
Miguel A Aloy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5054028/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	8.3	2,314
2	GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Physical Review X, 2019, 9, .	8.9	2,022
3	GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101.	7.8	1,473
4	GW190425: Observation of a Compact Binary Coalescence with Total MassÂâ^1⁄4Â3.4 M _⊙ . Astrophysical Journal Letters, 2020, 892, L3.	8.3	1,049
5	Properties of the Binary Neutron Star Merger GW170817. Physical Review X, 2019, 9, .	8.9	728
6	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. Astrophysical Journal Letters, 2019, 882, L24.	8.3	566
7	Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. Physical Review D, 2019, 100, .	4.7	470
8	Black holes, gravitational waves and fundamental physics: a roadmap. Classical and Quantum Gravity, 2019, 36, 143001.	4.0	451
9	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
10	THE MISSING LINK: MERGING NEUTRON STARS NATURALLY PRODUCE JET-LIKE STRUCTURES AND CAN POWER SHORT GAMMA-RAY BURSTS. Astrophysical Journal Letters, 2011, 732, L6.	8.3	383
11	Tests of General Relativity with GW170817. Physical Review Letters, 2019, 123, 011102.	7.8	370
12	Relativistic Jets from Collapsars. Astrophysical Journal, 2000, 531, L119-L122.	4.5	252
13	Relativistic outflows from remnants of compact object mergers and their viability for short gamma-ray bursts. Astronomy and Astrophysics, 2005, 436, 273-311.	5.1	206
14	Search for the isotropic stochastic background using data from Advanced LIGO's second observing run. Physical Review D, 2019, 100, .	4.7	200
15	A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals. Classical and Quantum Gravity, 2020, 37, 055002.	4.0	188
16	First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814. Astrophysical Journal Letters, 2019, 876, L7.	8.3	179
17	GENESIS: A Highâ€Resolution Code for Threeâ€dimensional Relativistic Hydrodynamics. Astrophysical Journal, Supplement Series, 1999, 122, 151-166.	7.7	157
18	A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart. Astrophysical Journal Letters, 2019, 871, L13.	8.3	145

#	Article	IF	CITATIONS
19	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	4.5	144
20	Semi-global simulations of the magneto-rotational instability in core collapse supernovae. Astronomy and Astrophysics, 2009, 498, 241-271.	5.1	132
21	Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run. Physical Review Letters, 2019, 123, 161102.	7.8	119
22	Jet Stability and the Generation of Superluminal and Stationary Components. Astrophysical Journal, 2001, 549, L183-L186.	4.5	116
23	A dust-enshrouded tidal disruption event with a resolved radio jet in a galaxy merger. Science, 2018, 361, 482-485.	12.6	113
24	Axisymmetric simulations of magneto-rotational core collapse: dynamics and gravitational wave signal. Astronomy and Astrophysics, 2006, 450, 1107-1134.	5.1	113
25	Model comparison from LIGO–Virgo data on GW170817's binary components and consequences for the merger remnant. Classical and Quantum Gravity, 2020, 37, 045006.	4.0	109
26	SPECTRAL EVOLUTION OF SUPERLUMINAL COMPONENTS IN PARSEC-SCALE JETS. Astrophysical Journal, 2009, 696, 1142-1163.	4.5	103
27	All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data. Physical Review D, 2019, 100, .	4.7	102
28	Relativistic MHD simulations of extragalactic jets. Astronomy and Astrophysics, 2005, 436, 503-526.	5.1	101
29	The unusual γ-ray burst GRB 101225A from a helium star/neutron star merger at redshift 0.33. Nature, 2011, 480, 72-74.	27.8	100
30	Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal, 2019, 875, 160.	4.5	97
31	Deceleration of arbitrarily magnetized GRB ejecta: the complete evolution. Astronomy and Astrophysics, 2009, 494, 879-890.	5.1	96
32	High-Resolution Three-dimensional Simulations of Relativistic Jets. Astrophysical Journal, 1999, 523, L125-L128.	4.5	93
33	Neutrino pair annihilation near accreting, stellar-mass black holes. Astronomy and Astrophysics, 2007, 463, 51-67.	5.1	92
34	Does the plasma composition affect the long-term evolution of relativistic jets?. Monthly Notices of the Royal Astronomical Society, 2002, 331, 615-634.	4.4	89
35	ANGULAR ENERGY DISTRIBUTION OF COLLAPSAR-JETS. Astrophysical Journal, 2009, 699, 1261-1273.	4.5	88
36	Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data. Astrophysical Journal, 2019, 879, 10.	4.5	88

#	Article	IF	CITATIONS
37	Axisymmetric simulations of magnetorotational core collapse: approximate inclusion of general relativistic effects. Astronomy and Astrophysics, 2006, 457, 209-222.	5.1	81
38	Three-dimensional Simulations of Relativistic Precessing Jets Probing the Structure of Superluminal Sources. Astrophysical Journal, 2003, 585, L109-L112.	4.5	81
39	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. Physical Review Letters, 2018, 121, 231103.	7.8	77
40	Magnetic field amplification and magnetically supported explosions of collapsing, non-rotating stellar cores. Monthly Notices of the Royal Astronomical Society, 2014, 445, 3169-3199.	4.4	76
41	A Powerful Hydrodynamic Booster for Relativistic Jets. Astrophysical Journal, 2006, 640, L115-L118.	4.5	73
42	GRAVITATIONAL WAVE SIGNATURES IN BLACK HOLE FORMING CORE COLLAPSE. Astrophysical Journal Letters, 2013, 779, L18.	8.3	72
43	Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs. Astrophysical Journal, 2019, 883, 149.	4.5	72
44	Magnetorotational core collapse of possible GRB progenitors – I. Explosion mechanisms. Monthly Notices of the Royal Astronomical Society, 2020, 492, 4613-4634.	4.4	72
45	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. Astrophysical Journal, 2019, 875, 161.	4.5	71
46	Radio Emission from Three-dimensional Relativistic Hydrodynamic Jets: Observational Evidence of Jet Stratification. Astrophysical Journal, 2000, 528, L85-L88.	4.5	69
47	Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo. Physical Review D, 2020, 101, .	4.7	69
48	Protomagnetar and black hole formation in high-mass stars. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 469, L43-L47.	3.3	68
49	Local simulations of the magnetized Kelvin-Helmholtz instability in neutron-star mergers. Astronomy and Astrophysics, 2010, 515, A30.	5.1	63
50	Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO [*] . Astrophysical Journal, 2019, 875, 122.	4.5	61
51	Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run. Physical Review D, 2019, 99, .	4.7	60
52	All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run. Physical Review D, 2019, 100, .	4.7	54
53	Variable Lyα sheds light on the environment surrounding GRB 090426. Monthly Notices of the Royal Astronomical Society, 2011, 414, 479-488.	4.4	53
54	Magnetorotational core collapse of possible GRB progenitors – III. Three-dimensional models. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4942-4963.	4.4	53

#	Article	IF	CITATIONS
55	The radio afterglow of Swift J1644+57 reveals a powerful jet with fast core and slow sheath. Monthly Notices of the Royal Astronomical Society, 2015, 450, 2824-2841.	4.4	52
56	Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. Physical Review D, 2019, 100, .	4.7	52
57	Directional limits on persistent gravitational waves using data from Advanced LIGO's first two observing runs. Physical Review D, 2019, 100, .	4.7	52
58	On the existence of a reverse shock in magnetized gamma-ray burst ejecta. Astronomy and Astrophysics, 2008, 478, 747-753.	5.1	52
59	GRB 060121: Implications of a Short-/Intermediate-Duration Î ³ -Ray Burst at High Redshift. Astrophysical Journal, 2006, 648, L83-L87.	4.5	50
60	RELATIVISTIC MAGNETOHYDRODYNAMICS: RENORMALIZED EIGENVECTORS AND FULL WAVE DECOMPOSITION RIEMANN SOLVER. Astrophysical Journal, Supplement Series, 2010, 188, 1-31.	7.7	50
61	On the dynamic efficiency of internal shocks in magnetized relativistic outflows. Monthly Notices of the Royal Astronomical Society, 2010, 401, 525-532.	4.4	48
62	Magnetorotational core collapse of possible GRB progenitors – II. Formation of protomagnetars and collapsars. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4365-4397.	4.4	47
63	On the maximum magnetic field amplification by the magnetorotational instability in core-collapse supernovae. Monthly Notices of the Royal Astronomical Society, 2016, 460, 3316-3334.	4.4	46
64	Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model. Physical Review D, 2019, 100, .	4.7	46
65	The influence of circumnuclear environment on the radio emission from TDE jets. Monthly Notices of the Royal Astronomical Society, 2017, 464, 2481-2498.	4.4	42
66	Calibration of advanced Virgo and reconstruction of the gravitational wave signal <i>h</i> (<i>t</i>) Tj ETQq0	0 0 rgBT /C	Overlock 10 Tf
67	Internal shocks in relativistic outflows: collisions of magnetized shells. Astronomy and Astrophysics, 2007, 466, 93-106.	5.1	41
68	Synthetic X-ray light curves of BL Lacs from relativistic hydrodynamic simulations. Astronomy and Astrophysics, 2004, 418, 947-958.	5.1	39
69	The impact of non-dipolar magnetic fields in core-collapse supernovae. Monthly Notices of the Royal Astronomical Society, 2020, 492, 58-71.	4.4	39
70	Nucleosynthesis in magneto-rotational supernovae. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	39
71	Evaluation of the repeatability of a swept-source ocular biometer for measuring ocular biometric parameters. Graefe's Archive for Clinical and Experimental Ophthalmology, 2017, 255, 343-349.	1.9	38
72	Core collapse with magnetic fields and rotation. Journal of Physics G: Nuclear and Particle Physics, 2018, 45, 084001.	3.6	38

#	Article	IF	CITATIONS
73	Termination of the magnetorotational instability via parasitic instabilities in core-collapse supernovae. Monthly Notices of the Royal Astronomical Society, 2016, 456, 3782-3802.	4.4	37
74	Multiwavelength afterglow light curves from magnetized gamma-ray burst flows. Monthly Notices of the Royal Astronomical Society, 0, 407, 2501-2510.	4.4	36
75	3D MHD modeling of the expanding remnant of SN 1987A. Astronomy and Astrophysics, 2019, 622, A73.	5.1	36
76	Constraining the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>p</mml:mi></mml:math> -Mode– <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>g</mml:mi> -Mode Tidal Instability with GW170817. Physical Review Letters, 2019, 122, 061104.</mml:math 	7.8	36
77	Stability analysis of relativistic jets from collapsars and its implications on the short-term variability of gamma-ray bursts. Astronomy and Astrophysics, 2002, 396, 693-703.	5.1	35
78	Scheduled Relaxation Jacobi method: Improvements and applications. Journal of Computational Physics, 2016, 321, 369-413.	3.8	33
79	Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube. Astrophysical Journal, 2019, 870, 134.	4.5	32
80	Searching for differences in <i>Swift</i> 's intermediate GRBs. Astronomy and Astrophysics, 2011, 525, A109.	5.1	31
81	Radiative signature of magnetic fields in internal shocks. Monthly Notices of the Royal Astronomical Society, 2012, 421, 2635-2647.	4.4	31
82	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. Astrophysical Journal, 2019, 871, 90.	4.5	30
83	Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo. Astrophysical Journal, 2019, 886, 75.	4.5	29
84	Which physical parameters can be inferred from the emission variability of relativistic jets?. Astronomy and Astrophysics, 2005, 441, 103-115.	5.1	29
85	Neutron star collapse and gravitational waves with a non-convex equation of state. Monthly Notices of the Royal Astronomical Society, 2019, 484, 4980-5008.	4.4	28
86	Offâ€Axis Properties of Short Gammaâ€Ray Bursts. Astrophysical Journal, 2006, 645, 1305-1314.	4.5	27
87	Observational Effects of Anomalous Boundary Layers in Relativistic Jets. Astrophysical Journal, 2008, 681, 84-95.	4.5	27
88	Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGO's Second Observing Run. Astrophysical Journal, 2019, 874, 163.	4.5	26
89	On the Measurements of Numerical Viscosity and Resistivity in Eulerian MHD Codes. Astrophysical Journal, Supplement Series, 2017, 230, 18.	7.7	25
90	Heavy sterile neutrinos in stellar core-collapse. Physical Review D, 2018, 98, .	4.7	23

#	Article	IF	CITATIONS
91	All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run. Physical Review D, 2019, 99, .	4.7	22
92	Striped Blandford/Znajek jets from advection of small-scale magnetic field. Monthly Notices of the Royal Astronomical Society, 2020, 494, 4203-4225.	4.4	22
93	Magnetorotational core collapse of possible gamma-ray burst progenitors – IV. A wider range of progenitors. Monthly Notices of the Royal Astronomical Society, 2022, 512, 2489-2507.	4.4	22
94	Numerical models of blackbody-dominated gamma-ray bursts – II. Emission properties. Monthly Notices of the Royal Astronomical Society, 2015, 446, 1737-1749.	4.4	21
95	Linear theory of the Rayleigh–Taylor instability at a discontinuous surface of a relativistic flow. Monthly Notices of the Royal Astronomical Society, 2017, 472, 1421-1431.	4.4	21
96	Estimation of the mechanical properties of the eye through the study of its vibrational modes. PLoS ONE, 2017, 12, e0183892.	2.5	21
97	Numerically solving the relativistic Grad–Shafranov equation in Kerr spacetimes: numerical techniques. Monthly Notices of the Royal Astronomical Society, 2018, 477, 3927-3944.	4.4	19
98	An efficient implementation of flux formulae in multidimensional relativistic hydrodynamical codes. Computer Physics Communications, 1999, 120, 115-121.	7.5	17
99	An HLLC Riemann solver for resistive relativistic magnetohydrodynamics. Monthly Notices of the Royal Astronomical Society, 2018, 476, 3837-3860.	4.4	17
100	Numerical models of blackbody-dominated gamma-ray bursts – I. Hydrodynamics and the origin of the thermal emission. Monthly Notices of the Royal Astronomical Society, 2015, 446, 1716-1736.	4.4	16
101	Instability of twisted magnetar magnetospheres. Monthly Notices of the Royal Astronomical Society, 2019, 490, 4858-4876.	4.4	14
102	Detection of the high \${sf z}\$ GRB 080913 and its implications on progenitors and energy extraction mechanisms. Astronomy and Astrophysics, 2010, 510, A105.	5.1	13
103	On the equivalence between the Scheduled Relaxation Jacobi method and Richardson's non-stationary method. Journal of Computational Physics, 2017, 332, 446-460.	3.8	13
104	On the existence of a luminosity threshold of GRB jets in massive stars. Monthly Notices of the Royal Astronomical Society, 2018, 478, 3576-3589.	4.4	13
105	Computational general relativistic force-free electrodynamics. Astronomy and Astrophysics, 2021, 647, A58.	5.1	11
106	The influence of the magnetic field on the spectral properties of blazars. Monthly Notices of the Royal Astronomical Society, 2014, 438, 1856-1869.	4.4	10
107	Ocular anatomic changes for different accommodative demands using swept-source optical coherence tomography: a pilot study. Graefe's Archive for Clinical and Experimental Ophthalmology, 2017, 255, 2399-2406.	1.9	9
108	Ocular biometric changes with different accommodative stimuli using swept-source optical coherence tomography. International Ophthalmology, 2019, 39, 303-310.	1.4	9

#	Article	IF	CITATIONS
109	The advanced Virgo longitudinal control system for the O2 observing run. Astroparticle Physics, 2020, 116, 102386.	4.3	9
110	On the convexity of relativistic ideal magnetohydrodynamics. Classical and Quantum Gravity, 2015, 32, 095007.	4.0	8
111	Evolution of the surface magnetic field of rotating proto-neutron stars. Journal of Physics: Conference Series, 2017, 932, 012043.	0.4	8
112	Computational general relativistic force-free electrodynamics. Astronomy and Astrophysics, 2021, 647, A57.	5.1	8
113	Anomalous dynamics triggered by a non-convex equation of state in relativistic flows. Monthly Notices of the Royal Astronomical Society, 2018, 476, 1100-1110.	4.4	7
114	Riemann Solvers in General Relativistic Hydrodynamics. , 2001, , 485-496.		6
115	Effect of contact lenses on ocular biometric measurements based on swept-source optical coherence tomography. Arquivos Brasileiros De Oftalmologia, 2019, 82, 129-135.	0.5	6
116	Diffusivity in force-free simulations of global magnetospheres. Monthly Notices of the Royal Astronomical Society, 2021, 509, 1504-1520.	4.4	6
117	A method for computing synchrotron and inverse-Compton emission from hydrodynamic simulations of supernova remnants. High Energy Density Physics, 2015, 17, 92-97.	1.5	4
118	Termination of the MRI via parasitic instabilities in core-collapse supernovae: influence of numerical methods. Journal of Physics: Conference Series, 2016, 719, 012009.	0.4	4
119	On the influence of a hybrid thermal–non-thermal distribution in the internal shocks model for blazars. Monthly Notices of the Royal Astronomical Society, 2017, 468, 1169-1182.	4.4	4
120	MHD Simulations of Relativistic Jets. Astrophysics and Space Science, 2004, 293, 157-163.	1.4	3
121	Numerical simulations of the jetted tidal disruption event Swift J1644+57. Journal of Physics: Conference Series, 2016, 719, 012008.	0.4	3
122	Numerical viscosity in simulations of the two-dimensional Kelvin-Helmholtz instability. Journal of Physics: Conference Series, 2020, 1623, 012018.	0.4	3
123	Hydromagnetic instabilities and magnetic field amplification in core collapse supernovae. Journal of Physics: Conference Series, 2011, 314, 012079.	0.4	2
124	Numerical study of emission and dynamics from a TDE-powered jet. EPJ Web of Conferences, 2012, 39, 04003.	0.3	2
125	Numerical simulations of dynamics and emission from relativistic astrophysical jets. Journal of Physics: Conference Series, 2013, 454, 012001.	0.4	2
126	Minimally implicit Runge-Kutta methods for Resistive Relativistic MHD. Journal of Physics: Conference Series, 2016, 719, 012015.	0.4	2

#	Article	IF	CITATIONS
127	How to form a millisecond magnetar? Magnetic field amplification in protoneutron stars. Proceedings of the International Astronomical Union, 2017, 12, 119-124.	0.0	2
128	Magnetorotational Instability in Core-Collapse Supernovae. Acta Physica Polonica B, Proceedings Supplement, 2017, 10, 361.	0.1	2
129	2D hydrodynamic simulations of relativistic jets from collapsars. AIP Conference Proceedings, 2000, , .	0.4	1
130	3D Relativistic Hydrodynamics. , 2002, , 197-226.		1
131	Computation of X-Ray Blazar Light Curves Using RHD Simulations. Astrophysics and Space Science, 2004, 293, 165-172.	1.4	1
132	SIMULATIONS OF DYNAMICS AND EMISSION FROM MAGNETIZED GRB AFTERGLOWS. International Journal of Modern Physics D, 2010, 19, 985-990.	2.1	1
133	Characteristic structure of the resistive relativistic magnetohydrodynamic equations. , 2012, , .		1
134	EFFICIENCY OF INTERNAL SHOCKS IN MAGNETIZED RELATIVISTIC JETS. International Journal of Modern Physics Conference Series, 2012, 08, 360-363.	0.7	1
135	Building a numerical relativistic non-ideal magnetohydrodynamics code for astrophysical applications. Proceedings of the International Astronomical Union, 2013, 9, 64-65.	0.0	1
136	Numerical study of broadband spectra caused by internal shocks in magnetized relativistic jets of blazars. EPJ Web of Conferences, 2013, 61, 02007.	0.3	1
137	Cataclysmic Progenitors of Gamma-Ray Bursts. , 2001, , 33-36.		1
138	Simulations of Relativistic Jets with Genesis. , 2001, , 45-52.		0
139	Relativistic Jets from Collapsars. , 2001, , 53-59.		0
140	Title is missing!. Astrophysics and Space Science, 2001, 276, 293-294.	1.4	0
141	The First Steps in the Life of a GRB. International Astronomical Union Colloquium, 2005, 192, 483-489.	0.1	0
142	Energy Distribution of Relativistic GRB Jets. AIP Conference Proceedings, 2008, , .	0.4	0
143	MAKING UP A SHORT GRB: THE BRIGHT FATE OF MERGERS OF COMPACT OBJECTS. , 2008, , .		0

144 Angular Energy Distribution of Jets from Collapsas. , 2009, , .

0

#	Article	IF	CITATIONS
145	Afterglow light curves from magnetized GRB flows. Proceedings of the International Astronomical Union, 2010, 6, 358-362.	0.0	0
146	High-order methods for the simulation of hydromagnetic instabilities in core-collapse supernovae. Proceedings of the International Astronomical Union, 2010, 6, 479-481.	0.0	0
147	Properties of Swift's intermediate bursts. , 2010, , .		0
148	GRB 101225A - a new class of GRBs?. Proceedings of the International Astronomical Union, 2011, 7, 91-94.	0.0	0
149	Properties of Swiftâ€~s intermediate bursts. , 2011, , .		0
150	Dynamical efficiency of collisionless magnetized shocks in relativistic jets. , 2011, , .		0
151	Hydrodynamical and Emission Simulations of Relativistic Jets: Stability and Generation of Superluminal and Stationary Components. , 2001, , 293-294.		0
152	Simulations of Precessing Jets. , 2003, , 23-26.		0
153	Computation of X-ray Blazar Light Curves Using RHD Simulations. , 2004, , 165-172.		0
154	MHD Simulations of Relativistic Jets. , 2004, , 157-163.		0
155	The First Steps in the Life of a GRB. , 2005, , 483-489.		0