
David R Galbraith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5055351/publications.pdf Version: 2024-02-01

#	ARTICLE	IF	CITATIONS
1	Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20610-20615.	7.1	751
2	Increasing human dominance of tropical forests. Science, 2015, 349, 827-832.	12.6	551
3	Drought–mortality relationships for tropical forests. New Phytologist, 2010, 187, 631-646.	7.3	487
4	Simulated resilience of tropical rainforests to CO2-induced climate change. Nature Geoscience, 2013, 6, 268-273.	12.9	358
5	Drivers and mechanisms of tree mortality in moist tropical forests. New Phytologist, 2018, 219, 851-869.	7.3	341
6	Research frontiers for improving our understanding of droughtâ€induced tree and forest mortality. New Phytologist, 2018, 218, 15-28.	7.3	334
7	The allocation of ecosystem net primary productivity in tropical forests. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3225-3245.	4.0	317
8	Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest. New Phytologist, 2010, 187, 579-591.	7.3	293
9	Compositional response of Amazon forests to climate change. Global Change Biology, 2019, 25, 39-56.	9.5	265
10	Confronting model predictions of carbon fluxes with measurements of Amazon forests subjected to experimental drought. New Phytologist, 2013, 200, 350-365.	7.3	247
11	Integrating plant–soil interactions into global carbon cycle models. Journal of Ecology, 2009, 97, 851-863.	4.0	233
12	Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFSÂv.1-Hydro). Geoscientific Model Development, 2016, 9, 4227-4255.	3.6	211
13	Long-term thermal sensitivity of Earth's tropical forests. Science, 2020, 368, 869-874.	12.6	198
14	Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change. New Phytologist, 2010, 187, 647-665.	7.3	189
15	The linkages between photosynthesis, productivity, growth and biomass in lowland Amazonian forests. Global Change Biology, 2015, 21, 2283-2295.	9.5	146
16	Pervasive Rise of Small-scale Deforestation in Amazonia. Scientific Reports, 2018, 8, 1600.	3.3	127
17	Deforestation and climate feedbacks threaten the ecological integrity of south–southeastern Amazonia. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120155.	4.0	118
18	Variation in stem mortality rates determines patterns of aboveâ€ground biomass in <scp>A</scp> mazonian forests: implications for dynamic global vegetation models. Global Change Biology, 2016, 22, 3996-4013.	9.5	116

DAVID R GALBRAITH

#	Article	IF	CITATIONS
19	Threshold Responses to Soil Moisture Deficit by Trees and Soil in Tropical Rain Forests: Insights from Field Experiments. BioScience, 2015, 65, 882-892.	4.9	109
20	Do dynamic global vegetation models capture the seasonality of carbon fluxes in the Amazon basin? A dataâ€nodel intercomparison. Global Change Biology, 2017, 23, 191-208.	9.5	106
21	Mechanisms of water supply and vegetation demand govern the seasonality and magnitude of evapotranspiration in Amazonia and Cerrado. Agricultural and Forest Meteorology, 2014, 191, 33-50.	4.8	105
22	Residence times of woody biomass in tropical forests. Plant Ecology and Diversity, 2013, 6, 139-157.	2.4	104
23	The fate of Amazonian ecosystems over the coming century arising from changes in climate, atmospheric <scp>CO</scp> _{2,} and land use. Global Change Biology, 2015, 21, 2569-2587.	9.5	97
24	Differences in leaf thermoregulation and water use strategies between three coâ€occurring Atlantic forest tree species. Plant, Cell and Environment, 2018, 41, 1618-1631.	5.7	92
25	When a Tree Dies in the Forest: Scaling Climate-Driven Tree Mortality to Ecosystem Water and Carbon Fluxes. Ecosystems, 2016, 19, 1133-1147.	3.4	73
26	Impacts of future deforestation and climate change on the hydrology of the Amazon Basin: a multi-model analysis with a new set of land-cover change scenarios. Hydrology and Earth System Sciences, 2017, 21, 1455-1475.	4.9	69
27	Tree mode of death and mortality risk factors across Amazon forests. Nature Communications, 2020, 11, 5515.	12.8	62
28	Non-structural carbohydrates mediate seasonal water stress across Amazon forests. Nature Communications, 2021, 12, 2310.	12.8	59
29	Overview of the Large-Scale Biosphere–Atmosphere Experiment in Amazonia Data Model Intercomparison Project (LBA-DMIP). Agricultural and Forest Meteorology, 2013, 182-183, 111-127.	4.8	55
30	Biased-corrected richness estimates for the Amazonian tree flora. Scientific Reports, 2020, 10, 10130.	3.3	53
31	Ecosystem respiration and net primary productivity after 8–10 years of experimental through-fall reduction in an eastern Amazon forest. Plant Ecology and Diversity, 2014, 7, 7-24.	2.4	52
32	Mapping tropical disturbed forests using multi-decadal 30â€ [−] m optical satellite imagery. Remote Sensing of Environment, 2019, 221, 474-488.	11.0	52
33	Biogeographic distributions of neotropical trees reflect their directly measured drought tolerances. Scientific Reports, 2017, 7, 8334.	3.3	51
34	African tropical rainforest net carbon dioxide fluxes in the twentieth century. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120376.	4.0	49
35	Contrasting responses of stomatal conductance and photosynthetic capacity to warming and elevated CO2 in the tropical tree species Alchornea glandulosa under heatwave conditions. Environmental and Experimental Botany, 2019, 158, 28-39.	4.2	47
36	Upturn in secondary forest clearing buffers primary forest loss in the Brazilian Amazon. Nature Sustainability, 2020, 3, 290-295.	23.7	44

DAVID R GALBRAITH

#	Article	IF	CITATIONS
37	Evolutionary heritage influences Amazon tree ecology. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161587.	2.6	43
38	Simulating forest productivity along a neotropical elevational transect: temperature variation and carbon use efficiency. Global Change Biology, 2012, 18, 2882-2898.	9.5	34
39	Changing Amazon biomass and the role of atmospheric CO ₂ concentration, climate, and land use. Global Biogeochemical Cycles, 2016, 30, 18-39.	4.9	32
40	Evolutionary diversity is associated with wood productivity in Amazonian forests. Nature Ecology and Evolution, 2019, 3, 1754-1761.	7.8	32
41	Inter-annual variability of carbon and water fluxes in Amazonian forest, Cerrado and pasture sites, as simulated by terrestrial biosphere models. Agricultural and Forest Meteorology, 2013, 182-183, 145-155.	4.8	30
42	What controls variation in carbon use efficiency among Amazonian tropical forests?. Biotropica, 2018, 50, 16-25.	1.6	28
43	Rarity of monodominance in hyperdiverse Amazonian forests. Scientific Reports, 2019, 9, 13822.	3.3	28
44	Amazon tree dominance across forest strata. Nature Ecology and Evolution, 2021, 5, 757-767.	7.8	27
45	Limited biomass recovery from gold mining in Amazonian forests. Journal of Applied Ecology, 2020, 57, 1730-1740.	4.0	22
46	Photosynthetic quantum efficiency in <scp>southâ€eastern</scp> Amazonian trees may be already affected by climate change. Plant, Cell and Environment, 2021, 44, 2428-2439.	5.7	22
47	Individual-Based Modeling of Amazon Forests Suggests That Climate Controls Productivity While Traits Control Demography. Frontiers in Earth Science, 2019, 7, .	1.8	19
48	Trees at the Amazonia-Cerrado transition are approaching high temperature thresholds. Environmental Research Letters, 2021, 16, 034047.	5.2	19
49	The ecosystem dynamics of Amazonian and Andean forests. Plant Ecology and Diversity, 2014, 7, 1-6.	2.4	18
50	Water table depth modulates productivity and biomass across Amazonian forests. Global Ecology and Biogeography, 2022, 31, 1571-1588.	5.8	17
51	Effect of agroclimatic variability on land suitability for cultivating rubber (Hevea brasiliensis) and growth performance assessment in the tropical rainforest climate of Peninsular Malaysia. Climate Risk Management, 2020, 27, 100203.	3.2	13
52	Causes and consequences of liana infestation in southern Amazonia. Journal of Ecology, 2020, 108, 2184-2197.	4.0	13
53	Soil water-holding capacity and monodominance in Southern Amazon tropical forests. Plant and Soil, 2020, 450, 65-79.	3.7	12
54	Climate and crown damage drive tree mortality in southern Amazonian edge forests. Journal of Ecology, 2022, 110, 876-888.	4.0	12

DAVID R GALBRAITH

#	Article	IF	CITATIONS
55	Variation of nonâ€structural carbohydrates across the fast–slow continuum in Amazon Forest canopy trees. Functional Ecology, 2022, 36, 341-355.	3.6	9
56	A generic pixel-to-point comparison for simulated large-scale ecosystem properties and ground-based observations: an example from the Amazon region. Geoscientific Model Development, 2018, 11, 5203-5215.	3.6	6
57	Understanding water and energy fluxes in the Amazonia: Lessons from an observationâ€model intercomparison. Clobal Change Biology, 2021, 27, 1802-1819.	9.5	6
58	Modelling Amazonian Carbon Budgets and Vegetation Dynamics in a Changing Climate. Ecological Studies, 2016, , 331-366.	1.2	3
59	Hydraulic traits predict stem growth across Hevea brasiliensis clones in a Malaysian climatically marginal area. Forest Ecology and Management, 2022, 504, 119864.	3.2	2
60	Land-Atmosphere Interactions. Advances in Meteorology, 2016, 2016, 1-1.	1.6	1
61	Relationships between species richness and ecosystem services in Amazonian forests strongly influenced by biogeographical strata and forest types. Scientific Reports, 2022, 12, 5960.	3.3	1
62	Use of impulse tomography in the evaluation of <i>Manilkara huberi</i> (maçaranduba) managed of the Amazon rainforest. Wood Material Science and Engineering, 2023, 18, 975-985.	2.3	1
63	Photosynthesis in action: The global view. , 2022, , 243-269.		0
64	A novel in situ passive heating method for evaluating whole-tree responses to daytime warming in remote environments. Plant Methods, 2022, 18, .	4.3	0