Tatiana Foroud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5052364/publications.pdf

Version: 2024-02-01

17776 30,736 289 65 citations h-index papers

g-index 332 332 332 36354 docs citations times ranked citing authors all docs

7427

157

#	Article	IF	CITATIONS
1	Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nature Genetics, 2013, 45, 1452-1458.	9.4	3,741
2	Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nature Genetics, 2019, 51, 414-430.	9.4	1,962
3	Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease. Nature Genetics, 2014, 46, 989-993.	9.4	1,685
4	Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nature Genetics, 2011, 43, 436-441.	9.4	1,676
5	Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature, 2001, 413, 488-494.	13.7	1,623
6	Genome-wide association study identifies 30 loci associated with bipolar disorder. Nature Genetics, 2019, 51, 793-803.	9.4	1,191
7	Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nature Genetics, 2017, 49, 1373-1384.	9.4	783
8	Common genetic variants influence human subcortical brain structures. Nature, 2015, 520, 224-229.	13.7	772
9	New insights into the genetic etiology of Alzheimer's disease and related dementias. Nature Genetics, 2022, 54, 412-436.	9.4	700
10	Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nature Genetics, 2021, 53, 817-829.	9.4	629
11	Genome-wide search for genes affecting the risk for alcohol dependence. , 1998, 81, 207-215.		625
12	Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature, 2014, 514, 92-97.	13.7	548
13	Transancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders. Nature Neuroscience, 2018, 21, 1656-1669.	7.1	490
14	Genomewide association study for susceptibility genes contributing to familial Parkinson disease. Human Genetics, 2009, 124, 593-605.	1.8	410
15	Alzheimer's Disease Neuroimaging Initiative biomarkers as quantitative phenotypes: Genetics core aims, progress, and plans. Alzheimer's and Dementia, 2010, 6, 265-273.	0.4	378
16	Meta-analysis Confirms CR1, CLU, and PICALM as Alzheimer Disease Risk Loci and Reveals Interactions With APOE Genotypes. Archives of Neurology, 2010, 67, 1473.	4.9	376
17	A Multicenter Study of Glucocerebrosidase Mutations in Dementia With Lewy Bodies. JAMA Neurology, 2013, 70, 727.	4.5	374
18	The Parkinson's progression markers initiative (PPMI) $\hat{a} \in \text{``establishing a PD biomarker cohort. Annals of Clinical and Translational Neurology, 2018, 5, 1460-1477.}$	1.7	330

#	Article	IF	CITATIONS
19	Functional variants in the <i>LRRK2</i> gene confer shared effects on risk for Crohn's disease and Parkinson's disease. Science Translational Medicine, 2018, 10, .	5.8	273
20	Localization of the gene for familial primary pulmonary hypertension to chromosome 2q31–32. Nature Genetics, 1997, 15, 277-280.	9.4	260
21	Novel genetic loci associated with hippocampal volume. Nature Communications, 2017, 8, 13624.	5.8	250
22	Exceptionally low likelihood of Alzheimer's dementia in APOE2 homozygotes from a 5,000-person neuropathological study. Nature Communications, 2020, 11, 667.	5.8	246
23	Genetic studies of quantitative MCI and AD phenotypes in ADNI: Progress, opportunities, and plans. Alzheimer's and Dementia, 2015, 11, 792-814.	0.4	241
24	Alcoholism Susceptibility Loci: Confirmation Studies in a Replicate Sample and Further Mapping. Alcoholism: Clinical and Experimental Research, 2000, 24, 933-945.	1.4	224
25	Novel genetic loci underlying human intracranial volume identified through genome-wide association. Nature Neuroscience, 2016, 19, 1569-1582.	7.1	213
26	Guidelines for the standardization of preanalytic variables for bloodâ€based biomarker studies in Alzheimer's disease research. Alzheimer's and Dementia, 2015, 11, 549-560.	0.4	205
27	Identification of Pathways for Bipolar Disorder. JAMA Psychiatry, 2014, 71, 657.	6.0	204
28	Linkage of the Indiana kindred of Gerstmann-StrÃussler-Scheinker disease to the prion protein gene. Nature Genetics, 1992, 1, 64-67.	9.4	202
29	A large-scale genome-wide association study meta-analysis of cannabis use disorder. Lancet Psychiatry,the, 2020, 7, 1032-1045.	3.7	200
30	Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture. Nature Genetics, 2021, 53, 294-303.	9.4	198
31	A genome screen of maximum number of drinks as an alcoholism phenotype. American Journal of Medical Genetics Part A, 2000, 96, 632-637.	2.4	197
32	Differences in duration of Huntington's disease based on age at onset. Journal of Neurology, Neurosurgery and Psychiatry, 1999, 66, 52-56.	0.9	195
33	Genetic architecture of subcortical brain structures in 38,851 individuals. Nature Genetics, 2019, 51, 1624-1636.	9.4	192
34	A Quantitative Trait Locus for Alcohol Consumption in Selectively Bred Rat Lines. Alcoholism: Clinical and Experimental Research, 1998, 22, 884-887.	1.4	190
35	Genome-wide association study of 40,000 individuals identifies two novel loci associated with bipolar disorder. Human Molecular Genetics, 2016, 25, 3383-3394.	1.4	182
36	Convergent genetic and expression data implicate immunity in Alzheimer's disease. Alzheimer's and Dementia, 2015, 11, 658-671.	0.4	173

#	Article	IF	Citations
37	Effects of Multiple Genetic Loci on Age at Onset in Late-Onset Alzheimer Disease. JAMA Neurology, 2014, 71, 1394.	4.5	166
38	Transethnic genomeâ€wide scan identifies novel Alzheimer's disease loci. Alzheimer's and Dementia, 2017, 13, 727-738.	0.4	166
39	A description of the methods of the Nulliparous Pregnancy Outcomes Study: monitoring mothers-to-be (nuMoM2b). American Journal of Obstetrics and Gynecology, 2015, 212, 539.e1-539.e24.	0.7	160
40	<i>APOE</i> effect on Alzheimer's disease biomarkers in older adults with significant memory concern. Alzheimer's and Dementia, 2015, 11, 1417-1429.	0.4	157
41	Gene-Wide Analysis Detects Two New Susceptibility Genes for Alzheimer's Disease. PLoS ONE, 2014, 9, e94661.	1.1	155
42	Initial genomic scan of the NIMH genetics initiative bipolar pedigrees: Chromosomes 3, 5, 15, 16, 17, and $22., 1997, 74, 238-246.$		149
43	Identification of TMEM230 mutations in familial Parkinson's disease. Nature Genetics, 2016, 48, 733-739.	9.4	146
44	Meta-Analysis of Genome-Wide Scans Provides Evidence for Sex- and Site-Specific Regulation of Bone Mass. Journal of Bone and Mineral Research, 2006, 22, 173-183.	3.1	144
45	Novel Alzheimer Disease Risk Loci and Pathways in African American Individuals Using the African Genome Resources Panel. JAMA Neurology, 2021, 78, 102.	4.5	144
46	Phenotypic Dissection of Bone Mineral Density Reveals Skeletal Site Specificity and Facilitates the Identification of Novel Loci in the Genetic Regulation of Bone Mass Attainment. PLoS Genetics, 2014, 10, e1004423.	1.5	134
47	TREM2 is associated with increased risk for Alzheimer's disease in African Americans. Molecular Neurodegeneration, 2015, 10, 19.	4.4	130
48	Penetrance estimate of <i>LRRK2</i> p.G2019S mutation in individuals of nonâ€Ashkenazi Jewish ancestry. Movement Disorders, 2017, 32, 1432-1438.	2.2	126
49	Finding useful biomarkers for Parkinson's disease. Science Translational Medicine, 2018, 10, .	5.8	125
50	Cognitive scores in carriers of huntington's disease gene compared to noncarriers. Annals of Neurology, 1995, 37, 657-664.	2.8	122
51	GWAS of longitudinal amyloid accumulation on ¹⁸ F-florbetapir PET in Alzheimer's disease implicates microglial activation gene <i>IL1RAP</i> Brain, 2015, 138, 3076-3088.	3.7	117
52	Association of Blood Biomarkers With Acute Sport-Related Concussion in Collegiate Athletes. JAMA Network Open, 2020, 3, e1919771.	2.8	116
53	Alcoholism susceptibility loci: confirmation studies in a replicate sample and further mapping. Alcoholism: Clinical and Experimental Research, 2000, 24, 933-45.	1.4	107
54	Genomic screen for QTLs underlying alcohol consumption in the P and NP rat lines. Mammalian Genome, 1998, 9, 949-955.	1.0	106

#	Article	IF	CITATIONS
55	Genome Screen for Quantitative Trait Loci Underlying Normal Variation in Femoral Structure. Journal of Bone and Mineral Research, 2001, 16, 985-991.	3.1	106
56	Genome-Wide Association Study of Intracranial Aneurysms Confirms Role of Anril and SOX17 in Disease Risk. Stroke, 2012, 43, 2846-2852.	1.0	106
57	Genome-Wide Association Studies for Taxane-Induced Peripheral Neuropathy in ECOG-5103 and ECOG-1199. Clinical Cancer Research, 2015, 21, 5082-5091.	3.2	106
58	Stress–response pathways are altered in the hippocampus of chronic alcoholics. Alcohol, 2013, 47, 505-515.	0.8	104
59	Validation of Serum Neurofilament Light Chain as a Biomarker of Parkinson's Disease Progression. Movement Disorders, 2020, 35, 1999-2008.	2.2	104
60	Association of the OPRM1 Variant rs1799971 (A118G) with Non-Specific Liability to Substance Dependence in a Collaborative de novo Meta-Analysis of European-Ancestry Cohorts. Behavior Genetics, 2016, 46, 151-169.	1.4	98
61	Two rare <i>AKAP9</i> variants are associated with Alzheimer's disease in African Americans. Alzheimer's and Dementia, 2014, 10, 609.	0.4	94
62	Clinical and dopamine transporter imaging characteristics of non-manifest LRRK2 and GBA mutation carriers in the Parkinson's Progression Markers Initiative (PPMI): a cross-sectional study. Lancet Neurology, The, 2020, 19, 71-80.	4.9	94
63	Polygenic Risk for Externalizing Disorders. Clinical Psychological Science, 2015, 3, 189-201.	2.4	92
64	Two novel loci, <i>COBL</i> and <i>SLC10A2</i> , for Alzheimer's disease in African Americans. Alzheimer's and Dementia, 2017, 13, 119-129.	0.4	87
65	Meta-analysis of up to 622,409 individuals identifies 40 novel smoking behaviour associated genetic loci. Molecular Psychiatry, 2020, 25, 2392-2409.	4.1	83
66	Leveraging genome-wide data to investigate differences between opioid use vs. opioid dependence in 41,176 individuals from the Psychiatric Genomics Consortium. Molecular Psychiatry, 2020, 25, 1673-1687.	4.1	82
67	A mutation in myotilin causes spheroid body myopathy. Neurology, 2005, 65, 1936-1940.	1.5	81
68	APOE $\hat{l}\mu4$ and the risk for Alzheimer disease and cognitive decline in African Americans and Yoruba. International Psychogeriatrics, 2014, 26, 977-985.	0.6	79
69	Association of Alcohol Craving With ?-Synuclein (SNCA). Alcoholism: Clinical and Experimental Research, 2007, 31, 070212174136009-???.	1.4	76
70	Genome-Wide Association Study for Anthracycline-Induced Congestive Heart Failure. Clinical Cancer Research, 2017, 23, 43-51.	3.2	73
71	Polygenic Scores for Major Depressive Disorder and Risk of Alcohol Dependence. JAMA Psychiatry, 2017, 74, 1153.	6.0	73
72	Whole-Exome Sequencing in Familial Parkinson Disease. JAMA Neurology, 2016, 73, 68.	4.5	71

#	Article	IF	CITATIONS
73	Comparison of Parent, Peer, Psychiatric, and Cannabis Use Influences Across Stages of Offspring Alcohol Involvement: Evidence from the <scp>COGA</scp> Prospective Study. Alcoholism: Clinical and Experimental Research, 2017, 41, 359-368.	1.4	71
74	Targeted neurogenesis pathway-based gene analysis identifies ADORA2A associated with hippocampal volume in mild cognitive impairment and Alzheimer's disease. Neurobiology of Aging, 2017, 60, 92-103.	1.5	70
75	DNM3 and genetic modifiers of age of onset in LRRK2 Gly2019Ser parkinsonism: a genome-wide linkage and association study. Lancet Neurology, The, 2016, 15, 1248-1256.	4.9	69
76	Exome Chip Meta-analysis Fine Maps Causal Variants and Elucidates the Genetic Architecture of Rare Coding Variants in Smoking and AlcoholÂUse. Biological Psychiatry, 2019, 85, 946-955.	0.7	69
77	Genetic influences on craving for alcohol. Addictive Behaviors, 2013, 38, 1501-1508.	1.7	67
78	Analysis of whole genome-transcriptomic organization in brain to identify genes associated with alcoholism. Translational Psychiatry, 2019, 9, 89.	2.4	66
79	Suggestive evidence of a locus on chromosome 10p using the NIMH genetics initiative bipolar affective disorder pedigrees., 2000, 96, 18-23.		65
80	Variability in Skeletal Mass, Structure, and Biomechanical Properties Among Inbred Strains of Rats. Journal of Bone and Mineral Research, 2001, 16, 1532-1539.	3.1	65
81	Linkage of an Alcoholism-Related Severity Phenotype to Chromosome 16. Alcoholism: Clinical and Experimental Research, 1998, 22, 2035-2042.	1.4	63
82	AluY-mediated germline deletion, duplication and somatic stem cell reversion in <i>UBE2T </i> defines a new subtype of Fanconi anemia. Human Molecular Genetics, 2015, 24, 5093-5108.	1.4	62
83	Inflammatory profile in LRRK2-associated prodromal and clinical PD. Journal of Neuroinflammation, 2016, 13, 122.	3.1	57
84	Harnessing peripheral DNA methylation differences in the Alzheimer's Disease Neuroimaging Initiative (ADNI) to reveal novel biomarkers of disease. Clinical Epigenetics, 2020, 12, 84.	1.8	57
85	Inflammatory profile discriminates clinical subtypes in <i>LRRK2</i> â€essociated Parkinson's disease. European Journal of Neurology, 2017, 24, 427.	1.7	56
86	Genomeâ€wide association studies of alcohol dependence, DSMâ€N criterion count and individual criteria. Genes, Brain and Behavior, 2019, 18, e12579.	1.1	56
87	Neurology Individualized Medicine: When to Use Next-Generation Sequencing Panels. Mayo Clinic Proceedings, 2017, 92, 292-305.	1.4	55
88	Genetic risk for schizophrenia and psychosis in Alzheimer disease. Molecular Psychiatry, 2018, 23, 963-972.	4.1	55
89	Evolution of Alzheimer's Disease Cerebrospinal Fluid Biomarkers in Early Parkinson's Disease. Annals of Neurology, 2020, 88, 574-587.	2.8	55
90	Genomeâ€wide Association Study and Metaâ€analysis on Alcoholâ€Associated Liver Cirrhosis Identifies Genetic Risk Factors. Hepatology, 2021, 73, 1920-1931.	3.6	54

#	Article	IF	CITATIONS
91	Chromosome workshop: Chromosomes 11, 14, and 15. American Journal of Medical Genetics Part A, 1999, 88, 244-254.	2.4	53
92	The Systemic Synuclein Sampling Study: toward a biomarker for Parkinson's disease. Biomarkers in Medicine, 2017, 11, 359-368.	0.6	50
93	Assessment of first and second degree relatives of individuals with bipolar disorder shows increased genetic risk scores in both affected relatives and young Atâ€Risk Individuals. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2015, 168, 617-629.	1.1	49
94	The Role of Cardiovascular Risk Factors and Stroke in Familial Alzheimer Disease. JAMA Neurology, 2016, 73, 1231.	4.5	49
95	Parkinson's disease biomarkers: perspective from the NINDS Parkinson's Disease Biomarkers Program. Biomarkers in Medicine, 2017, 11, 451-473.	0.6	49
96	The Tachykinin Receptor 3 Is Associated With Alcohol and Cocaine Dependence. Alcoholism: Clinical and Experimental Research, 2008, 32, 1023-1030.	1.4	48
97	Age-Specific Incidence Rates for Dementia and Alzheimer Disease in NIA-LOAD/NCRAD and EFIGA Families. JAMA Neurology, 2014, 71, 315.	4.5	48
98	Clinical and Dopamine Transporter Imaging Characteristics of Leucine Rich Repeat Kinase 2 (LRRK2) and Glucosylceramidase Beta (GBA) Parkinson's Disease Participants in the Parkinson's Progression Markers Initiative: A Crossâ€Sectional Study. Movement Disorders, 2020, 35, 833-844.	2.2	48
99	Genome Screen to Detect Linkage to Intracranial Aneurysm Susceptibility Genes. Stroke, 2008, 39, 1434-1440.	1.0	47
100	Knowledge gaps and research recommendations for essential tremor. Parkinsonism and Related Disorders, 2016, 33, 27-35.	1.1	46
101	Shared Genetic Risk Factors of Intracranial, Abdominal, and Thoracic Aneurysms. Journal of the American Heart Association, 2016, 5, .	1.6	45
102	Genome-wide search for genes affecting the risk for alcohol dependence., 1998, 81, 207.		45
103	Heterogeneity in hereditary pancreatitis. , 1998, 77, 47-53.		43
104	Lack of Association of Alcohol Dependence and Habitual Smoking With Catechol-O-methyltransferase. Alcoholism: Clinical and Experimental Research, 2007, 31, 1773-1779.	1.4	43
105	Association of plasma and cortical amyloid beta is modulated by <i>APOE</i> $\hat{l}\mu$ 4 status. Alzheimer's and Dementia, 2014, 10, e9-e18.	0.4	43
106	⟨i⟩GABRR1⟨ i⟩ and ⟨i⟩GABRR2⟨ i⟩, encoding the GABAâ€A receptor subunits and and	1.1	42
107	Global and local ancestry in Africanâ€Americans: Implications for Alzheimer's disease risk. Alzheimer's and Dementia, 2016, 12, 233-243.	0.4	42
108	Genetics of Alcoholism: A Review of Recent Studies in Human and Animal Models. American Journal on Addictions, 1999, 8, 261-278.	1.3	41

#	Article	IF	Citations
109	Rarity of the Alzheimer Disease–Protective <i>APP</i> A673T Variant in the United States. JAMA Neurology, 2015, 72, 209.	4.5	41
110	Genome-wide association data suggest ABCB1 and immune-related gene sets may be involved in adult antisocial behavior. Translational Psychiatry, 2015, 5, e558-e558.	2.4	39
111	NIPT and Informed Consent: an Assessment of Patient Understanding of a Negative NIPT Result. Journal of Genetic Counseling, 2016, 25, 1127-1137.	0.9	39
112	Genome-wide association study identifies a novel locus for cannabis dependence. Molecular Psychiatry, 2018, 23, 1293-1302.	4.1	39
113	DSM-5 cannabis use disorder: A phenotypic and genomic perspective. Drug and Alcohol Dependence, 2014, 134, 362-369.	1.6	38
114	Clinical-Genetic Associations in the Prospective Huntington at Risk Observational Study (PHAROS). JAMA Neurology, 2016, 73, 102.	4.5	38
115	Prenatal Alcohol Exposure: Advancing Knowledge Through International Collaborations. Alcoholism: Clinical and Experimental Research, 2003, 27, 118-135.	1.4	37
116	Genetic variant predicts bevacizumab-induced hypertension in ECOG-5103 and ECOG-2100. British Journal of Cancer, 2014, 111, 1241-1248.	2.9	37
117	A Multiancestral Genome-Wide Exome Array Study of Alzheimer Disease, Frontotemporal Dementia, and Progressive Supranuclear Palsy. JAMA Neurology, 2015, 72, 414.	4.5	37
118	Dopamine transporter imaging predicts clinicallyâ€defined <i>α</i> â€synucleinopathy in REM sleep behavior disorder. Annals of Clinical and Translational Neurology, 2021, 8, 201-212.	1.7	37
119	Charcot-Marie-Tooth gene, SBF2, associated with taxane-induced peripheral neuropathy in African Americans. Oncotarget, 2016, 7, 82244-82253.	0.8	35
120	Saccadic Eye Movements Are Associated With a Family History of Alcoholism at Baseline and After Exposure to Alcohol. Alcoholism: Clinical and Experimental Research, 2002, 26, 1568-1573.	1.4	34
121	Combined Face–Brain Morphology and Associated Neurocognitive Correlates in Fetal Alcohol Spectrum Disorders. Alcoholism: Clinical and Experimental Research, 2018, 42, 1769-1782.	1.4	34
122	The Longitudinal Earlyâ€onset Alzheimer's Disease Study (LEADS): Framework and methodology. Alzheimer's and Dementia, 2021, 17, 2043-2055.	0.4	34
123	Multi-omics integration analysis identifies novel genes for alcoholism with potential overlap with neurodegenerative diseases. Nature Communications, 2021, 12, 5071.	5.8	34
124	Genetics of alcoholism. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2014, 125, 561-571.	1.0	33
125	Comprehensive Gene- and Pathway-Based Analysis of Depressive Symptoms in Older Adults. Journal of Alzheimer's Disease, 2015, 45, 1197-1206.	1.2	33
126	A genetic risk score and diabetes predict development of alcohol-related cirrhosis in drinkers. Journal of Hepatology, 2022, 76, 275-282.	1.8	33

#	Article	IF	CITATIONS
127	Lessons Learned from Whole Exome Sequencing in Multiplex Families Affected by a Complex Genetic Disorder, Intracranial Aneurysm. PLoS ONE, 2015, 10, e0121104.	1.1	32
128	Immunohistochemical Method and Histopathology Judging for the Systemic Synuclein Sampling Study (S4). Journal of Neuropathology and Experimental Neurology, 2018, 77, 793-802.	0.9	32
129	Persistent Changes in Stressâ€Regulatory Genes in Pregnant Women or Children Exposed Prenatally to Alcohol. Alcoholism: Clinical and Experimental Research, 2019, 43, 1887-1897.	1.4	31
130	Genomewide Association Studies of <scp><i>LRRK2</i></scp> Modifiers of Parkinson's Disease. Annals of Neurology, 2021, 90, 76-88.	2.8	30
131	Genome-wide association identifies the first risk loci for psychosis in Alzheimer disease. Molecular Psychiatry, 2021, 26, 5797-5811.	4.1	30
132	Spheroid body myopathy revisited., 1997, 20, 1127-1136.		29
133	Reliability of reported age at onset for Parkinson's disease. Movement Disorders, 2003, 18, 275-279.	2.2	29
134	Genome-wide survival analysis of age at onset of alcohol dependence in extended high-risk COGA families. Drug and Alcohol Dependence, 2014, 142, 56-62.	1.6	29
135	Brief Report: Genetics of Alcoholic Cirrhosisâ€" <scp>G</scp> enom <scp>ALC</scp> Multinational Study. Alcoholism: Clinical and Experimental Research, 2015, 39, 836-842.	1.4	29
136	Facial Curvature Detects and Explicates Ethnic Differences in Effects of Prenatal Alcohol Exposure. Alcoholism: Clinical and Experimental Research, 2017, 41, 1471-1483.	1.4	28
137	Association analysis of rare variants near the APOE region with CSF and neuroimaging biomarkers of Alzheimer's disease. BMC Medical Genomics, 2017, 10, 29.	0.7	28
138	Cancer outcomes among Parkinson's disease patients with leucine rich repeat kinase 2 mutations, idiopathic Parkinson's disease patients, and nonaffected controls. Movement Disorders, 2019, 34, 1392-1398.	2.2	28
139	An endophenotype approach to the genetics of alcohol dependence: a genome wide association study of fast beta EEG in families of African ancestry. Molecular Psychiatry, 2017, 22, 1767-1775.	4.1	27
140	A novel <i>SNCA</i> E83Q mutation in a case of dementia with Lewy bodies and atypical frontotemporal lobar degeneration. Neuropathology, 2020, 40, 620-626.	0.7	27
141	Genome screen in familial intracranial aneurysm. BMC Medical Genetics, 2009, 10, 3.	2.1	26
142	Allele-specific expression and high-throughput reporter assay reveal functional genetic variants associated with alcohol use disorders. Molecular Psychiatry, 2021, 26, 1142-1151.	4.1	26
143	Assessment of Blood Biomarker Profile After Acute Concussion During Combative Training Among US Military Cadets. JAMA Network Open, 2021, 4, e2037731.	2.8	25
144	Obesity, Diabetes, Coffee, Tea, and Cannabis Use Alter Risk for Alcohol-Related Cirrhosis in 2 Large Cohorts of High-Risk Drinkers. American Journal of Gastroenterology, 2021, 116, 106-115.	0.2	25

#	Article	IF	Citations
145	Linkage analyses in Caribbean Hispanic families identify novel loci associated with familial lateâ€onset Alzheimer's disease. Alzheimer's and Dementia, 2015, 11, 1397-1406.	0.4	24
146	Genomeâ€wide linkage analyses of nonâ€Hispanic white families identify novel loci for familial lateâ€onset Alzheimer's disease. Alzheimer's and Dementia, 2016, 12, 2-10.	0.4	24
147	Exome Sequencing Identifies Candidate Genetic Modifiers of Syndromic and Familial Thoracic Aortic Aneurysm Severity. Journal of Cardiovascular Translational Research, 2017, 10, 423-432.	1.1	24
148	Genetic Testing for Parkinson Disease. Neurology: Clinical Practice, 2021, 11, 69-77.	0.8	24
149	Impact of Genetic Ancestry on Outcomes in ECOG-ACRIN-5103. JCO Precision Oncology, 2017, 2017, 1-9.	1.5	23
150	Genomeâ€wide transcriptome analysis identifies novel dysregulated genes implicated in Alzheimer's pathology. Alzheimer's and Dementia, 2020, 16, 1213-1223.	0.4	23
151	Longitudinal Measurements of Glucocerebrosidase activity in Parkinson's patients. Annals of Clinical and Translational Neurology, 2020, 7, 1816-1830.	1.7	23
152	Plasma Total-Tau and Neurofilament Light Chain as Diagnostic Biomarkers of Alzheimer's Disease Dementia and Mild Cognitive Impairment in Adults with Down Syndrome. Journal of Alzheimer's Disease, 2021, 79, 671-681.	1.2	23
153	Mapping of QTL influencing saccharin consumption in the selectively bred alcohol-preferring and -nonpreferring rat lines. Behavior Genetics, 2002, 32, 57-67.	1.4	22
154	Relation Over Time Between Facial Measurements and Cognitive Outcomes in Fetal Alcoholâ€Exposed Children. Alcoholism: Clinical and Experimental Research, 2012, 36, 1634-1646.	1.4	22
155	A genome-wide association study of interhemispheric theta EEG coherence: implications for neural connectivity and alcohol use behavior. Molecular Psychiatry, 2021, 26, 5040-5052.	4.1	22
156	Biomarkers of neurodegeneration and glial activation validated in Alzheimer's disease assessed in longitudinal cerebrospinal fluid samples of Parkinson's disease. PLoS ONE, 2021, 16, e0257372.	1.1	22
157	Linkage of an alcoholism-related severity phenotype to chromosome 16. Alcoholism: Clinical and Experimental Research, 1998, 22, 2035-42.	1.4	22
158	Calcium-Sensing Receptor Genotype and Response to Cinacalcet in Patients Undergoing Hemodialysis. Clinical Journal of the American Society of Nephrology: CJASN, 2017, 12, 1128-1138.	2.2	21
159	Alzheimer's Disease Sequencing Project discovery and replication criteria for cases and controls: Data from a communityâ€based prospective cohort study with autopsy followâ€up. Alzheimer's and Dementia, 2017, 13, 1410-1413.	0.4	21
160	Metaâ€Analysis of Genetic Influences on Initial Alcohol Sensitivity. Alcoholism: Clinical and Experimental Research, 2018, 42, 2349-2359.	1.4	21
161	Comprehensive cross-sectional and longitudinal analyses of plasma neurofilament light across FTD spectrum disorders. Cell Reports Medicine, 2022, 3, 100607.	3.3	21
162	Confirmation of alcohol preference quantitative trait loci in the replicate high alcohol drinking and low alcohol drinking rat lines. Psychiatric Genetics, 2003, 13, 155-161.	0.6	20

#	Article	IF	Citations
163	Adaptation of Subjective Responses to Alcohol is Affected by an Interaction of <i>GABRA2</i> Genotype and Recent Drinking. Alcoholism: Clinical and Experimental Research, 2015, 39, 1148-1157.	1.4	20
164	Integration of bioinformatics and imaging informatics for identifying rare PSEN1 variants in Alzheimer's disease. BMC Medical Genomics, 2016, 9, 30.	0.7	20
165	Genomeâ€wide association studies of the selfâ€rating of effects of ethanol (SRE). Addiction Biology, 2020, 25, e12800.	1.4	20
166	Hippocampal-subfield microstructures and their relation to plasma biomarkers in Alzheimer's disease. Brain, 2022, 145, 2149-2160.	3.7	20
167	Collagen COL22A1 maintains vascular stability and mutations in $\langle i \rangle$ COL22A1 $\langle i \rangle$ are potentially associated with intracranial aneurysms. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	19
168	Genome screen for platelet monoamine oxidase (MAO) activity. , 1999, 88, 517-521.		18
169	Ethanol treatment of lymphoblastoid cell lines from alcoholics and non-alcoholics causes many subtle changes in gene expression. Alcohol, 2014, 48, 603-610.	0.8	18
170	Ondansetron blocks wild-type and p.F503L variant small-conductance Ca ²⁺ -activated K ⁺ channels. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H375-H388.	1.5	18
171	Polygenic contributions to alcohol use and alcohol use disorders across population-based and clinically ascertained samples. Psychological Medicine, 2021, 51, 1147-1156.	2.7	18
172	Alcoholism Susceptibility Loci: Confirmation Studies in a Replicate Sample and Further Mapping., 2000, 24, 933.		18
173	Protein phosphatase 2A and complement component 4 are linked to the protective effect of <i>APOE</i> £,2 for Alzheimer's disease. Alzheimer's and Dementia, 2022, 18, 2042-2054.	0.4	18
174	Linkage of type II and type III cystinuria to 19q13.1: Codominant inheritance of two cystinuric alleles at 19q13.1 produces an extreme stone-forming phenotype., 1999, 86, 134-139.		17
175	Genome-wide polygenic scores for age at onset of alcohol dependence and association with alcohol-related measures. Translational Psychiatry, 2016, 6, e761-e761.	2.4	17
176	Genetic evaluation of dementia with Lewy bodies implicates distinct disease subgroups. Brain, 2022, 145, 1757-1762.	3.7	17
177	Role of Lysosomal Gene Variants in Modulating <scp><i>GBA</i></scp> â€Associated Parkinson's Disease Risk. Movement Disorders, 2022, 37, 1202-1210.	2.2	17
178	Novel recruitment strategy to enrich for <i> <scp>LRRK</scp> 2 </i> mutation carriers. Molecular Genetics & Ge	0.6	16
179	A multivariate finite mixture latent trajectory model with application to dementia studies. Journal of Applied Statistics, 2016, 43, 2503-2523.	0.6	16
180	Feasibility and Safety of Multicenter Tissue and Biofluid Sampling for α-Synuclein in Parkinson's Disease: The Systemic Synuclein Sampling Study (S4). Journal of Parkinson's Disease, 2018, 8, 517-527.	1.5	16

#	Article	IF	CITATIONS
181	Evaluating risk for alcohol use disorder: Polygenic risk scores and family history. Alcoholism: Clinical and Experimental Research, 2022, 46, 374-383.	1.4	16
182	Genomeâ€wide association study identifies loci associated with liability to alcohol and drug dependence that is associated with variability in rewardâ€related ventral striatum activity in African― and Europeanâ€Americans. Genes, Brain and Behavior, 2019, 18, e12580.	1.1	15
183	Cross-Sectional Exploration of Plasma Biomarkers of Alzheimer's Disease in Down Syndrome: Early Data from the Longitudinal Investigation for Enhancing Down Syndrome Research (LIFE-DSR) Study. Journal of Clinical Medicine, 2021, 10, 1907.	1.0	15
184	Genetic research: who is at risk for alcoholism. Alcohol Research, 2010, 33, 64-75.	1.0	15
185	Genes Associated With Alcohol Outcomes Show Enrichment of Effects With Broad Externalizing and Impulsivity Phenotypes in an Independent Sample. Journal of Studies on Alcohol and Drugs, 2015, 76, 38-46.	0.6	14
186	Genetic variants associated with susceptibility to psychosis inÂlate-onset Alzheimer's disease families. Neurobiology of Aging, 2015, 36, 3116.e9-3116.e16.	1.5	14
187	L1 coupling to ankyrin and the spectrinâ€actin cytoskeleton modulates ethanol inhibition of L1 adhesion and ethanol teratogenesis. FASEB Journal, 2018, 32, 1364-1374.	0.2	14
188	Telomere Shortening in the Alzheimer's Disease Neuroimaging Initiative Cohort. Journal of Alzheimer's Disease, 2019, 71, 33-43.	1.2	14
189	Polymorphisms in the bone morphogenetic protein 2 (BMP2) gene do not affect bone mineral density in white men or women. Osteoporosis International, 2006, 17, 587-592.	1.3	13
190	Association of Polygenic Liability for Alcohol Dependence and EEG Connectivity in Adolescence and Young Adulthood. Brain Sciences, 2019, 9, 280.	1.1	13
191	Genetic Influences on Plasma Homocysteine Levels in African Americans and Yoruba Nigerians. Journal of Alzheimer's Disease, 2016, 49, 991-1003.	1.2	12
192	Genome-wide association analysis identifies new candidate risk loci for familial intracranial aneurysm in the French-Canadian population. Scientific Reports, 2018, 8, 4356.	1.6	12
193	The association of polygenic risk for schizophrenia, bipolar disorder, and depression with neural connectivity in adolescents and young adults: examining developmental and sex differences. Translational Psychiatry, 2021, 11, 54.	2.4	12
194	Whole Exome Sequencing of Intracranial Aneurysm. Stroke, 2013, 44, S26-S28.	1.0	11
195	Fine mapping of bone structure and strength QTLs in heterogeneous stock rat. Bone, 2015, 81, 417-426.	1.4	11
196	Genomeâ€wide admixture mapping of <scp>DSMâ€IV</scp> alcohol dependence, criterion count, and the selfâ€rating of the effects of ethanol in African American populations. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2021, 186, 151-161.	1.1	11
197	Suggestive evidence of a locus on chromosome 10p using the NIMH genetics initiative bipolar affective disorder pedigrees. American Journal of Medical Genetics Part A, 2000, 96, 18-23.	2.4	11
198	SIBLING family genes and bone mineral density: Association and allele-specific expression in humans. Bone, 2014, 64, 166-172.	1.4	10

#	Article	IF	Citations
199	Characteristics of Bipolar I patients grouped by externalizing disorders. Journal of Affective Disorders, 2015, 178, 206-214.	2.0	10
200	Psychosocial moderation of polygenic risk for cannabis involvement: the role of trauma exposure and frequency of religious service attendance. Translational Psychiatry, 2019, 9, 269.	2.4	10
201	Longitudinal Analysis of Multiple Neurotransmitter Metabolites in Cerebrospinal Fluid in Early Parkinson's Disease. Movement Disorders, 2021, 36, 1972-1978.	2.2	10
202	Outcomes of genetic test disclosure and genetic counseling in a large Parkinson's disease research study. Journal of Genetic Counseling, 2021, 30, 755-765.	0.9	10
203	Gene-based polygenic risk scores analysis of alcohol use disorder in African Americans. Translational Psychiatry, 2022, 12, .	2.4	10
204	Association studies of ALOX5 and bone mineral density in healthy adults. Osteoporosis International, 2008, 19, 637-643.	1.3	9
205	Steroid Pathway Genes and Neonatal Respiratory Distress After Betamethasone Use in Anticipated Preterm Birth. Reproductive Sciences, 2016, 23, 680-686.	1.1	9
206	A genome wide association study of fast beta EEG in families of European ancestry. International Journal of Psychophysiology, 2017, 115, 74-85.	0.5	9
207	Fibroblast Growth Factor 23 Genotype and Cardiovascular Disease in Patients Undergoing Hemodialysis. American Journal of Nephrology, 2019, 49, 125-132.	1.4	9
208	Genetics of Alcoholism. , 1998, 282, 1265i-1265.		9
209	Genes associated with alcohol outcomes show enrichment of effects with broad externalizing and impulsivity phenotypes in an independent sample. Journal of Studies on Alcohol and Drugs, 2015, 76, 38-46.	0.6	9
210	The National Institute on Aging Lateâ€Onset Alzheimer's Disease Family Based Study: A resource for genetic discovery. Alzheimer's and Dementia, 2022, 18, 1889-1897.	0.4	9
211	Translational research on aging: clinical epidemiology as a bridge between the sciences. Translational Research, 2014, 163, 439-445.	2.2	8
212	Detecting significant genotype–phenotype association rules in bipolar disorder: market research meets complex genetics. International Journal of Bipolar Disorders, 2018, 6, 24.	0.8	8
213	Michael J. Fox Foundation LRRK2 Consortium: geographical differences in returning genetic research data to study participants. Genetics in Medicine, 2014, 16, 644-645.	1.1	7
214	Efficient region-based test strategy uncovers genetic risk factors for functional outcome in bipolar disorder. European Neuropsychopharmacology, 2019, 29, 156-170.	0.3	7
215	A GABRA2 polymorphism improves a model for prediction of drinking initiation. Alcohol, 2017, 63, 1-8.	0.8	5
216	The Promise and Pitfalls of Facebook Advertising: a Genetic Counselor's Perspective. Journal of Genetic Counseling, 2018, 27, 326-328.	0.9	5

#	Article	IF	CITATIONS
217	Angiotensin-related genetic determinants of cardiovascular disease in patients undergoing hemodialysis. Nephrology Dialysis Transplantation, 2018, 34, 1924-1931.	0.4	5
218	Exome-chip association analysis of intracranial aneurysms. Neurology, 2020, 94, e481-e488.	1.5	5
219	Chromosome 5 and Parkinson disease. European Journal of Human Genetics, 2006, 14, 1106-1110.	1.4	4
220	Metaâ€Analyses of Externalizing Disorders: Genetics or Prenatal Alcohol Exposure?. Alcoholism: Clinical and Experimental Research, 2018, 42, 162-172.	1.4	4
221	Genome-wide association study of stimulant dependence. Translational Psychiatry, 2021, 11, 363.	2.4	4
222	A Quantitative Trait Locus for Alcohol Consumption in Selectively Bred Rat Lines., 1998, 22, 884.		4
223	Genetic variants in the <i>SHISA6</i> gene are associated with delayed cognitive impairment in two family datasets. Alzheimer's and Dementia, 2023, 19, 611-620.	0.4	4
224	Genome-wide association study of serum iron phenotypes in premenopausal women of European descent. Blood Cells, Molecules, and Diseases, 2016, 57, 50-53.	0.6	3
225	[P1â€"142]: DNA METHYLATION DYNAMICS IN ALZHEIMER's DISEASE DIAGNOSIS AND PROGRESSION. Alzheimer's and Dementia, 2017, 13, P297.	0.4	3
226	The Alzheimer's disease sequencing project–follow up study (ADSPâ€FUS): Increasing ethnic diversity in Alzheimer's genetics research with addition of potential new cohorts. Alzheimer's and Dementia, 2020, 16, e046400.	0.4	3
227	Assessing the genetic risk for alcohol use disorders. , 2012, 34, 266-72.		3
228	Amyloid and tau PET in sporadic earlyâ€onset Alzheimer's disease: Preliminary results from LEADS. Alzheimer's and Dementia, 2020, 16, e041613.	0.4	2
229	Sexâ€associated differences in pathology burden in earlyâ€onset Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e046532.	0.4	2
230	Genome wide association study for anthracycline-induced congestive heart failure Journal of Clinical Oncology, 2016, 34, 1017-1017.	0.8	2
231	Parkinson's Progression Markers Initiative brain autopsy program. Parkinsonism and Related Disorders, 2022, 101, 62-65.	1.1	2
232	Parametric Linkage Analysis and Disequilibrium Methods to Identify Loci for Complex Disease. Genetic Epidemiology, 2001, 21, S528-33.	0.6	1
233	O3-03-01: Genome-wide association study of CSF biomarkers amyloid beta 1-42, tau and tau phosphorylated at threonine 181 in the ADNI cohort. , 2010, 6, S129-S129.		1
234	O4-06-02: Genetic variation in PLXNA4 associated with susceptibility of Alzheimer's disease through tau phosphorylation., 2013, 9, P692-P692.		1

#	Article	IF	CITATIONS
235	IC-P-042: Influence of rare reelin variants on quantitative PET imaging and CSF phenotypes in late-onset Alzheimer's disease., 2015, 11, P36-P36.		1
236	P1-201: Genetic findings using ADNI multimodal quantitative phenotypes: A 2014 update. , 2015, 11, P426-P426.		1
237	O3-13-04: Genome-wide rare variant analysis identifies candidate genes significantly associated with composite scores for memory., 2015, 11, P251-P252.		1
238	Testing influences of APOE and BDNF genes and heart failure on cognitive function. Heart and Lung: Journal of Acute and Critical Care, 2021, 50, 51-58.	0.8	1
239	Stoppage: An issue for segregation analysis. , 2001, 20, 328.		1
240	NCRAD Family Study and NIA‣OAD brain tissue: A NCRAD resource. Alzheimer's and Dementia, 2021, 17, e056284.	0.4	1
241	Nonparametric linkage and family-based association studies of a simulated complex disorder. Genetic Epidemiology, 1999, 17, S627-S632.	0.6	0
242	P3-018: INFLUENCE OF RARE PSEN1 VARIANTS ON QUANTITATIVE STRUCTURAL IMAGING AND CSF PHENOTYPES IN LATE ONSET ALZHEIMER'S DISEASE. , 2014, 10, P633-P633.		0
243	IC-P-177: GENETIC FINDINGS USING ADNI MULTIMODAL QUANTITATIVE PHENOTYPES: A REVIEW OF PAPERS PUBLISHED IN 2013. , 2014, 10, P99-P100.		0
244	IC-P-174: RARE VARIANT IN PLD3 IS ASSOCIATED WITH ALZHEIMER'S PATTERN OF NEURODEGENERATIVE CHANGES. , 2014, 10, P97-P97.		0
245	P3-024: NEXT-GENERATION SEQUENCING OF THE BCHE LOCUS IDENTIFIES A FUNCTIONAL SNP ASSOCIATED WITH ALZHEIMER'S DISEASE BIOMARKERS AND AGE OF ONSET. , 2014, 10, P636-P636.		0
246	P3-017: ASSOCIATION ANALYSIS OF RARE VARIANTS NEAR THE APOE REGION WITH CEREBROSPINAL FLUID (CSF) BIOMARKERS OF ALZHEIMER'S DISEASE. , 2014, 10, P632-P633.		0
247	P1-141: GENETIC FINDINGS USING ADNI MULTIMODAL QUANTITATIVE PHENOTYPES: A REVIEW OF PAPERS PUBLISHED IN 2013., 2014, 10, P351-P351.		0
248	P3-019: RARE VARIANT IN PLD3 IS ASSOCIATED WITH ALZHEIMER'S PATTERN OF NEURODEGENERATIVE CHANGES., 2014, 10, P634-P634.		0
249	P3-011: Genome-wide association of plasma homocysteine in the indianapolis-ibadan dementia study cohort., 2015, 11, P623-P624.		0
250	P3-014: Influence of rare RELN variants on quantitative PET imaging and CSF phenotypes in late-onset Alzheimer's disease., 2015, 11, P624-P625.		0
251	P4-197: Gene expression profiling identifies altered networks in late-onset Alzheimer's disease: Immune response and mitochondrial process. , 2015, 11, P855-P856.		0
252	O4-05-01: Gwas of longitudinal amyloid PET identifies IL1RAP as a new potential Alzheimer's disease target., 2015, 11, P277-P278.		0

#	Article	IF	Citations
253	P2â€097: The Alzheimer's Disease Sequencing Project (ADSP): Data Production, Management, and Availability. Alzheimer's and Dementia, 2016, 12, P648.	0.4	O
254	ICâ€Pâ€072: Gene Expression Of ABCA7 Dysregulated in Peripheral Blood is Associated With Decreased Metabolic Activity in Hippocampus. Alzheimer's and Dementia, 2016, 12, P56.	0.4	0
255	ICâ€Pâ€074: Genomeâ€Wide Metaâ€Analysis of Transcriptome Profiling Identifies Novel Dysregulated Genes Implicated in Alzheimer's Disease. Alzheimer's and Dementia, 2016, 12, P58.	0.4	O
256	ICâ€Pâ€075: The Growth and Impact of ADNI Genetics Publications as Measured by Science Mapping. Alzheimer's and Dementia, 2016, 12, P60.	0.4	0
257	P1-348: Neuropathology of Familial Alzheimer's Disease Associated with a Presenilin 1 A396T Mutation Reveals The Coexistence of $A\hat{l}^2$, TAU, and A-Synuclein Proteinopathies., 2016, 12, P562-P563.		O
258	P2â€⊋58: The Growth and Impact of ADNI Genetics Publications as Measured by Science Mapping. Alzheimer's and Dementia, 2016, 12, P725.	0.4	0
259	P3â€087: Gene Expression of <i>ABCA7</i> Dysregulated in Peripheral Blood is Associated With Decreased Metabolic Activity in Hippocampus. Alzheimer's and Dementia, 2016, 12, P851.	0.4	O
260	O2-06-02: Genome-Wide Meta-Analysis of Transcriptome Profiling Identifies Novel Dysregulated Genes Implicated in Alzheimer's Disease., 2016, 12, P238-P239.		0
261	[P3–102]: GENETIC RISK FOR SCHIZOPHRENIA AND PSYCHOSIS IN ALZHEIMER DISEASE. Alzheimer's and Dementia, 2017, 13, P973.	0.4	O
262	[P3â€"098]: ALZHEIMER's DISEASE SEQUENCING PROJECT DISCOVERY AND REPLICATION CRITERIA FOR CASES AND CONTROLS: DATA FROM A COMMUNITYâ€BASED PROSPECTIVE COHORT STUDY WITH AUTOPSY FOLLOWâ€UP. Alzheimer's and Dementia, 2017, 13, P971.	0.4	0
263	[P1â€"254]: CHARACTERISTICS AND PROGRESS ON THE INITIAL 209 SUBJECTS IN THE LONGITUDINAL EVALUATION OF FAMILIAL FRONTOTEMPORAL DEMENTIA SUBJECTS (LEFFTDS) PROTOCOL. Alzheimer's and Dementia, 2017, 13, P345.	0.4	O
264	[P2â€"303]: ADVANCING RESEARCH AND TREATMENT IN FRONTOTEMPORAL LOBAR DEGENERATION (ARTFL) NORTH AMERICAN RARE DISEASE CLINICAL RESEARCH CONSORTIUM: PROGRESS AND CHARACTERIZATION OF INITIAL PARTICIPANTS. Alzheimer's and Dementia, 2017, 13, P733.	0.4	0
265	[P3–090]: THE ALZHEIMER's DISEASE SEQUENCING PROJECT (ADSP) DATA UPDATE 2017. Alzheimer's and Dementia, 2017, 13, P968.	0.4	O
266	P1â€433: GRAY MATTER DEFICITS IN SYMPTOMATIC AND PRESYMPTOMATIC <i>MAPT</i> MUTATION CARRIERS. Alzheimer's and Dementia, 2018, 14, P475.	0.4	O
267	P1â€597: AMYLOID NEUROIMAGING AND GENETICS INITIATIVE: IMPLEMENTING DNA COLLECTION USING NOVEL CONSENTING APPROACHES FOR AN IDEAS ADDâ€ON STUDY. Alzheimer's and Dementia, 2018, 14, P566.	0.4	O
268	P1â€149: THE ALZHEIMER'S DISEASE SEQUENCING PROJECT (ADSP) DATA UPDATE 2018. Alzheimer's and Dementia, 2018, 14, P333.	0.4	0
269	O2â€14â€01: CHARACTERISTICS AND PROGRESS OF 320 SUBJECTS IN THE LONGITUDINAL EVALUATION OF FAM FRONTOTEMPORAL DEMENTIA SUBJECTS (LEFFTDS) PROTOCOL. Alzheimer's and Dementia, 2018, 14, P656.	ILIAL 0.4	O
270	P1â€419: USING A BRAIN NETWORK APPROACH TO PREDICT GENETIC MUTATION IN INDIVIDUAL PATIENTS WITH FAMILIAL FRONTOTEMPORAL DEMENTIA. Alzheimer's and Dementia, 2018, 14, P465.	0.4	0

#	Article	IF	Citations
271	Webâ€based requisitioning, tracking and laboratory result reporting system for clinical trials using a central laboratory. Alzheimer's and Dementia, 2020, 16, e038627.	0.4	0
272	Plasma biomarkers of inflammation reflect disease state in autosomal dominant forms of familial frontotemporal dementia. Alzheimer's and Dementia, 2020, 16, e041533.	0.4	0
273	Associations of targeted genetic variants with Alzheimer's disease in African Americans and Nigerians. Alzheimer's and Dementia, 2020, 16, e042323.	0.4	0
274	Studying the natural history of frontotemporal lobar degeneration (FTLD): The ARTFL LEFFTDS longitudinal FTLD (ALLFTD) protocol. Alzheimer's and Dementia, 2020, 16, e045482.	0.4	0
275	Increased white matter MRI T1 hypointensity volume in youngâ€onset Alzheimer's disease patients is not accounted for by age or cardiovascular risk factors. Alzheimer's and Dementia, 2020, 16, e045577.	0.4	0
276	Plasma neurofilament light chain levels reflect caregiver burden and social cognition measures in familial frontotemporal lobar degeneration (FTLD). Alzheimer's and Dementia, 2020, 16, e046247.	0.4	0
277	Neurodegeneration in the Longitudinal Evaluation of Early Onset Alzheimer's Disease Study (LEADS) sample: Results from the MRI core. Alzheimer's and Dementia, 2020, 16, e046338.	0.4	0
278	The Contribution of Known Familial Cardiovascular Disease Genes to Sudden Cardiac Death in Patients Undergoing Hemodialysis. CardioRenal Medicine, 2021, 11, 174-183.	0.7	0
279	Can Salivary Innate Immune Molecules Provide Clue on Taste Dysfunction in COVID-19?. Frontiers in Microbiology, 2021, 12, 727430.	1.5	0
280	Prenatal Alcohol Exposure: Advancing Knowledge Through International Collaborations. Alcoholism: Clinical and Experimental Research, 2003, 27, 118-135.	1.4	0
281	Mutations disrupting PI3K signaling act as dominant enhancers of ethanol teratogenicity. FASEB Journal, 2013, 27, 962.5.	0.2	0
282	Association of Charcot-Marie-Tooth gene, SBF2, with taxane-induced peripheral neuropathy in African Americans Journal of Clinical Oncology, 2016, 34, 1026-1026.	0.8	0
283	Genetics of Parkinson disease. Neurotherapeutics, 2004, 1, 235-242.	2.1	0
284	Longitudinal Earlyâ€onset Alzheimer's Disease Study (LEADS) genetic screening: Initial results. Alzheimer's and Dementia, 2021, 17, e056493.	0.4	0
285	ADSP followâ€up study: NCRAD biospecimens. Alzheimer's and Dementia, 2021, 17, e056242.	0.4	0
286	Association of a locus on chromosome 17 with earlier age at onset of cognitive impairment in a familial Amish dataset. Alzheimer's and Dementia, 2021, 17, e056288.	0.4	0
287	Cognitive, neuropsychiatric and imaging comparisons between earlyâ€onset and lateâ€onset Alzheimer's disease participants from LEADS and ADNI3. Alzheimer's and Dementia, 2021, 17, .	0.4	0
288	Establishing a centralized repository of human pluripotent stem cells for neurodegeneration research Alzheimer's and Dementia, 2021, 17 Suppl 3, e053911.	0.4	0

#	Article	IF	CITATIONS
289	ADRC GWAS supplement: An NCRAD initiative Alzheimer's and Dementia, 2021, 17 Suppl 3, e056176.	0.4	O