells for Photoelectrochemical Water Oxidation. Angewandte Chemie, 2018, 130, 15296-15300.	1.6	23
391	A Freestanding Selenium Disulfide Cathode Based on Cobalt Disulfideâ€Decorated Multichannel Carbon Fibers with Enhanced Lithium Storage Performance. Angewandte Chemie, 2017, 129, 14295-14300.	1.6	21
392	Realization of Walnutâ€Shaped Particles with Macroâ€∤Mesoporous Open Channels through Pore Architecture Manipulation and Their Use in Electrocatalytic Oxygen Reduction. Angewandte Chemie, 2018, 130, 6284-6288.	1.6	21
393	Atomically Dispersed Reactive Centers for Electrocatalytic CO ₂ Reduction and Water Splitting. Angewandte Chemie, 2021, 133, 13285-13304.	1.6	20
394	Electrolytic Formation of Crystalline Silicon/Germanium Alloy Nanotubes and Hollow Particles with Enhanced Lithium‧torage Properties. Angewandte Chemie, 2016, 128, 7553-7557.	1.6	19
395	Mesoporous Carbon@Titanium Nitride Hollow Spheres as an Efficient SeS ₂ Host for Advanced Li–SeS ₂ Batteries. Angewandte Chemie, 2017, 129, 16219-16223.	1.6	19
396	Formation of NiCo ₂ V ₂ O ₈ Yolk–Double Shell Spheres with Enhanced Lithium Storage Properties. Angewandte Chemie, 2018, 130, 2949-2953.	1.6	17

#	Article	IF	CITATIONS
397	Dispersed Nickel Cobalt Oxyphosphide Nanoparticles Confined in Multichannel Hollow Carbon Fibers for Photocatalytic CO 2 Reduction. Angewandte Chemie, 2019, 131, 17396-17400.	1.6	17
398	Nitrogenâ€Doped Amorphous Zn–Carbon Multichannel Fibers for Stable Lithium Metal Anodes. Angewandte Chemie, 2021, 133, 8596-8601.	1.6	17
399	Phosphorized CoNi ₂ S ₄ Yolkâ€Shell Spheres for Highly Efficient Hydrogen Production via Water and Urea Electrolysis. Angewandte Chemie, 2021, 133, 23067-23073.	1.6	14
400	Synergetic Cobaltâ€Copperâ€Based Bimetal–Organic Framework Nanoboxes toward Efficient Electrochemical Oxygen Evolution. Angewandte Chemie, 2021, 133, 26601-26606.	1.6	14
401	Rational Design and Engineering of Oneâ€Dimensional Hollow Nanostructures for Efficient Electrochemical Energy Storage. Angewandte Chemie, 2021, 133, 20262-20278.	1.6	13
402	Rationally Designed Mn ₂ O ₃ –ZnMn ₂ O ₄ Hollow Heterostructures from Metal–Organic Frameworks for Stable Znâ€ion Storage. Angewandte Chemie, 2021, 133, 25997-26002.	1.6	13
403	Construction of Co–Mn Prussian Blue Analog Hollow Spheres for Efficient Aqueous Znâ€ion Batteries. Angewandte Chemie, 2021, 133, 22363-22368.	1.6	12
404	Doubleâ€Shelled C@MoS 2 Structures Preloaded with Sulfur: An Additive Reservoir for Stable Lithium Metal Anodes. Angewandte Chemie, 2020, 132, 15973-15977.	1.6	11
405	Synthesis of Nâ€Doped Highly Graphitic Carbon Urchinâ€Like Hollow Structures Loaded with Singleâ€Ni Atoms towards Efficient CO ₂ Electroreduction. Angewandte Chemie, 2022, 134, .	1.6	11
406	Engineering Platinum–Cobalt Nanoâ€alloys in Porous Nitrogenâ€Doped Carbon Nanotubes for Highly Efficient Electrocatalytic Hydrogen Evolution. Angewandte Chemie, 2021, 133, 19216-19221.	1.6	9
407	Comprehensive Interpretation of Gel Electrophoresis Data. Analytical Chemistry, 2006, 78, 6179-6186.	3.2	5
408	Formation of Superâ€Assembled TiO _{<i>x</i>} /Zn/Nâ€Doped Carbon Inverse Opal Towards Dendriteâ€Free Zn Anodes. Angewandte Chemie, 2022, 134, .	1.6	4
409	Innenrücktitelbild: Synthesis of Highly Uniform Molybdenum–Glycerate Spheres and Their Conversion into Hierarchical MoS ₂ Hollow Nanospheres for Lithiumâ€lon Batteries (Angew. Chem.) Tj ETQq1 1	0. 7 &4314	rg&T /Over
410	Sodium Ion Batteries: Freeâ€Standing Nitrogenâ€Doped Carbon Nanofiber Films: Integrated Electrodes for Sodiumâ€Ion Batteries with Ultralong Cycle Life and Superior Rate Capability (Adv. Energy Mater. 7/2016). Advanced Energy Materials, 2016, 6, .	10.2	2
411	Frontispiz: Formation of CoS ₂ Nanobubble Hollow Prisms for Highly Reversible Lithium Storage. Angewandte Chemie, 2016, 128, .	1.6	0