
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5048250/publications.pdf Version: 2024-02-01

MASAVUKI CON

#	Article	IF	CITATIONS
1	CPL on/off control of an assembled system by water soluble macrocyclic chiral sources with planar chirality. Chemical Science, 2022, 13, 5846-5853.	7.4	23
2	Acceleration of Chemiluminescence Reactions with Coumarin-Modified Polyhedral Oligomeric Silsesquioxane. Bulletin of the Chemical Society of Japan, 2022, 95, 743-747.	3.2	0
3	Recent Progress on Designable Hybrids with Stimuliâ€Responsive Optical Properties Originating from Molecular Assembly Concerning Polyhedral Oligomeric Silsesquioxane. Chemistry - an Asian Journal, 2022, 17, .	3.3	7
4	Fundamental chemistry and applications of boron complexes having aggregation-induced emission properties. , 2022, , 23-44.		0
5	Asymmetric Lumino-Transformer: Circularly Polarized Luminescence of Chiral Eu(III) Coordination Polymer with Phase-Transition Behavior. Journal of Physical Chemistry B, 2022, 126, 3799-3807.	2.6	5
6	Preparation of Nearâ€Infrared Emissive Ï€â€Conjugated Polymer Films Based on Boronâ€Fused Azobenzene Complexes with Perpendicularly Protruded Aryl Substituents. Macromolecular Rapid Communications, 2021, 42, e2000566.	3.9	20
7	Recent developments in stimuli-responsive luminescent polymers composed of boron compounds. Polymer Chemistry, 2021, 12, 6372-6380.	3.9	19
8	Molecular Designs for Solid-State Luminescent Properties and Recent Progresses on the Development of Functional Luminescent Solid Materials. , 2021, , 309-341.		2
9	The effect of alkyl chain lengths on the red-to-near-infrared emission of boron-fused azomethine conjugated polymers and their film-state stimuli-responsivities. Polymer Chemistry, 2021, 12, 2752-2759.	3.9	16
10	Controlling Energy Gaps of ï€â€Conjugated Polymers by Multiâ€Fluorinated Boronâ€Fused Azobenzene Acceptors for Highly Efficient Nearâ€Infrared Emission. Chemistry - an Asian Journal, 2021, 16, 696-703.	3.3	15
11	Molecular design and application of luminescent materials composed of group 13 elements with an aggregation-induced emission property. National Science Review, 2021, 8, nwab049.	9.5	26
12	Paintable Hybrids with Thermally Stable Dual Emission Composed of Tetraphenylethene-Integrated POSS and MEH-PPV for Heat-Resistant White-Light Luminophores. ACS Applied Materials & Interfaces, 2021, 13, 12483-12490.	8.0	11
13	Vapochromic Luminescent Ï€â€Conjugated Systems with Reversible Coordinationâ€Number Control of Hypervalent Tin(IV)â€Fused Azobenzene Complexes. Chemistry - A European Journal, 2021, 27, 7561-7571.	3.3	14
14	Modulation of <scp>stimuliâ€responsiveness</scp> toward acid vapor between <scp>realâ€time</scp> and <scp>writeâ€erase</scp> responses based on conjugated polymers containing azobenzene and Schiff base moieties. Journal of Polymer Science, 2021, 59, 1596-1602.	3.8	7
15	PPV-type π-conjugated polymers based on hypervalent tin(IV)-fused azobenzene complexes showing near-infrared absorption and emission. Polymer Journal, 2021, 53, 1241-1249.	2.7	10
16	Design Strategies and Recent Results for Near-Infrared-Emissive Materials Based on Element-Block Ï€-Conjugated Polymers. Bulletin of the Chemical Society of Japan, 2021, 94, 2290-2301.	3.2	20
17	Double Heterohelicenes Composed of Benzo[b]- and Dibenzo[b,i]phenoxazine: A Comprehensive Comparison of Their Electronic and Chiroptical Properties. Journal of Physical Chemistry Letters, 2021, 12, 9283-9292.	4.6	10
18	Stimuli-Responsive Self-Assembly of π-Conjugated Liquids Triggers Circularly Polarized Luminescence. ACS Applied Materials & Interfaces, 2021, 13, 47127-47133.	8.0	10

#	Article	IF	CITATIONS
19	Discovery of Functional Luminescence Properties Based on Flexible and Bendable Boronâ€Fused Azomethine/Azobenzene Complexes with O,N,Oâ€Type Tridentate Ligands. Chemical Record, 2021, 21, 1358-1373.	5.8	20
20	Development of NIR emissive fully-fused bisboron complexes with π-conjugated systems including multiple azo groups. Dalton Transactions, 2021, 51, 74-84.	3.3	15
21	Facile strategy for obtaining luminescent polymorphs based on the chirality of a boron-fused azomethine complex. Chemical Communications, 2020, 56, 15305-15308.	4.1	20
22	The Design Strategy for an Aggregation- and Crystallization-Induced Emission-Active Molecule Based on the Introduction of Skeletal Distortion by Boron Complexation with a Tridentate Ligand. Crystals, 2020, 10, 615.	2.2	23
23	Chiral lanthanide lumino-glass for a circularly polarized light security device. Communications Chemistry, 2020, 3, .	4.5	45
24	Enantioselective Synthesis of Triple Helicenes by Cross-Cyclotrimerization of a Helicenyl Aryne and Alkynes via Dynamic Kinetic Resolution. Journal of the American Chemical Society, 2020, 142, 10025-10033.	13.7	67
25	Synthesis of fully-fused bisboron azomethine complexes and their conjugated polymers with solid-state near-infrared emission. Chemical Communications, 2020, 56, 6575-6578.	4.1	28
26	Near-Infrared Absorptive and Emissive Poly(<i>p</i> -phenylene vinylene) Derivative Containing Azobenzene–Boron Complexes. Macromolecules, 2020, 53, 4524-4532.	4.8	35
27	Electronic strain effect on Eu(<scp>iii</scp>) complexes for enhanced circularly polarized luminescence. Dalton Transactions, 2020, 49, 5352-5361.	3.3	22
28	Oxygen-Resistant Electrochemiluminescence System with Polyhedral Oligomeric Silsesquioxane. Polymers, 2019, 11, 1170.	4.5	6
29	Stretchable Conductive Hybrid Films Consisting of Cubic Silsesquioxane-capped Polyurethane and Poly(3-hexylthiophene). Polymers, 2019, 11, 1195.	4.5	10
30	Preparation of bright-emissive hybrid materials based on light-harvesting POSS having radially integrated luminophores and commercial π-conjugated polymers. Materials Chemistry Frontiers, 2019, 3, 314-320.	5.9	12
31	Nearâ€Infrared Circularly Polarized Luminescence through Intramolecular Excimer Formation of Oligo(p â€phenyleneethynylene)â€Based Double Helicates. Chemistry - A European Journal, 2019, 25, 9122-9122.	3.3	0
32	Construction of the Luminescent Donor–Acceptor Conjugated Systems Based on Boron-Fused Azomethine Acceptor. Macromolecules, 2019, 52, 3387-3393.	4.8	38
33	Nearâ€Infrared Circularly Polarized Luminescence through Intramolecular Excimer Formation of Oligo(<i>p</i> â€phenyleneethynylene)â€Based Double Helicates. Chemistry - A European Journal, 2019, 25, 9211-9216.	3.3	37
34	Elastic and mechanofluorochromic hybrid films with POSS-capped polyurethane and polyfluorene. Materials Chemistry Frontiers, 2019, 3, 1174-1180.	5.9	28
35	An optical sensor for discriminating the chemical compositions and sizes of plastic particles in water based on water-soluble networks consisting of polyhedral oligomeric silsesquioxane presenting dual-color luminescence. Materials Chemistry Frontiers, 2019, 3, 2690-2695.	5.9	15
36	Concept of Excitation-Driven Boron Complexes and Their Applications for Functional Luminescent Materials. Bulletin of the Chemical Society of Japan, 2019, 92, 7-18.	3.2	85

#	Article	IF	CITATIONS
37	Unique Substitution Effect at 5,5′â€Positions of Fused Azobenzene–Boron Complexes with a N=N π onjugated System. Chemistry - an Asian Journal, 2019, 14, 1837-1843.	3.3	21
38	Element-Block Materials: New Concept for the Development of Advanced Hybrids and Inorganic Polymers. , 2019, , 3-25.		1
39	A Highly Efficient Nearâ€Infraredâ€Emissive Copolymer with a N=N Doubleâ€Bond Ï€â€Conjugated System Based on a Fused Azobenzene–Boron Complex. Angewandte Chemie - International Edition, 2018, 57, 6546-6551.	13.8	87
40	A Highly Efficient Nearâ€Infraredâ€Emissive Copolymer with a N=N Doubleâ€Bond Ï€â€Conjugated System Based on a Fused Azobenzene–Boron Complex. Angewandte Chemie, 2018, 130, 6656-6661.	2.0	20
41	Recent progress in the development of advanced element-block materials. Polymer Journal, 2018, 50, 109-126.	2.7	121
42	Electronic chirality inversion of lanthanide complex induced by achiral molecules. Scientific Reports, 2018, 8, 16395.	3.3	22
43	Spiral Eu(<scp>iii</scp>) coordination polymers with circularly polarized luminescence. Chemical Communications, 2018, 54, 10695-10697.	4.1	47
44	Hash-Mark-Shaped Azaacene Tetramers with Axial Chirality. Journal of the American Chemical Society, 2018, 140, 7152-7158.	13.7	32
45	Synthesis of enantiopure planar chiral bisâ€(<i>para</i>)â€pseudoâ€ <i>meta</i> â€type [2.2]paracyclophanes. Chirality, 2018, 30, 1109-1114.	2.6	32
46	Control of intramolecular excimer emission in luminophore-integrated ionic POSSs possessing flexible side-chains. Materials Chemistry Frontiers, 2018, 2, 1449-1455.	5.9	27
47	Creative Synthesis of Organic–Inorganic Molecular Hybrid Materials. Bulletin of the Chemical Society of Japan, 2017, 90, 463-474.	3.2	81
48	Optically Active Phenylethene Dimers Based on Planar Chiral Tetrasubstituted [2.2]Paracyclophane. Chemistry - A European Journal, 2017, 23, 6323-6329.	3.3	50
49	Enhancement and Controlling the Signal of Circularly Polarized Luminescence Based on a Planar Chiral Tetrasubstituted [2.2]Paracyclophane Framework in Aggregation System. Macromolecules, 2017, 50, 1790-1802.	4.8	63
50	Diarylamino- and Diarylboryl-Substituted Donor–Acceptor Pyrene Derivatives: Influence of Substitution Pattern on Their Photophysical Properties. Journal of Organic Chemistry, 2017, 82, 5111-5121.	3.2	47
51	Development of the optical sensor for discriminating isomers of fatty acids based on emissive network polymers composed of polyhedral oligomeric silsesquioxane. Bioorganic and Medicinal Chemistry, 2017, 25, 3431-3436.	3.0	21
52	A Flexible, Fused, Azomethine–Boron Complex: Thermochromic Luminescence and Thermosalient Behavior in Structural Transitions between Crystalline Polymorphs. Chemistry - A European Journal, 2017, 23, 11827-11833.	3.3	86
53	A silver(<scp>i</scp>)-induced higher-ordered structure based on planar chiral tetrasubstituted [2.2]paracyclophane. Chemical Communications, 2017, 53, 8304-8307.	4.1	35
54	Enhancement of Aggregation-Induced Emission by Introducing Multiple o-Carborane Substitutions into Triphenylamine. Molecules, 2017, 22, 2009.	3.8	45

#	Article	IF	CITATIONS
55	Synthesis of Optically Active, X-Shaped, Conjugated Compounds and Dendrimers Based on Planar Chiral [2.2]Paracyclophane, Leading to Highly Emissive Circularly Polarized Luminescence. Chemistry - A European Journal, 2016, 22, 2189-2189.	3.3	0
56	Synthesis of Optically Active, Xâ€6haped, Conjugated Compounds and Dendrimers Based on Planar Chiral [2.2]Paracyclophane, Leading to Highly Emissive Circularly Polarized Luminescence. Chemistry - A European Journal, 2016, 22, 2291-2298.	3.3	79
57	Controllable intramolecular interaction of 3D arranged π-conjugated luminophores based on a POSS scaffold, leading to highly thermally-stable and emissive materials. RSC Advances, 2016, 6, 78652-78660.	3.6	26
58	New Types of Planar Chiral [2.2]Paracyclophanes and Construction of Oneâ€Handed Double Helices. Chemistry - an Asian Journal, 2016, 11, 2524-2527.	3.3	62
59	Optically Active Cyclic Compounds Based on Planar Chiral [2.2]Paracyclophane with Naphthalene Units. Asian Journal of Organic Chemistry, 2016, 5, 353-359.	2.7	25
60	Highly Emissive Optically Active Conjugated Dimers Consisting of a Planar Chiral [2.2]Paracyclophane Showing Circularly Polarized Luminescence. European Journal of Organic Chemistry, 2015, 2015, 7756-7762.	2.4	33
61	Optically active cyclic compounds based on planar chiral [2.2]paracyclophane: extension of the conjugated systems and chiroptical properties. Journal of Materials Chemistry C, 2015, 3, 521-529.	5.5	99
62	Planar Chiral Tetrasubstituted [2.2]Paracyclophane: Optical Resolution and Functionalization. Journal of the American Chemical Society, 2014, 136, 3350-3353.	13.7	310
63	Conjugated microporous polymers consisting of tetrasubstituted [2.2]Paracyclophane junctions. Journal of Polymer Science Part A, 2013, 51, 2311-2316.	2.3	19
64	Synthesis and Characterization of [2.2]Paracyclophane ontaining Conjugated Microporous Polymers. Macromolecular Chemistry and Physics, 2012, 213, 572-579.	2.2	8