Jintamai Suwanprateeb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5055307/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanical and in vitro performance of apatite–wollastonite glass ceramic reinforced hydroxyapatite composite fabricated by 3D-printing. Journal of Materials Science: Materials in Medicine, 2009, 20, 1281-1289.	3.6	113
2	3D printing of hydroxyapatite: Effect of binder concentration in pre-coated particle on part strength. Materials Science and Engineering C, 2007, 27, 914-921.	7.3	100
3	Finite element study of trochanteric gamma nail for trochanteric fracture. Medical Engineering and Physics, 2003, 25, 99-106.	1.7	72
4	Influence of raw powder preparation routes on properties of hydroxyapatite fabricated by 3D printing technique. Materials Science and Engineering C, 2010, 30, 610-617.	7.3	63
5	Calcium carbonate filled polyethylene: correlation of hardness and yield stress. Composites Part A: Applied Science and Manufacturing, 2000, 31, 353-359.	7.6	62
6	Three-dimensional printing of porous polyethylene structure using water-based binders. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 78B, 138-145.	3.4	54
7	Improvement in mechanical properties of three-dimensional printing parts made from natural polymers reinforced by acrylate resin for biomedical applications: a double infiltration approach. Polymer International, 2006, 55, 57-62.	3.1	48
8	Low temperature preparation of calcium phosphate structure via phosphorization of 3D-printed calcium sulfate hemihydrate based material. Journal of Materials Science: Materials in Medicine, 2010, 21, 419-429.	3.6	47
9	Influence of sterilization by gamma irradiation and of thermal annealing on creep of hydroxyapatite-reinforced polyethylene composites. , 1998, 39, 16-22.		42
10	Influence of Ringer's solution on creep resistance of hydroxyapatite reinforced polyethylene composites. Journal of Materials Science: Materials in Medicine, 1997, 8, 469-472.	3.6	41
11	Influence of printing parameters on the transformation efficiency of 3Dâ€printed plaster of paris to hydroxyapatite and its properties. Rapid Prototyping Journal, 2012, 18, 490-499.	3.2	40
12	Fabrication of bioactive hydroxyapatite/bis-GMA based composite via three dimensional printing. Journal of Materials Science: Materials in Medicine, 2008, 19, 2637-2645.	3.6	39
13	Finite element study of the proximal femur with retained trochanteric gamma nail and after removal of nail. Injury, 2006, 37, 778-785.	1.7	33
14	Effect of binder content on the material properties of polymethyl methacrylate fabricated by three dimensional printing technique. Journal of Materials Processing Technology, 2008, 207, 40-45.	6.3	30
15	Creep in polyethylene and hydroxyapatite reinforced polyethylene composites. Journal of Materials Science: Materials in Medicine, 1995, 6, 804-807.	3.6	27
16	A Comparison of Different Methods in Determining Load- and Time-Dependence of Vickers Hardness in Polymers. Polymer Testing, 1998, 17, 495-506.	4.8	24
17	Development of porous powder printed high density polyethylene for personalized bone implants. Journal of Porous Materials, 2012, 19, 623-632.	2.6	23
18	Preparation and characterization of nanosized silver phosphate loaded hydroxyapatite by single step co-conversion process. Materials Science and Engineering C, 2012, 32, 2122-2128.	7.3	23

#	Article	IF	CITATIONS
19	Evaluation of heat treatment regimes and their influences on the properties of powderâ€printed highâ€density polyethylene bone implant. Polymer International, 2011, 60, 758-764.	3.1	22
20	Preparation and characterization of PEG–PPG–PEG copolymer/pregelatinized starch blends for use as resorbable bone hemostatic wax. Journal of Materials Science: Materials in Medicine, 2013, 24, 2881-2888.	3.6	21
21	Rice-husk-ash-based silica as a filler for embedding composites in electronic devices. Journal of Applied Polymer Science, 2002, 86, 3013-3020.	2.6	20
22	Development of translucent and strong three dimensional printing models. Rapid Prototyping Journal, 2009, 15, 52-58.	3.2	17
23	In vivo assessment of new resorbable PEG–PPG–PEG copolymer/starch bone wax in bone healing and tissue reaction of bone defect in rabbit model. Journal of Materials Science: Materials in Medicine, 2014, 25, 2131-2139.	3.6	16
24	Bilayer oxidized regenerated cellulose/poly Îμ-caprolactone knitted fabric-reinforced composite for use as an artificial dural substitute. Journal of Materials Science: Materials in Medicine, 2016, 27, 122.	3.6	16
25	INSTRUMENTED IMPACT BEHAVIOR OF PARTICULATE-FILLED COMPOSITES. Polymer-Plastics Technology and Engineering, 2000, 39, 83-94.	1.9	15
26	PREPARATION AND CHARACTERIZATIONS OF ANTIBIOTIC IMPREGNATED MICROPOROUS NANO-HYDROXYAPATITE FOR OSTEOMYELITIS TREATMENT. Biomedical Engineering - Applications, Basis and Communications, 2014, 26, 1450041.	0.6	14
27	Single step preparation of nanosilver loaded calcium phosphate by low temperature co-conversion process. Journal of Materials Science: Materials in Medicine, 2012, 23, 2091-2100.	3.6	13
28	Comparative study of 3DP material systems for moisture resistance applications. Rapid Prototyping Journal, 2007, 13, 48-52.	3.2	12
29	Performance evaluation of bilayer oxidized regenerated cellulose/poly ε-caprolactone knitted fabric-reinforced composites for dural substitution. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2020, 234, 854-863.	1.8	12
30	Clinical evaluation of 3D printed nano-porous hydroxyapatite bone graft for alveolar ridge preservation: A randomized controlled trial. Journal of Dental Sciences, 2022, 17, 194-203.	2.5	12
31	Development of Antibiotics Impregnated Nanosized Silver Phosphate-Doped Hydroxyapatite Bone Graft. Journal of Nanomaterials, 2013, 2013, 1-9.	2.7	11
32	Time-Dependent Hardness of Particulate-Filled Composites. Journal of Materials Science, 1998, 33, 4917-4921.	3.7	10
33	Enhancement of mechanical properties of 3D printed hydroxyapatite by combined low and high molecular weight polycaprolactone sequential infiltration Journal of Materials Science: Materials in Medicine, 2016, 27, 171.	3.6	10
34	Using FT-Raman spectroscopy for quantitative determination of high filler content in particulated composites. Journal of Applied Polymer Science, 2000, 78, 1947-1954.	2.6	9
35	Properties improvement of three-dimensionally printed polymethyl methacrylate by bis-GMA-based resin infiltration. Polymer Testing, 2007, 26, 519-525.	4.8	9
36	Self-reinforcement of three dimensionally printed polymethyl methacrylate. Polymer Testing, 2008, 27, 711-716.	4.8	9

#	Article	IF	CITATIONS
37	<i>In vivo</i> evaluation of bilayer ORC/PCL composites in a rabbit model for using as a dural substitute. Neurological Research, 2020, 42, 879-889.	1.3	9
38	Rate-Dependent function in the correlation between hardness and yield stress of polyethylene composites. Polymer Composites, 2000, 21, 238-244.	4.6	8
39	Rapid examination of annealing conditions for HDPE using indentation microhardness test. Polymer Testing, 2004, 23, 157-161.	4.8	8
40	Strength improvement of critical-sized three dimensional printing parts by infiltration of solvent-free visible light-cured resin. Journal of Materials Science: Materials in Medicine, 2006, 17, 1383-1391.	3.6	8
41	Effectiveness of bilayer porous polyethylene membrane for alveolar ridge preservation: A randomized controlled trial. Clinical Implant Dentistry and Related Research, 2021, 23, 73-85.	3.7	8
42	Bioactivity of a sol–gel-derived hydroxyapatite coating on titanium implants in vitro and in vivo. Asian Biomedicine, 2018, 12, 35-44.	0.3	7
43	2D and 3D pore structure characterization of bi-layered porous polyethylene barrier membrane using SEM and micro-CT. ScienceAsia, 2019, 45, 159.	0.5	7
44	Influence of Process Parameters on the Content of Biomimetic Calcium Phosphate Coating on Titanium: A Taguchi Analysis. Journal of Nanoscience and Nanotechnology, 2014, 14, 7614-7620.	0.9	5
45	Effect of Process Parameters on Biomimetic Deposition of Calcium Phosphate on 3D Printed Hydroxyapatite. Key Engineering Materials, 0, 751, 599-604.	0.4	5
46	The Use of Three Dimensional Printed Hydroxyapatite Granules in Alveolar Ridge Preservation. Key Engineering Materials, 0, 751, 663-667.	0.4	5
47	Clinical and histological evaluations of alveolar ridge augmentation using a novel bi-layered porous polyethylene barrier membrane. Journal of Oral Science, 2020, 62, 308-313.	1.7	5
48	<i>In Vitro</i> Resorbability of Three Different Processed Hydroxyapatite. Key Engineering Materials, 0, 659, 3-7.	0.4	4
49	Effect of Process Parameters on Characteristics of Spray-Dried Hydroxyapatite Granules. Key Engineering Materials, 0, 728, 341-346.	0.4	4
50	Cranial reconstruction using prefabricated direct 3DP porous polyethylene. Rapid Prototyping Journal, 2019, 26, 278-287.	3.2	4
51	Radiation enhanced modification of HDPE for medical applications. Journal of Materials Science: Materials in Medicine, 2003, 14, 851-855.	3.6	3
52	Fabrication of Porous Polyethylene by Two-Stepped Heat Treatment and Powder Printing Technique. Advanced Materials Research, 2010, 93-94, 165-168.	0.3	3
53	Antimicrobial Performance and Cytotoxicity of Antibiotics Impregnated Hydroxyapatite for Osteomyelitis Treatment. Advanced Materials Research, 2012, 506, 513-516.	0.3	3
54	Effect of Solvent and Drug Impregnation Techniques on Total Drug Content in Rifampicin Impregnated Hydroxyapatite for Localized Bone Tuberculosis Treatment. Key Engineering Materials, 2016, 690, 173-178.	0.4	3

#	Article	IF	CITATIONS
55	Effect of Layer Thickness on the Phosphorization of 3DP Gypsum Based Monolith. Advanced Materials Research, 2010, 93-94, 63-66.	0.3	2
56	Performance of Bioactive Hydroxyapatite Coating after Soaking in Simulated Body Fluid. Advanced Materials Research, 0, 93-94, 59-62.	0.3	2
57	Evaluation of PEG-PPG-PEG Copolymer Blends for Using as Resorbable Bone Wax. Advanced Materials Research, 2013, 747, 174-177.	0.3	2
58	Rapid Biomimetic Coating of Biocompatible Calcium Phosphate on Titanium: Influence of Pretreated NaOH Concentration and Cleaning Method. Advanced Materials Research, 0, 1119, 444-448.	0.3	2
59	Physical and Mechanical Characterizations of Oxidized Regenerated Cellulose/Polycaprolactone Composite for Use as a Synthetic Dura Mater. Key Engineering Materials, 2015, 659, 19-23.	0.4	2
60	Rapid Biomimetic Coating of Calcium Phosphate on Titanium: Effect of Soaking Time, Temperature and Solution Refreshing. Key Engineering Materials, 0, 690, 81-86.	0.4	2
61	Properties Alteration of Anti-Tuberculosis Drugs Loaded 3D Printed Hydroxyapatite by Polycaprolactone Coating. Key Engineering Materials, 0, 766, 94-98.	0.4	2
62	Evaluation of tissue ingrowth and reaction of a porous polyethylene block as an onlay bone graft in rabbit posterior mandible. Journal of Periodontal and Implant Science, 2020, 50, 106.	2.0	2
63	Influence of Lateral Muscle Loading in the Proximal Femur after Fracture Stabilization with a Trochanteric Gamma Nail (TGN). JSME International Journal Series C-Mechanical Systems Machine Elements and Manufacturing, 2004, 47, 1070-1074.	0.3	1
64	Customized Three Dimensional Printed Porous Polyethylene for Calvarial Reconstruction. Advanced Materials Research, 2012, 506, 477-480.	0.3	1
65	Preparation of 3DP Hydroxyapatite/Polycaprolactone Composite by a Novel Sequential Infiltration Technique. Advanced Materials Research, 2013, 747, 170-173.	0.3	1
66	Biomimetically Co-Deposition of Bovine Serum Albumin and Calcium Phosphate on 3D Printed Hydroxyapatite: Influence of Time, Temperature and Concentration. Key Engineering Materials, 0, 766, 83-87.	0.4	1
67	Enhancing the Phase Conversion of Hydroxyapatite from Calcium Sulphate Hemihydrate by Hydrothermal Reaction. Key Engineering Materials, 0, 766, 288-293.	0.4	1
68	A Comparative Study of Granular Agglomeration between 3D Printed Hydroxyapatite and Commercial Bone Graft Granules. Key Engineering Materials, 0, 798, 83-87.	0.4	1
69	Tissue Integrated 3D Printed Porous Polyethylene Implant. Key Engineering Materials, 0, 798, 65-70.	0.4	1
70	Morphology of Thai Edentulous Mandible Using 3D Reverse Engineering: Relevance to Immediate Loading Dental Implant Design. JSME International Journal Series C-Mechanical Systems Machine Elements and Manufacturing, 2006, 49, 859-864.	0.3	0
71	Preparation of Nanosilver Loaded Calcium Phosphate by <i>In Situ</i> Phase Conversion Process. Advanced Materials Research, 2012, 506, 254-257.	0.3	0
72	Preparation of 3DP Hydroxyapatite Composite by Single and Double Pass Poly(Îμ-caprolactone) Infiltration. Key Engineering Materials, 0, 545, 69-73.	0.4	0

#	Article	IF	CITATIONS
73	<i>In Vitro</i> Resorbability of 3D Printed Hydroxyapatite in Two Different pH Buffered Solutions. Key Engineering Materials, 2019, 798, 71-76.	0.4	0
74	In vitro resorbability and granular characteristics of 3D-printed hydroxyapatite granules versus allograft, xenograft, and alloplast for alveolar cleft surgery applications. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2021, 235, 095441192110343.	1.8	0