Juha Pöyry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5051847/publications.pdf

Version: 2024-02-01

		159585	175258
57	4,316	30	52
papers	citations	h-index	g-index
58	58	58	5834
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Habitat fragmentation causes immediate and timeâ€delayed biodiversity loss at different trophic levels. Ecology Letters, 2010, 13, 597-605.	6.4	620
2	Lifeâ€history traits predict species responses to habitat area and isolation: a crossâ€continental synthesis. Ecology Letters, 2010, 13, 969-979.	6.4	336
3	Species traits explain recent range shifts of Finnish butterflies. Global Change Biology, 2009, 15, 732-743.	9.5	254
4	Dispersal capacity and diet breadth modify the response of wild bees to habitat loss. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2075-2082.	2.6	217
5	Uncertainty of bioclimate envelope models based on the geographical distribution of species. Global Ecology and Biogeography, 2005, 14, 575-584.	5.8	180
6	New insights into butterfly–environment relationships using partitioning methods. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 2203-2210.	2.6	175
7	Increasing range mismatching of interacting species under global change is related to their ecological characteristics. Global Ecology and Biogeography, 2012, 21, 88-99.	5.8	152
8	Multiple equilibria in metapopulation dynamics. Nature, 1995, 377, 618-621.	27.8	138
9	Longâ€ŧerm metapopulation study of the Glanville fritillary butterfly (<i>Melitaea cinxia</i>): survey methods, data management, and longâ€ŧerm population trends. Ecology and Evolution, 2013, 3, 3713-3737.	1.9	127
10	Different responses of plants and herbivore insects to a gradient of vegetation height: an indicator of the vertebrate grazing intensity and successional age. Oikos, 2006, 115, 401-412.	2.7	121
11	Meta-analysis of multidecadal biodiversity trends in Europe. Nature Communications, 2020, 11, 3486.	12.8	115
12	Testing species distribution models across space and time: high latitude butterflies and recent warming. Global Ecology and Biogeography, 2013, 22, 1293-1303.	5.8	113
13	Determinants of the biogeographical distribution of butterflies in boreal regions. Journal of Biogeography, 2006, 33, 1764-1778.	3.0	111
14	Contrasting trends of butterfly species preferring semi-natural grasslands, field margins and forest edges in northern Europe. Journal of Insect Conservation, 2007, 11, 351-366.	1.4	103
15	Responses of butterfly and moth species to restored cattle grazing in semi-natural grasslands. Biological Conservation, 2005, 122, 465-478.	4.1	97
16	Determinants of local species richness of diurnal Lepidoptera in boreal agricultural landscapes. Agriculture, Ecosystems and Environment, 2007, 122, 366-376.	5.3	94
17	RESTORATION OF BUTTERFLY AND MOTH COMMUNITIES IN SEMI-NATURAL GRASSLANDS BY CATTLE GRAZING. , 2004, 14, 1656-1670.		88
18	Species traits are associated with the quality of bioclimatic models. Global Ecology and Biogeography, 2008, 17, 403-414.	5.8	87

#	Article	IF	Citations
19	Density of insectâ€pollinated grassland plants decreases with increasing surrounding landâ€use intensity. Ecology Letters, 2014, 17, 1168-1177.	6.4	87
20	Relative contributions of local and regional factors to species richness and total density of butterflies and moths in semi-natural grasslands. Oecologia, 2009, 160, 577-587.	2.0	78
21	The landscape matrix modifies the effect of habitat fragmentation in grassland butterflies. Landscape Ecology, 2012, 27, 121-131.	4.2	78
22	Assessing the vulnerability of European butterflies to climate change using multiple criteria. Biodiversity and Conservation, 2010, 19, 695-723.	2.6	71
23	Climate-induced increase of moth multivoltinism in boreal regions. Global Ecology and Biogeography, 2011, 20, 289-298.	5.8	70
24	The effects of soil eutrophication propagate to higher trophic levels. Global Ecology and Biogeography, 2017, 26, 18-30.	5.8	60
25	Predicting range expansion of the map butterfly in Northern Europe using bioclimatic models. Biodiversity and Conservation, 2008, 17, 623-641.	2.6	48
26	Improving conservation planning for semi-natural grasslands: Integrating connectivity into agri-environment schemes. Biological Conservation, 2013, 160, 234-241.	4.1	46
27	Climate change reshuffles northern species within their niches. Nature Climate Change, 2022, 12, 587-592.	18.8	46
28	Environmental controls on the phenology of moths: predicting plasticity and constraint under climate change. Oecologia, 2011, 165, 237-248.	2.0	44
29	Higher mobility of butterflies than moths connected to habitat suitability and body size in a release experiment. Ecology and Evolution, 2014, 4, 3800-3811.	1.9	42
30	Integrating national Red Lists for prioritising conservation actions for European butterflies. Journal of Insect Conservation, 2019, 23, 301-330.	1.4	38
31	Protected areas alleviate climate change effects on northern bird species of conservation concern. Ecology and Evolution, 2014, 4, 2991-3003.	1.9	36
32	Combining range and phenology shifts offers a winning strategy for boreal Lepidoptera. Ecology Letters, 2021, 24, 1619-1632.	6.4	36
33	Urbanization extends flight phenology and leads to local adaptation of seasonal plasticity in Lepidoptera. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	34
34	Contrasting latitudinal patterns in diversity and stability in a high″atitude speciesâ€rich moth community. Global Ecology and Biogeography, 2020, 29, 896-907.	5.8	32
35	Butterfly species' responses to urbanization: differing effects of human population density and built-up area. Urban Ecosystems, 2021, 24, 515-527.	2.4	32
36	Contrasting effects of habitat area and connectivity on evenness of pollinator communities. Ecography, 2014, 37, 544-551.	4. 5	30

#	Article	IF	Citations
37	Landscape simplification weakens the association between terrestrial producer and consumer diversity in Europe. Global Change Biology, 2017, 23, 3040-3051.	9.5	28
38	Scaleâ€specific spatial density dependence in parasitoids: a multiâ€factor metaâ€analysis. Functional Ecology, 2016, 30, 1501-1510.	3.6	27
39	Soil eutrophication shaped the composition of pollinator assemblages during the past century. Ecography, 2020, 43, 209-221.	4.5	26
40	The recent northward expansion of Lymantria monacha in relation to realised changes in temperatures of different seasons. Forest Ecology and Management, 2018, 427, 96-105.	3.2	24
41	Modelling potential success of conservation translocations of a specialist grassland butterfly. Biological Conservation, 2015, 192, 200-206.	4.1	23
42	Maximizing conservation benefit for grassland species with contrasting management requirements. Journal of Applied Ecology, 2008, 45, 1401-1409.	4.0	22
43	Is climate warming more consequential towards poles? The phenology of Lepidoptera in Finland. Global Change Biology, 2014, 20, 16-27.	9.5	19
44	Birds in boreal protected areas shift northwards in the warming climate but show different rates of population decline. Biological Conservation, 2018, 226, 271-279.	4.1	19
45	Predictive power of remote sensing versus temperatureâ€derived variables in modelling phenology of herbivorous insects. Remote Sensing in Ecology and Conservation, 2018, 4, 113-126.	4.3	16
46	Allometric density responses in butterflies: the response to small and large patches by small and large species. Ecography, 2010, 33, 1149-1156.	4.5	15
47	Species traits explain longâ€ŧerm population trends of Finnish cuckoo wasps (Hymenoptera:) Tj ETQq1 1 0.7843	14 rgBT /0	Ovgrlock 10 T
48	Impacts of Land Cover Data Selection and Trait Parameterisation on Dynamic Modelling of Species' Range Expansion. PLoS ONE, 2014, 9, e108436.	2.5	9
49	Nationally reported metrics can't adequately guide transformative change in biodiversity policy. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	9
50	Significance of Protected Area Network in Preserving Biodiversity in a Changing Northern European Climate. Climate Change Management, 2019, , 377-390.	0.8	8
51	Spatial synchrony is related to environmental change in Finnish moth communities. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200684.	2.6	8
52	Scaling distributional patterns of butterflies across multiple scales: Impact of range history and habitat type. Diversity and Distributions, 2018, 24, 1453-1463.	4.1	5
53	Temporal sampling and abundance measurement influences support for occupancy–abundance relationships. Journal of Biogeography, 2019, 46, 2839-2849.	3.0	5
54	Variability of soil enzyme activities and vegetation succession following boreal forest surface soil transfer to an artificial hill. Nature Conservation, 0, 8, 1-25.	0.0	4

#	Article	IF	CITATIONS
55	Luonnon monimuotoisuus ja vihreÄælvytys. Suomen Luontopaneelin Julkaisuja, 0, , .	0.0	2
56	Keskeiset keinot luontokadon pysÄyttÄrniseksi. Suomen Luontopaneelin Julkaisuja, 0, , .	0.0	1
57	Soiden ennallistamisen suoluonto-, vesistö- ja ilmastovaikutukset. Luontopaneelin yhteenveto ja suositukset luontopolitiikan suunnittelun ja pÃÌöksenteon tueksi Suomen Luontopaneelin Julkaisuja, 0, , .	0.0	1