List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5054221/publications.pdf Version: 2024-02-01

		16451	36028
222	11,986	64	97
papers	citations	h-index	g-index
233	233	233	7540
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Molecular Photocatalytic Water Splitting by Mimicking Photosystems I and II. Journal of the American Chemical Society, 2022, 144, 695-700.	13.7	32
2	Nonheme Iron-Catalyzed Enantioselective <i>cis</i> -Dihydroxylation of Aliphatic Acrylates as Mimics of Rieske Dioxygenases. CCS Chemistry, 2022, 4, 2369-2381.	7.8	7
3	Acid Catalysis in the Oxidation of Substrates by Mononuclear Manganese(III)–Aqua Complexes. Inorganic Chemistry, 2022, 61, 6594-6603.	4.0	5
4	Oxidative <i>versus</i> basic asynchronous hydrogen atom transfer reactions of Mn(<scp>iii</scp>)-hydroxo and Mn(<scp>iii</scp>)-aqua complexes. Inorganic Chemistry Frontiers, 2022, 9, 3233-3243.	6.0	4
5	Bromoacetic Acid-Promoted Nonheme Manganese-Catalyzed Alkane Hydroxylation Inspired by α-Ketoglutarate-Dependent Oxygenases. ACS Catalysis, 2022, 12, 6756-6769.	11.2	17
6	Identification of a cobalt(<scp>IV</scp>)–oxo intermediate as an active oxidant in catalytic oxidation reactions. Bulletin of the Korean Chemical Society, 2022, 43, 1075-1082.	1.9	5
7	EPR spectroscopy elucidates the electronic structure of [Fe ^V (O)(TAML)] complexes. Inorganic Chemistry Frontiers, 2021, 8, 3775-3783.	6.0	6
8	Transition metal-mediated O–O bond formation and activation in chemistry and biology. Chemical Society Reviews, 2021, 50, 4804-4811.	38.1	113
9	Acid-promoted hydride transfer from an NADH analogue to a Cr(<scp>iii</scp>)–superoxo complex <i>via</i> a proton-coupled hydrogen atom transfer. Dalton Transactions, 2021, 50, 675-680.	3.3	4
10	A Mononuclear Non-Heme Manganese(III)–Aqua Complex in Oxygen Atom Transfer Reactions via Electron Transfer. Journal of the American Chemical Society, 2021, 143, 1521-1528.	13.7	19
11	Formation of cobalt–oxygen intermediates by dioxygen activation at a mononuclear nonheme cobalt(<scp>ii</scp>) center. Dalton Transactions, 2021, 50, 11889-11898.	3.3	6
12	A Highly Reactive Chromium(V)–Oxo TAML Cation Radical Complex in Electron Transfer and Oxygen Atom Transfer Reactions. ACS Catalysis, 2021, 11, 2889-2901.	11.2	10
13	Highly Efficient Catalytic Two-Electron Two-Proton Reduction of Dioxygen to Hydrogen Peroxide with a Cobalt Corrole Complex. ACS Catalysis, 2021, 11, 3073-3083.	11.2	41
14	Ligand Architecture Perturbation Influences the Reactivity of Nonheme Iron(V)-Oxo Tetraamido Macrocyclic Ligand Complexes: A Combined Experimental and Theoretical Study. Inorganic Chemistry, 2021, 60, 4058-4067.	4.0	7
15	Biomimetic metal-oxidant adducts as active oxidants in oxidation reactions. Coordination Chemistry Reviews, 2021, 435, 213807.	18.8	35
16	Recent progress in production and usage of hydrogen peroxide. Chinese Journal of Catalysis, 2021, 42, 1241-1252.	14.0	51
17	How does Lewis acid affect the reactivity of mononuclear <scp>highâ€valent chromium–oxo</scp> species? A theoretical study. Bulletin of the Korean Chemical Society, 2021, 42, 1501-1505.	1.9	5
18	Identifying Intermediates in Electrocatalytic Water Oxidation with a Manganese Corrole Complex. Journal of the American Chemical Society, 2021, 143, 14613-14621.	13.7	77

#	Article	IF	CITATIONS
19	A Mononuclear Non-heme Iron(III)–Peroxo Complex with an Unprecedented High O–O Stretch and Electrophilic Reactivity. Journal of the American Chemical Society, 2021, 143, 15556-15561.	13.7	11
20	The Oxo-Wall Remains Intact: A Tetrahedrally Distorted Co(IV)–Oxo Complex. Journal of the American Chemical Society, 2021, 143, 16943-16959.	13.7	12
21	Deeper Understanding of Mononuclear Manganese(Ⅳ)–Oxo Binding BrÃ,nsted and Lewis Acids and the Manganese(Ⅳ)–Hydroxide Complex. Inorganic Chemistry, 2021, 60, 16996-17007.	4.0	16
22	Enthalpy–Entropy Compensation Effect in Oxidation Reactions by Manganese(IV)-Oxo Porphyrins and Nonheme Iron(IV)-Oxo Models. Journal of the American Chemical Society, 2021, 143, 18559-18570.	13.7	16
23	Deuterium kinetic isotope effects as redox mechanistic criterions. Bulletin of the Korean Chemical Society, 2021, 42, 1558-1568.	1.9	24
24	Photocatalytic redox reactions with metalloporphyrins. Journal of Porphyrins and Phthalocyanines, 2020, 24, 21-32.	0.8	17
25	Tuning Electron-Transfer Reactivity of a Chromium(III)–Superoxo Complex Enabled by Calcium Ion and Other Redox-Inactive Metal Ions. Journal of the American Chemical Society, 2020, 142, 365-372.	13.7	21
26	Photoinduced Generation of Superoxidants for the Oxidation of Substrates with High Câ^'H Bond Dissociation Energies. ChemPhotoChem, 2020, 4, 271-281.	3.0	3
27	Photocatalytic Hydrogen Evolution from Plastoquinol Analogues as a Potential Functional Model of Photosystem I. Inorganic Chemistry, 2020, 59, 14838-14846.	4.0	10
28	Acid Catalysis via Acidâ€Promoted Electron Transfer. Bulletin of the Korean Chemical Society, 2020, 41, 1217-1232.	1.9	28
29	Unprecedented Reactivities of Highly Reactive Manganese(III)–lodosylarene Porphyrins in Oxidation Reactions. Journal of the American Chemical Society, 2020, 142, 19879-19884.	13.7	17
30	Enhanced Redox Reactivity of a Nonheme Iron(V)–Oxo Complex Binding Proton. Journal of the American Chemical Society, 2020, 142, 15305-15319.	13.7	20
31	Proton-promoted disproportionation of iron(<scp>v</scp>)-imido TAML to iron(<scp>v</scp>)-imido TAML cation radical and iron(<scp>iv</scp>) TAML. Chemical Communications, 2020, 56, 11207-11210.	4.1	6
32	Catalytic Four-Electron Reduction of Dioxygen by Ferrocene Derivatives with a Nonheme Iron(III) TAML Complex. Inorganic Chemistry, 2020, 59, 18010-18017.	4.0	12
33	Structure and Unprecedented Reactivity of a Mononuclear Nonheme Cobalt(III) Iodosylbenzene Complex. Angewandte Chemie, 2020, 132, 13683-13687.	2.0	2
34	Electron-Transfer and Redox Reactivity of High-Valent Iron Imido and Oxo Complexes with the Formal Oxidation States of Five and Six. Journal of the American Chemical Society, 2020, 142, 3891-3904.	13.7	43
35	Bioinspired artificial photosynthesis systems. Tetrahedron, 2020, 76, 131024.	1.9	21
36	Metal ion-coupled electron-transfer reactions of metal-oxygen complexes. Coordination Chemistry Reviews, 2020, 410, 213219.	18.8	47

#	Article	IF	CITATIONS
37	Generation and Electronâ€Transfer Reactivity of the Longâ€Lived Photoexcited State of a Manganese(IV)â€Oxoâ€Scandium Nitrate Complex. Israel Journal of Chemistry, 2020, 60, 1049-1056.	2.3	5
38	Structure and Unprecedented Reactivity of a Mononuclear Nonheme Cobalt(III) Iodosylbenzene Complex. Angewandte Chemie - International Edition, 2020, 59, 13581-13585.	13.8	19
39	Mechanistic dichotomies in redox reactions of mononuclear metal–oxygen intermediates. Chemical Society Reviews, 2020, 49, 8988-9027.	38.1	61
40	Catalytic recycling of NAD(P)H. Journal of Inorganic Biochemistry, 2019, 199, 110777.	3.5	38
41	Highly Reactive Manganese(IV)-Oxo Porphyrins Showing Temperature-Dependent Reversed Electronic Effect in C–H Bond Activation Reactions. Journal of the American Chemical Society, 2019, 141, 12187-12191.	13.7	53
42	Photocatalytic Oxygenation Reactions Using Water and Dioxygen. ChemSusChem, 2019, 12, 3931-3940.	6.8	33
43	Regioselective Oxybromination of Benzene and Its Derivatives by Bromide Anion with a Mononuclear Nonheme Mn(IV)–Oxo Complex. Inorganic Chemistry, 2019, 58, 14299-14303.	4.0	8
44	A Highâ€Valent Manganese(IV)–Oxo–Cerium(IV) Complex and Its Enhanced Oxidizing Reactivity. Angewandte Chemie - International Edition, 2019, 58, 16124-16129.	13.8	34
45	Singly Unified Driving Force Dependence of Outer-Sphere Electron-Transfer Pathways of Nonheme Manganese(IV)â^'Oxo Complexes in the Absence and Presence of Lewis Acids. Inorganic Chemistry, 2019, 58, 13761-13765.	4.0	16
46	Kinetics and mechanisms of catalytic water oxidation. Dalton Transactions, 2019, 48, 779-798.	3.3	42
47	Aromatic hydroxylation of anthracene derivatives by a chromium(<scp>iii</scp>)-superoxo complex <i>via</i> proton-coupled electron transfer. Chemical Communications, 2019, 55, 8286-8289.	4.1	1
48	Photocatalytic Oxygenation Reactions with a Cobalt Porphyrin Complex Using Water as an Oxygen Source and Dioxygen as an Oxidant. Journal of the American Chemical Society, 2019, 141, 9155-9159.	13.7	34
49	Structure and reactivity of the first-row d-block metal-superoxo complexes. Dalton Transactions, 2019, 48, 9469-9489.	3.3	50
50	Tunneling Controls the Reaction Pathway in the Deformylation of Aldehydes by a Nonheme Iron(III)–Hydroperoxo Complex: Hydrogen Atom Abstraction versus Nucleophilic Addition. Journal of the American Chemical Society, 2019, 141, 7675-7679.	13.7	31
51	A Mn(<scp>iv</scp>)–peroxo complex in the reactions with proton donors. Dalton Transactions, 2019, 48, 5203-5213.	3.3	7
52	Photodriven Oxidation of Water by Plastoquinone Analogs with a Nonheme Iron Catalyst. Journal of the American Chemical Society, 2019, 141, 6748-6754.	13.7	25
53	Redox Reactivity of a Mononuclear Manganese-Oxo Complex Binding Calcium Ion and Other Redox-Inactive Metal Ions. Journal of the American Chemical Society, 2019, 141, 1324-1336.	13.7	70
54	A Mononuclear Nonheme Iron(IV)–Amido Complex Relevant for the Compound II Chemistry of Cytochrome P450. Journal of the American Chemical Society, 2019, 141, 80-83.	13.7	22

#	Article	IF	CITATIONS
55	Unified Mechanism of Oxygen Atom Transfer and Hydrogen Atom Transfer Reactions with a Triflic Acid-Bound Nonheme Manganese(IV)–Oxo Complex via Outer-Sphere Electron Transfer. Journal of the American Chemical Society, 2019, 141, 2614-2622.	13.7	38
56	Frontispiece: Solar-Driven Production of Hydrogen Peroxide from Water and Dioxygen. Chemistry - A European Journal, 2018, 24, .	3.3	1
57	Amphoteric reactivity of metal–oxygen complexes in oxidation reactions. Coordination Chemistry Reviews, 2018, 365, 41-59.	18.8	85
58	Mechanistic Insights into the Enantioselective Epoxidation of Olefins by Bioinspired Manganese Complexes: Role of Carboxylic Acid and Nature of Active Oxidant. ACS Catalysis, 2018, 8, 4528-4538.	11.2	72
59	Highly Enantioselective Oxidation of Spirocyclic Hydrocarbons by Bioinspired Manganese Catalysts and Hydrogen Peroxide. ACS Catalysis, 2018, 8, 2479-2487.	11.2	75
60	Thermal and photocatalytic oxidation of organic substrates by dioxygen with water as an electron source. Green Chemistry, 2018, 20, 948-963.	9.0	19
61	A mononuclear manganese(<scp>iii</scp>)–hydroperoxo complex: synthesis by activating dioxygen and reactivity in electrophilic and nucleophilic reactions. Chemical Communications, 2018, 54, 1209-1212.	4.1	43
62	Solarâ€Driven Production of Hydrogen Peroxide from Water and Dioxygen. Chemistry - A European Journal, 2018, 24, 5016-5031.	3.3	106
63	Thermal and photocatalytic production of hydrogen with earth-abundant metal complexes. Coordination Chemistry Reviews, 2018, 355, 54-73.	18.8	116
64	Immobilization of Molecular Catalysts for Enhanced Redox Catalysis. ChemCatChem, 2018, 10, 1686-1702.	3.7	35
65	Artificial Photosynthesis for Production of ATP, NAD(P)H, and Hydrogen Peroxide. ChemPhotoChem, 2018, 2, 121-135.	3.0	29
66	Mechanisms of Twoâ€Electron versus Fourâ€Electron Reduction of Dioxygen Catalyzed by Earthâ€Abundant Metal Complexes. ChemCatChem, 2018, 10, 9-28.	3.7	82
67	Photoexcited state chemistry of metal–oxygen complexes. Dalton Transactions, 2018, 47, 16019-16026.	3.3	8
68	A Mononuclear Non-heme Manganese(III)–Aqua Complex as a New Active Oxidant in Hydrogen Atom Transfer Reactions. Journal of the American Chemical Society, 2018, 140, 12695-12699.	13.7	34
69	Mimicry and functions of photosynthetic reaction centers. Biochemical Society Transactions, 2018, 46, 1279-1288.	3.4	26
70	Hydrogen Atom Transfer Reactions of Mononuclear Nonheme Metal–Oxygen Intermediates. Accounts of Chemical Research, 2018, 51, 2014-2022.	15.6	94
71	Mechanisms of catalytic reduction of CO ₂ with heme and nonheme metal complexes. Chemical Science, 2018, 9, 6017-6034.	7.4	105
72	Remarkable Acid Catalysis in Proton-Coupled Electron-Transfer Reactions of a Chromium(III)-Superoxo Complex. Journal of the American Chemical Society, 2018, 140, 8372-8375.	13.7	27

#	Article	IF	CITATIONS
73	Mn(III)-Iodosylarene Porphyrins as an Active Oxidant in Oxidation Reactions: Synthesis, Characterization, and Reactivity Studies. Inorganic Chemistry, 2018, 57, 10232-10240.	4.0	30
74	A mononuclear nonheme {FeNO} ⁶ complex: synthesis and structural and spectroscopic characterization. Chemical Science, 2018, 9, 6952-6960.	7.4	11
75	Enhanced Electron-Transfer Reactivity of a Long-Lived Photoexcited State of a Cobalt–Oxygen Complex. Inorganic Chemistry, 2018, 57, 10945-10952.	4.0	14
76	Long-Lived Photoexcited State of a Mn(IV)-Oxo Complex Binding Scandium Ions That is Capable of Hydroxylating Benzene. Journal of the American Chemical Society, 2018, 140, 8405-8409.	13.7	39
77	Effects of Lewis Acids on Photoredox Catalysis. Asian Journal of Organic Chemistry, 2017, 6, 397-409.	2.7	26
78	A Chromium(III)-Superoxo Complex as a Three-Electron Oxidant with a Large Tunneling Effect in Multi-Electron Oxidation of NADH Analogues. Angewandte Chemie - International Edition, 2017, 56, 3510-3515.	13.8	17
79	Selective Oxygenation of Cyclohexene by Dioxygen via an Iron(V)-Oxo Complex-Autocatalyzed Reaction. Inorganic Chemistry, 2017, 56, 5096-5104.	4.0	46
80	A Mononuclear Nonheme Iron(V)-Imido Complex. Journal of the American Chemical Society, 2017, 139, 8800-8803.	13.7	60
81	Structure and spin state of nonheme Fe ^{IV} O complexes depending on temperature: predictive insights from DFT calculations and experiments. Chemical Science, 2017, 8, 5460-5467.	7.4	25
82	Synthesis and reactivity of a mononuclear non-haem cobalt(IV)-oxo complex. Nature Communications, 2017, 8, 14839.	12.8	132
83	Multiâ€Electron Oxidation of Anthracene Derivatives by Nonheme Manganese(IV)â€Oxo Complexes. Chemistry - A European Journal, 2017, 23, 7125-7131.	3.3	22
84	Tunneling Effect That Changes the Reaction Pathway from Epoxidation to Hydroxylation in the Oxidation of Cyclohexene by a Compound I Model of Cytochrome P450. Journal of Physical Chemistry Letters, 2017, 8, 1557-1561.	4.6	23
85	A Chromium(III)-Superoxo Complex as a Three-Electron Oxidant with a Large Tunneling Effect in Multi-Electron Oxidation of NADH Analogues. Angewandte Chemie, 2017, 129, 3564-3569.	2.0	5
86	Fine Control of the Redox Reactivity of a Nonheme Iron(III)–Peroxo Complex by Binding Redoxâ€Inactive Metal Ions. Angewandte Chemie - International Edition, 2017, 56, 801-805.	13.8	46
87	Fine Control of the Redox Reactivity of a Nonheme Iron(III)–Peroxo Complex by Binding Redoxâ€inactive Metal Ions. Angewandte Chemie, 2017, 129, 819-823.	2.0	9
88	Achieving One-Electron Oxidation of a Mononuclear Nonheme Iron(V)-Imido Complex. Journal of the American Chemical Society, 2017, 139, 14372-14375.	13.7	45
89	A Highly Reactive Oxoiron(IV) Complex Supported by a Bioinspired N ₃ O Macrocyclic Ligand. Angewandte Chemie - International Edition, 2017, 56, 14384-14388.	13.8	49
90	A Highly Reactive Oxoiron(IV) Complex Supported by a Bioinspired N ₃ O Macrocyclic Ligand. Angewandte Chemie, 2017, 129, 14576-14580.	2.0	13

#	Article	IF	CITATIONS
91	Dioxygen Activation and O–O Bond Formation Reactions by Manganese Corroles. Journal of the American Chemical Society, 2017, 139, 15858-15867.	13.7	60
92	Photocatalytic oxidation of benzene to phenol using dioxygen as an oxygen source and water as an electron source in the presence of a cobalt catalyst. Chemical Science, 2017, 8, 7119-7125.	7.4	65
93	Fuel Production from Seawater and Fuel Cells Using Seawater. ChemSusChem, 2017, 10, 4264-4276.	6.8	93
94	Manganese complex-catalyzed oxidation and oxidative kinetic resolution of secondary alcohols by hydrogen peroxide. Chemical Science, 2017, 8, 7476-7482.	7.4	49
95	Direct oxygen atom transfer versus electron transfer mechanisms in the phosphine oxidation by nonheme Mn(<scp>iv</scp>)-oxo complexes. Chemical Communications, 2017, 53, 9352-9355.	4.1	19
96	Frontispiz: A Highly Reactive Oxoiron(IV) Complex Supported by a Bioinspired N ₃ O Macrocyclic Ligand. Angewandte Chemie, 2017, 129, .	2.0	0
97	Frontispiece: A Highly Reactive Oxoiron(IV) Complex Supported by a Bioinspired N ₃ O Macrocyclic Ligand. Angewandte Chemie - International Edition, 2017, 56, .	13.8	0
98	Autocatalytic dioxygen activation to produce an iron(<scp>v</scp>)-oxo complex without any reductants. Chemical Communications, 2017, 53, 8348-8351.	4.1	17
99	Dioxygen activation chemistry by synthetic mononuclear nonheme iron, copper and chromium complexes. Coordination Chemistry Reviews, 2017, 334, 25-42.	18.8	136
100	High-valent metal-oxo complexes generated in catalytic oxidation reactions using water as an oxygen source. Coordination Chemistry Reviews, 2017, 333, 44-56.	18.8	62
101	Enhanced Electron Transfer Reactivity of a Nonheme Iron(Ⅳ)–Imido Complex as Compared to the Iron(Ⅳ)â€Oxo Analogue. Angewandte Chemie - International Edition, 2016, 55, 3709-3713.	13.8	27
102	Mononuclear Nonheme High‧pin (<i>S</i> =2) versus Intermediate‧pin (<i>S</i> =1) Iron(IV)–Oxo Complexes in Oxidation Reactions. Angewandte Chemie - International Edition, 2016, 55, 8027-8031.	13.8	46
103	Mononuclear Nonheme Highâ€5pin (<i>S</i> =2) versus Intermediateâ€5pin (<i>S</i> =1) Iron(IV)–Oxo Complexes in Oxidation Reactions. Angewandte Chemie, 2016, 128, 8159-8163.	2.0	12
104	Switchover of the Mechanism between Electron Transfer and Hydrogenâ€Atom Transfer for a Protonated Manganese(IV)–Oxo Complex by Changing Only the Reaction Temperature. Angewandte Chemie - International Edition, 2016, 55, 7450-7454.	13.8	44
105	Factors That Control the Reactivity of Cobalt(III)–Nitrosyl Complexes in Nitric Oxide Transfer and Dioxygenation Reactions: A Combined Experimental and Theoretical Investigation. Journal of the American Chemical Society, 2016, 138, 7753-7762.	13.7	36
106	A mononuclear nonheme cobalt(<scp>iii</scp>)–hydroperoxide complex with an amphoteric reactivity in electrophilic and nucleophilic oxidative reactions. Dalton Transactions, 2016, 45, 14511-14515.	3.3	26
107	Enhanced Electron Transfer Reactivity of a Nonheme Iron(Ⅳ)–Imido Complex as Compared to the Iron(Ⅳ)â€Oxo Analogue. Angewandte Chemie, 2016, 128, 3773-3777.	2.0	8
108	Mechanistic Insight into the Nitric Oxide Dioxygenation Reaction of Nonheme Iron(III)–Superoxo and Manganese(IV)–Peroxo Complexes. Angewandte Chemie, 2016, 128, 12591-12595.	2.0	5

#	Article	IF	CITATIONS
109	Mechanistic Insight into the Nitric Oxide Dioxygenation Reaction of Nonheme Iron(III)–Superoxo and Manganese(IV)–Peroxo Complexes. Angewandte Chemie - International Edition, 2016, 55, 12403-12407.	13.8	23
110	Photocatalytic Asymmetric Epoxidation of Terminal Olefins Using Water as an Oxygen Source in the Presence of a Mononuclear Non-Heme Chiral Manganese Complex. Journal of the American Chemical Society, 2016, 138, 15857-15860.	13.7	61
111	Factors Controlling the Chemoselectivity in the Oxidation of Olefins by Nonheme Manganese(IV)-Oxo Complexes. Journal of the American Chemical Society, 2016, 138, 10654-10663.	13.7	52
112	Nuclear Resonance Vibrational Spectroscopic Definition of Peroxy Intermediates in Nonheme Iron Sites. Journal of the American Chemical Society, 2016, 138, 14294-14302.	13.7	6
113	Switchover of the Mechanism between Electron Transfer and Hydrogenâ€Atom Transfer for a Protonated Manganese(IV)–Oxo Complex by Changing Only the Reaction Temperature. Angewandte Chemie, 2016, 128, 7576-7580.	2.0	8
114	A Manganese(V)–Oxo Complex: Synthesis by Dioxygen Activation and Enhancement of Its Oxidizing Power by Binding Scandium Ion. Journal of the American Chemical Society, 2016, 138, 8523-8532.	13.7	118
115	Mononuclear Nonheme High-Spin Iron(III)-Acylperoxo Complexes in Olefin Epoxidation and Alkane Hydroxylation Reactions. Journal of the American Chemical Society, 2016, 138, 2426-2436.	13.7	67
116	An amphoteric reactivity of a mixed-valent bis(μ-oxo)dimanganese(<scp>iii</scp> , <scp>iv</scp>) complex acting as an electrophile and a nucleophile. Dalton Transactions, 2016, 45, 376-383.	3.3	24
117	Proton-Promoted and Anion-Enhanced Epoxidation of Olefins by Hydrogen Peroxide in the Presence of Nonheme Manganese Catalysts. Journal of the American Chemical Society, 2016, 138, 936-943.	13.7	114
118	Mononuclear Nonheme Iron(III)â€iodosylarene and Highâ€Valent Ironâ€Oxo Complexes in Olefin Epoxidation Reactions. Angewandte Chemie - International Edition, 2015, 54, 11740-11744.	13.8	49
119	Tuning the Redox Properties of a Nonheme Iron(III)–Peroxo Complex Binding Redoxâ€Inactive Zinc Ions by Water Molecules. Chemistry - A European Journal, 2015, 21, 10676-10680.	3.3	14
120	Lewis Acid Coupled Electron Transfer of Metal–Oxygen Intermediates. Chemistry - A European Journal, 2015, 21, 17548-17559.	3.3	132
121	Mechanistic insights into the reactions of hydride transfer versus hydrogen atom transfer by a trans-dioxoruthenium(<scp>vi</scp>) complex. Dalton Transactions, 2015, 44, 7634-7642.	3.3	21
122	Efficient Epoxidation of Styrene Derivatives by a Nonheme Iron(IV)-Oxo Complex via Proton-Coupled Electron Transfer with Triflic Acid. Inorganic Chemistry, 2015, 54, 5806-5812.	4.0	51
123	A nonheme manganese(<scp>iv</scp>)–oxo species generated in photocatalytic reaction using water as an oxygen source. Chemical Communications, 2015, 51, 4013-4016.	4.1	30
124	Mononuclear nonheme iron(<scp>iv</scp>)–oxo and manganese(<scp>iv</scp>)–oxo complexes in oxidation reactions: experimental results prove theoretical prediction. Chemical Communications, 2015, 51, 13094-13097.	4.1	42
125	Interplay of Experiment and Theory in Elucidating Mechanisms of Oxidation Reactions by a Nonheme Ru ^{IV} O Complex. Journal of the American Chemical Society, 2015, 137, 8623-8632.	13.7	85
126	Determination of Spin Inversion Probability, H-Tunneling Correction, and Regioselectivity in the Two-State Reactivity of Nonheme Iron(IV)-Oxo Complexes. Journal of Physical Chemistry Letters, 2015, 6, 1472-1476.	4.6	64

#	Article	IF	CITATIONS
127	Tuning the reactivity of mononuclear nonheme manganese(<scp>iv</scp>)-oxo complexes by triflic acid. Chemical Science, 2015, 6, 3624-3632.	7.4	87
128	Reactions of Co(III)–Nitrosyl Complexes with Superoxide and Their Mechanistic Insights. Journal of the American Chemical Society, 2015, 137, 4284-4287.	13.7	38
129	Tuning the Reactivity of Chromium(III)-Superoxo Species by Coordinating Axial Ligands. Inorganic Chemistry, 2015, 54, 10513-10520.	4.0	21
130	Tuning Reactivity and Mechanism in Oxidation Reactions by Mononuclear Nonheme Iron(IV)-Oxo Complexes. Accounts of Chemical Research, 2014, 47, 1146-1154.	15.6	434
131	Highly Reactive Nonheme Iron(III) Iodosylarene Complexes in Alkane Hydroxylation and Sulfoxidation Reactions. Angewandte Chemie - International Edition, 2014, 53, 6388-6392.	13.8	59
132	Catalytic oxidation of alkanes by iron bispidine complexes and dioxygen: oxygen activation versus autoxidation. Chemical Communications, 2014, 50, 412-414.	4.1	52
133	Conversion of high-spin iron(<scp>iii</scp>)–alkylperoxo to iron(<scp>iv</scp>)–oxo species via O–O bond homolysis in nonheme iron models. Chemical Science, 2014, 5, 156-162.	7.4	46
134	Spectroscopic Characterization and Reactivity Studies of a Mononuclear Nonheme Mn(III)–Hydroperoxo Complex. Journal of the American Chemical Society, 2014, 136, 12229-12232.	13.7	49
135	Redox-inactive metal ions modulate the reactivity and oxygen release of mononuclear non-haem iron(III)–peroxo complexes. Nature Chemistry, 2014, 6, 934-940.	13.6	135
136	Autocatalytic Formation of an Iron(IV)–Oxo Complex via Scandium Ion-Promoted Radical Chain Autoxidation of an Iron(II) Complex with Dioxygen and Tetraphenylborate. Journal of the American Chemical Society, 2014, 136, 8042-8049.	13.7	34
137	Demonstration of the Heterolytic OO Bond Cleavage of Putative Nonheme Iron(II)OOH(R) Complexes for Fenton and Enzymatic Reactions. Angewandte Chemie - International Edition, 2014, 53, 7843-7847.	13.8	50
138	Unified View of Oxidative C–H Bond Cleavage and Sulfoxidation by a Nonheme Iron(IV)–Oxo Complex via Lewis Acid-Promoted Electron Transfer. Inorganic Chemistry, 2014, 53, 3618-3628.	4.0	111
139	Hydride transfer from NADH analogues to a nonheme manganese(<scp>iv</scp>)–oxo complex via rate-determining electron transfer. Chemical Communications, 2014, 50, 12944-12946.	4.1	14
140	A mononuclear nonheme iron(iii)–peroxo complex binding redox-inactive metal ions. Chemical Science, 2013, 4, 3917.	7.4	79
141	Water Oxidation Catalysis with Nonheme Iron Complexes under Acidic and Basic Conditions: Homogeneous or Heterogeneous?. Inorganic Chemistry, 2013, 52, 9522-9531.	4.0	164
142	Protonation Equilibrium and Hydrogen Production by a Dinuclear Cobalt–Hydride Complex Reduced by Cobaltocene with Trifluoroacetic Acid. Journal of the American Chemical Society, 2013, 135, 15294-15297.	13.7	82
143	Reactivity comparison of high-valent iron(iv)-oxo complexes bearing N-tetramethylated cyclam ligands with different ring size. Dalton Transactions, 2013, 42, 7842.	3.3	61
144	Intrinsic properties and reactivities of mononuclear nonheme iron–oxygen complexes bearing the tetramethylcyclam ligand. Coordination Chemistry Reviews, 2013, 257, 381-393.	18.8	157

#	Article	IF	CITATIONS
145	An autocatalytic radical chain pathway in formation of an iron(iv)–oxo complex by oxidation of an iron(ii) complex with dioxygen and isopropanol. Chemical Communications, 2013, 49, 2500.	4.1	18
146	BrÃ,nsted Acid-Promoted C–H Bond Cleavage via Electron Transfer from Toluene Derivatives to a Protonated Nonheme Iron(IV)-Oxo Complex with No Kinetic Isotope Effect. Journal of the American Chemical Society, 2013, 135, 5052-5061.	13.7	94
147	Temperature-Independent Catalytic Two-Electron Reduction of Dioxygen by Ferrocenes with a Copper(II) Tris[2-(2-pyridyl)ethyl]amine Catalyst in the Presence of Perchloric Acid. Journal of the American Chemical Society, 2013, 135, 2825-2834.	13.7	68
148	Acid-Induced Mechanism Change and Overpotential Decrease in Dioxygen Reduction Catalysis with a Dinuclear Copper Complex. Journal of the American Chemical Society, 2013, 135, 4018-4026.	13.7	56
149	A Mononuclear Non-Heme Manganese(IV)–Oxo Complex Binding Redox-Inactive Metal Ions. Journal of the American Chemical Society, 2013, 135, 6388-6391.	13.7	182
150	Enhanced Electron-Transfer Reactivity of Nonheme Manganese(Ⅳ)–Oxo Complexes by Binding Scandium Ions. Journal of the American Chemical Society, 2013, 135, 9186-9194.	13.7	131
151	Effects of Proton Acceptors on Formation of a Non-Heme Iron(IV)–Oxo Complex via Proton-Coupled Electron Transfer. Inorganic Chemistry, 2013, 52, 3094-3101.	4.0	24
152	Synthesis, Characterization, and Reactivity of Cobalt(III)–Oxygen Complexes Bearing a Macrocyclic Nâ€Tetramethylated Cyclam Ligand. Chemistry - A European Journal, 2013, 19, 14112-14118.	3.3	33
153	Evidence for an Alternative to the Oxygen Rebound Mechanism in C–H Bond Activation by Non-Heme Fe ^{IV} O Complexes. Journal of the American Chemical Society, 2012, 134, 20222-20225.	13.7	137
154	Electron-transfer properties of a nonheme manganese(iv)–oxo complex acting as a stronger one-electron oxidant than the iron(iv)–oxo analogue. Chemical Communications, 2012, 48, 11187.	4.1	36
155	[Fe ^{IV} â•O(TBC)(CH ₃ CN)] ²⁺ : Comparative Reactivity of Iron(IV)-Oxo Species with Constrained Equatorial Cyclam Ligation. Journal of the American Chemical Society, 2012, 134, 11791-11806.	13.7	71
156	Mechanistic Borderline of One-Step Hydrogen Atom Transfer versus Stepwise Sc ³⁺ -Coupled Electron Transfer from Benzyl Alcohol Derivatives to a Non-Heme Iron(IV)-Oxo Complex. Inorganic Chemistry, 2012, 51, 10025-10036.	4.0	76
157	Water-soluble mononuclear cobalt complexes with organic ligands acting as precatalysts for efficient photocatalytic water oxidation. Energy and Environmental Science, 2012, 5, 7606.	30.8	208
158	Factors That Control Catalytic Two- versus Four-Electron Reduction of Dioxygen by Copper Complexes. Journal of the American Chemical Society, 2012, 134, 7025-7035.	13.7	84
159	Proton-Promoted Oxygen Atom Transfer vs Proton-Coupled Electron Transfer of a Non-Heme Iron(IV)-Oxo Complex. Journal of the American Chemical Society, 2012, 134, 3903-3911.	13.7	86
160	Double Action: Toward Phosphorescence Ratiometric Sensing of Chromium Ion. Advanced Materials, 2012, 24, 2748-2754.	21.0	53
161	Electronâ€Transfer Reduction of Dinuclear Copper Peroxo and Bisâ€Î¼â€oxo Complexes Leading to the Catalytic Fourâ€Electron Reduction of Dioxygen to Water. Chemistry - A European Journal, 2012, 18, 1084-1093.	3.3	78
162	Metal Ion-Coupled Electron Transfer of a Nonheme Oxoiron(IV) Complex: Remarkable Enhancement of Electron-Transfer Rates by Sc ³⁺ . Journal of the American Chemical Society, 2011, 133, 403-405.	13.7	172

#	Article	IF	CITATIONS
163	Ligand Topology Effect on the Reactivity of a Mononuclear Nonheme Iron(IV)-Oxo Complex in Oxygenation Reactions. Journal of the American Chemical Society, 2011, 133, 11876-11879.	13.7	94
164	Photocatalytic Generation of a Non-Heme Oxoiron(IV) Complex with Water as an Oxygen Source. Journal of the American Chemical Society, 2011, 133, 3249-3251.	13.7	74
165	Phosphorescent Sensor for Robust Quantification of Copper(II) Ion. Journal of the American Chemical Society, 2011, 133, 11488-11491.	13.7	238
166	Metal Ion Effect on the Switch of Mechanism from Direct Oxygen Transfer to Metal Ion-Coupled Electron Transfer in the Sulfoxidation of Thioanisoles by a Non-Heme Iron(IV)â^'Oxo Complex. Journal of the American Chemical Society, 2011, 133, 5236-5239.	13.7	169
167	Scandium Ion-Enhanced Oxidative Dimerization and <i>N</i> -Demethylation of <i>N</i> , <i>N</i> -Dimethylanilines by a Non-Heme Iron(IV)-Oxo Complex. Inorganic Chemistry, 2011, 50, 11612-11622.	4.0	76
168	A Highly Reactive Mononuclear Non-Heme Manganese(IV)–Oxo Complex That Can Activate the Strong C–H Bonds of Alkanes. Journal of the American Chemical Society, 2011, 133, 20088-20091.	13.7	198
169	Highly efficient photocatalytic oxygenation reactions using water as an oxygen source. Nature Chemistry, 2011, 3, 38-41.	13.6	126
170	Contrasting Effects of Axial Ligands on Electronâ€Transfer Versus Protonâ€Coupled Electronâ€Transfer Reactions of Nonheme Oxoiron(IV) Complexes. Chemistry - A European Journal, 2010, 16, 354-361.	3.3	42
171	Water as an Oxygen Source: Synthesis, Characterization, and Reactivity Studies of a Mononuclear Nonheme Manganese(IV) Oxo Complex. Angewandte Chemie - International Edition, 2010, 49, 8190-8194.	13.8	90
172	Synthesis and crystal structure of nickel(II) complexes with bis(5-methyl-2-thiophenemethyl)(2-pyridylmethyl)amine. Polyhedron, 2010, 29, 446-450.	2.2	3
173	Crystal structure of a metal ion-bound oxoiron(IV) complex and implications for biological electron transfer. Nature Chemistry, 2010, 2, 756-759.	13.6	227
174	Dioxygen Activation by a Non-Heme Iron(II) Complex: Formation of an Iron(IV)â^'Oxo Complex via Câ^'H Activation by a Putative Iron(III)â^'Superoxo Species. Journal of the American Chemical Society, 2010, 132, 10668-10670.	13.7	157
175	Manganese(v)–oxo corroles in hydride-transfer reactions. Chemical Communications, 2010, 46, 8160.	4.1	27
176	Hydrogenâ€Atom Abstraction Reactions by Manganese(V)– and Manganese(IV)–Oxo Porphyrin Complexes in Aqueous Solution. Chemistry - A European Journal, 2009, 15, 11482-11489.	3.3	100
177	Water as an Oxygen Source in the Generation of Mononuclear Nonheme Iron(IV) Oxo Complexes. Angewandte Chemie - International Edition, 2009, 48, 1803-1806.	13.8	98
178	Structural Characterization and Remarkable Axial Ligand Effect on the Nucleophilic Reactivity of a Nonheme Manganese(III)–Peroxo Complex. Angewandte Chemie - International Edition, 2009, 48, 4150-4153.	13.8	115
179	An iron(II) complex with a N3S2 thioether ligand in the generation of an iron(IV)-oxo complex and its reactivity in olefin epoxidation. Inorganica Chimica Acta, 2009, 362, 1031-1034.	2.4	27
180	Crystal structures and spectroscopic properties of copper(II) pseudohalide complexes with two sparteine epimers, having a CuN4 chromophore. Polyhedron, 2009, 28, 3060-3064.	2.2	10

#	Article	IF	CITATIONS
181	Dioxygen Activation by Mononuclear Nonheme Iron(II) Complexes Generates Ironâ`Oxygen Intermediates in the Presence of an NADH Analogue and Proton. Journal of the American Chemical Society, 2009, 131, 13910-13911.	13.7	107
182	Mechanistic Insights into Hydride-Transfer and Electron-Transfer Reactions by a Manganese(IV)â^'Oxo Porphyrin Complex. Journal of the American Chemical Society, 2009, 131, 17127-17134.	13.7	67
183	Selective complexation of 3d metal(ii) ions with multidentate and chiral isomers derived from condensation of 2-pyridinecarboxaldehyde with triethylenetetramine. Dalton Transactions, 2009, , 126-133.	3.3	16
184	High-valent manganese(v)–oxo porphyrin complexes in hydride transfer reactions. Chemical Communications, 2009, , 704-706.	4.1	43
185	Dibromido(dimethyl sulfoxide-κ <i>O</i>)(1,10-phenanthroline-κ ² <i>N</i> , <i>N</i> ′)copper(II). Acta Crystallographica Section C: Crystal Structure Communications, 2008, 64, m153-m155.	0.4	1
186	Theoretical Investigation on the Mechanism of Oxygen Atom Transfer between Two Non-Heme Iron Centres. European Journal of Inorganic Chemistry, 2008, 2008, 1027-1030.	2.0	7
187	Experiment and Theory Reveal the Fundamental Difference between Twoâ€State and Singleâ€State Reactivity Patterns in Nonheme Fe ^{IV} O versus Ru ^{IV} O Oxidants. Angewandte Chemie - International Edition, 2008, 47, 3356-3359.	13.8	74
188	Hydrogen Atom Abstraction and Hydride Transfer Reactions by Iron(IV)–Oxo Porphyrins. Angewandte Chemie - International Edition, 2008, 47, 7321-7324.	13.8	113
189	Reactivity of a cobalt(III)-peroxo complex in oxidative nucleophilic reactions. Journal of Inorganic Biochemistry, 2008, 102, 2155-2159.	3.5	56
190	Fundamental Electron-Transfer Properties of Non-heme Oxoiron(IV) Complexes. Journal of the American Chemical Society, 2008, 130, 434-435.	13.7	144
191	Sequential Electron-Transfer and Proton-Transfer Pathways in Hydride-Transfer Reactions from Dihydronicotinamide Adenine Dinucleotide Analogues to Non-heme Oxoiron(IV) Complexes and <i>p</i> -Chloranil. Detection of Radical Cations of NADH Analogues in Acid-Promoted Hydride-Transfer Reactions. Journal of the American Chemical Society, 2008, 130, 15134-15142.	13.7	84
192	Combined Experimental and Theoretical Approach To Understand the Reactivity of a Mononuclear Cu(II)â''Hydroperoxo Complex in Oxygenation Reactions. Journal of Physical Chemistry A, 2008, 112, 13102-13108.	2.5	25
193	[Mn(tmc)(O2)]+: A Side-On Peroxido Manganese(III) Complex Bearing a Non-Heme Ligand. Angewandte Chemie - International Edition, 2007, 46, 377-380.	13.8	127
194	Bis(2,2′-bipyridine-1κ2N,N′)-μ-bromido-1:2κ2Br-tribromido-2κ3Br-copper(II)mercury(II). Acta Crystallograp Section E: Structure Reports Online, 2007, 63, m1952-m1953.	ohica 0.2	0
195	Protonless NMR Experiments for Sequence-Specific Assignment of Backbone Nuclei in Unfolded Proteins. Journal of the American Chemical Society, 2006, 128, 3918-3919.	13.7	176
196	Tris(1,10-phenanthroline)copper(II) di-μ-iodo-bis(diiodomercurate) dimethyl sulfoxide monohydrate. Acta Crystallographica Section C: Crystal Structure Communications, 2006, 62, m51-m53.	0.4	1
197	Structural and magnetic characterization of copper(II) halide complexes with 2-(dimethylaminomethyl)-3-hydroxypyridine. Polyhedron, 2005, 24, 377-382.	2.2	28
198	Dichloro[(6R,7S,8S,14S)-(–)-sparteine-κ2N,Nâ€2]mercury(II). Acta Crystallographica Section C: Crystal Structure Communications, 2005, 61, m504-m506.	0.4	5

#	Article	IF	CITATIONS
199	Conformational variability of matrix metalloproteinases: Beyond a single 3D structure. Proceedings of the United States of America, 2005, 102, 5334-5339.	7.1	143
200	Dichloro[(6R,7S,8S,14S)-(–)-sparteine-κ2N,N′]nickel(II). Acta Crystallographica Section C: Crystal Structure Communications, 2004, 60, m174-m176.	0.4	3
201	[(6R,7S,8S,14R)-(–)-α-Isosparteine-κ2N,Nâ€2]bis(nitrito-κ2O,Oâ€2)copper(II). Acta Crystallographica Section E Structure Reports Online, 2004, 60, m1573-m1575.	: 0.2	1
202	Paramagnetic Metal Ions in Ligand Screening: The Coll Matrix Metalloproteinase 12. Angewandte Chemie - International Edition, 2004, 43, 2254-2256.	13.8	54
203	Polymorphism and weak antiferromagnetic interactions in dibromo[(â^')-sparteine-N,Nâ€2]copper(II). Inorganica Chimica Acta, 2004, 357, 2602-2608.	2.4	18
204	Synthesis and physicochemical properties of charge transfer compounds derived from the reaction of tetrathiafulvalene with copper(II). Polyhedron, 2004, 23, 2111-2115.	2.2	2
205	Paramagnetism-Based Refinement Strategy for the Solution Structure of Human α-Parvalbuminâ€. Biochemistry, 2004, 43, 5562-5573.	2.5	32
206	Structural basis for sequential displacement of Ca2+ by Yb3+ in a protozoan EF-hand calcium binding protein. Protein Science, 2003, 12, 412-425.	7.6	13
207	Relationships among structure and spectroscopic properties in tetrahedrally distorted copper(II) (â^²)-sparteine dichloride. Inorganic Chemistry Communication, 2003, 6, 197-201.	3.9	33
208	Bis(azido-κN)[(6R,7S,8S,14S)-(–)-sparteine-κ2N,Nâ€2]copper(II). Acta Crystallographica Section C: Crystal Structure Communications, 2003, 59, m64-m66.	0.4	6
209	Synthesis, Characterization, and Structure of Metal(II) (-)-Sparteine Complexes Containing Acetate Ligands. Journal of Coordination Chemistry, 2003, 56, 635-646.	2.2	19
210	Paramagnetically Induced Residual Dipolar Couplings for Solution Structure Determination of Lanthanide Binding Proteins. Journal of the American Chemical Society, 2002, 124, 5581-5587.	13.7	86
211	Detecting Small Structural Changes in Metalloproteins by the Use of NMR Pseudocontact Shifts. European Journal of Inorganic Chemistry, 2002, 2002, 2121-2127.	2.0	6
212	(–)-α-Isosparteine copper(II) diazide. Acta Crystallographica Section C: Crystal Structure Communications, 2002, 58, m361-m362.	0.4	6
213	Dibromo[(–)-sparteine-κ2N,Nâ€2]zinc(II). Acta Crystallographica Section C: Crystal Structure Communications, 2002, 58, m453-m454.	0.4	8
214	Redetermination of (6R,7S,9S,11S)-(–)-sparteinium monoperchlorate. Acta Crystallographica Section C: Crystal Structure Communications, 2002, 58, o733-o734.	0.4	4
215	Nicotinium tetrachlorocuprate(II). Acta Crystallographica Section E: Structure Reports Online, 2002, 58, m583-m585.	0.2	11
216	A paramagnetic probe to localize residues next to carboxylates on protein surfaces. Journal of Biological Inorganic Chemistry, 2002, 7, 617-622.	2.6	24

#	Article	IF	CITATIONS
217	Structure-independent cross-validation between residual dipolar couplings originating from internal and external orienting media. Journal of Biomolecular NMR, 2002, 22, 365-368.	2.8	14
218	Magnetic Susceptibility Tensor Anisotropies for a Lanthanide Ion Series in a Fixed Protein Matrix. Journal of the American Chemical Society, 2001, 123, 4181-4188.	13.7	183
219	Locating the Metal Ion in Calcium-Binding Proteins by Using Cerium(III) as a Probe. ChemBioChem, 2001, 2, 550-558.	2.6	66
220	(â^')-Sparteine copper(II) diacetate. Acta Crystallographica Section C: Crystal Structure Communications, 2000, 56, 67-68.	0.4	11
221	Lanthanide-Induced Pseudocontact Shifts for Solution Structure Refinements of Macromolecules in Shells up to 40 Ã from the Metal Ion. Journal of the American Chemical Society, 2000, 122, 4154-4161.	13.7	212
222	Heme compound II models in chemoselectivity and disproportionation reactions. Chemical Science, 0, , .	7.4	8