Goetz Hensel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5047670/publications.pdf

Version: 2024-02-01

nors
,

#	Article	IF	CITATIONS
1	HIGS: Host-Induced Gene Silencing in the Obligate Biotrophic Fungal Pathogen <i>Blumeria graminis</i> Â Â. Plant Cell, 2010, 22, 3130-3141.	6.6	663
2	Evolution of the Grain Dispersal System in Barley. Cell, 2015, 162, 527-539.	28.9	265
3	A Set of Modular Binary Vectors for Transformation of Cereals. Plant Physiology, 2007, 145, 1192-1200.	4.8	205
4	Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens. Plant Biotechnology Journal, 2006, 4, 251-261.	8.3	191
5	Unleashing floret fertility in wheat through the mutation of a homeobox gene. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5182-5187.	7.1	158
6	Efficient generation of transgenic barley: The way forward to modulate plant–microbe interactions. Journal of Plant Physiology, 2008, 165, 71-82.	3.5	135
7	<i>Agrobacterium</i> -Mediated Gene Transfer to Cereal Crop Plants: Current Protocols for Barley, Wheat, Triticale, and Maize. International Journal of Plant Genomics, 2009, 2009, 1-9.	2.2	128
8	A Barley ROP GTPase ACTIVATING PROTEIN Associates with Microtubules and Regulates Entry of the Barley Powdery Mildew Fungus into Leaf Epidermal Cells Â. Plant Cell, 2011, 23, 2422-2439.	6.6	127
9	The wheat <i><scp>L</scp>r34</i> gene provides resistance against multiple fungal pathogens in barley. Plant Biotechnology Journal, 2013, 11, 847-854.	8.3	116
10	The CRISPR/Cas revolution continues: From efficient gene editing for crop breeding to plant synthetic biology. Journal of Integrative Plant Biology, 2018, 60, 1127-1153.	8.5	109
11	Abscisic acid is a substrate of the <scp>ABC</scp> transporter encoded by the durable wheat disease resistance gene <i>Lr34</i> . New Phytologist, 2019, 223, 853-866.	7.3	102
12	Promoters of the Barley Germin-Like <i>GER4</i> Gene Cluster Enable Strong Transgene Expression in Response to Pathogen Attack Â. Plant Cell, 2010, 22, 937-952.	6.6	100
13	The fungal core effector <scp>P</scp> ep1 is conserved across smuts of dicots and monocots. New Phytologist, 2015, 206, 1116-1126.	7.3	100
14	True-Breeding Targeted Gene Knock-Out in Barley Using Designer TALE-Nuclease in Haploid Cells. PLoS ONE, 2014, 9, e92046.	2.5	91
15	A Distorted Circadian Clock Causes Early Flowering and Temperature-Dependent Variation in Spike Development in the <i>Eps-3Am</i> Mutant of Einkorn Wheat. Genetics, 2014, 196, 1253-1261.	2.9	88
16	<i>PROTEIN DISULFIDE ISOMERASE LIKE 5-1</i> is a susceptibility factor to plant viruses. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2104-2109.	7.1	85
17	Abscisic Acid Flux Alterations Result in Differential Abscisic Acid Signaling Responses and Impact Assimilation Efficiency in Barley under Terminal Drought Stress. Plant Physiology, 2014, 164, 1677-1696.	4.8	85
18	Mitogen-Activated Protein Kinase Kinase 3 Regulates Seed Dormancy in Barley. Current Biology, 2016, 26, 775-781.	3.9	85

#	Article	IF	Citations
19	BAX INHIBITOR-1 Is Required for Full Susceptibility of Barley to Powdery Mildew. Molecular Plant-Microbe Interactions, 2010, 23, 1217-1227.	2.6	84
20	Ectopic Expression of Constitutively Activated RACB in Barley Enhances Susceptibility to Powdery Mildew and Abiotic Stress. Plant Physiology, 2005, 139, 353-362.	4.8	80
21	Modification of Barley Plant Productivity Through Regulation of Cytokinin Content by Reverse-Genetics Approaches. Frontiers in Plant Science, 2018, 9, 1676.	3.6	79
22	Evolutionary Conserved Function of Barley and Arabidopsis 3-KETOACYL-CoA SYNTHASES in Providing Wax Signals for Germination of Powdery Mildew Fungi Â. Plant Physiology, 2014, 166, 1621-1633.	4.8	76
23	A Conserved Apomixis-Specific Polymorphism Is Correlated with Exclusive Exonuclease Expression in Premeiotic Ovules of Apomictic Boechera Species. Plant Physiology, 2013, 163, 1660-1672.	4.8	71
24	Divergence of expression pattern contributed to neofunctionalization of duplicated <scp>HD</scp> â€ <scp>Z</scp> ip <scp>I</scp> transcription factor in barley. New Phytologist, 2013, 197, 939-948.	7.3	67
25	Polarized Defense Against Fungal Pathogens Is Mediated by the Jacalin-Related Lectin Domain of Modular Poaceae -Specific Proteins. Molecular Plant, 2016, 9, 514-527.	8.3	67
26	Constitutively activated barley ROPs modulate epidermal cell size, defense reactions and interactions with fungal leaf pathogens. Plant Cell Reports, 2008, 27, 1877-1887.	5.6	65
27	Whirly1 in chloroplasts associates with intron containing RNAs and rarely co-localizes with nucleoids. Planta, 2010, 232, 471-481.	3.2	65
28	Improving rice salt tolerance by precision breeding in a new era. Current Opinion in Plant Biology, 2021, 60, 101996.	7.1	61
29	RBOHF2 of Barley Is Required for Normal Development of Penetration Resistance to the Parasitic Fungus <i>Blumeria graminis </i> f. sp. <i>hordei </i> li> Molecular Plant-Microbe Interactions, 2010, 23, 1143-1150.	2.6	60
30	Convergent evolution of a metabolic switch between aphid and caterpillar resistance in cereals. Science Advances, 2018, 4, eaat6797.	10.3	58
31	Repair of Site-Specific DNA Double-Strand Breaks in Barley Occurs via Diverse Pathways Primarily Involving the Sister Chromatid. Plant Cell, 2014, 26, 2156-2167.	6.6	55
32	Targeted Modification of Gene Function Exploiting Homology-Directed Repair of TALEN-Mediated Double-Strand Breaks in Barley. G3: Genes, Genomes, Genetics, 2015, 5, 1857-1863.	1.8	53
33	The barley (<i>Hordeum vulgare</i>) cellulose synthaseâ€ike D2 gene (<i>HvCslD2</i>) mediates penetration resistance to hostâ€adapted and nonhost isolates of the powdery mildew fungus. New Phytologist, 2016, 212, 421-433.	7.3	52
34	Leaf Variegation and Impaired Chloroplast Development Caused by a Truncated CCT Domain Gene in <i>albostrians</i> Barley. Plant Cell, 2019, 31, 1430-1445.	6.6	52
35	The green fluorescent protein targets secretory proteins to the yeast vacuole. Biochimica Et Biophysica Acta - Bioenergetics, 1999, 1410, 287-298.	1.0	49
36	Stable gene replacement in barley by targeted double-strand break induction. Journal of Experimental Botany, 2016, 67, 1433-1445.	4.8	49

#	Article	IF	CITATIONS
37	WHIRLY1 is a major organizer of chloroplast nucleoids. Frontiers in Plant Science, 2014, 5, 432.	3.6	48
38	The wheat resistance gene <i>Lr34</i> results in the constitutive induction of multiple defense pathways in transgenic barley. Plant Journal, 2015, 84, 202-215.	5.7	45
39	Prime Editing: A New Way for Genome Editing. Trends in Cell Biology, 2020, 30, 257-259.	7.9	45
40	Induction of telomereâ€mediated chromosomal truncation and stability of truncated chromosomes in <i>Arabidopsis thaliana</i> . Plant Journal, 2011, 68, 28-39.	5.7	44
41	A simple test for the cleavage activity of customized endonucleases in plants. Plant Methods, 2016, 12, 18.	4.3	43
42	Telomere-mediated truncation of barley chromosomes. Chromosoma, 2012, 121, 181-190.	2.2	41
43	Transgenic Production of an Anti HIV Antibody in the Barley Endosperm. PLoS ONE, 2015, 10, e0140476.	2.5	41
44	Immature pollen-derived doubled haploid formation in barley cv. Golden Promise as a tool for transgene recombination. Acta Physiologiae Plantarum, 2005, 27, 591-599.	2.1	40
45	Transgene expression systems in the Triticeae cereals. Journal of Plant Physiology, 2011, 168, 30-44.	3.5	39
46	An LRR/Malectin Receptor-Like Kinase Mediates Resistance to Non-adapted and Adapted Powdery Mildew Fungi in Barley and Wheat. Frontiers in Plant Science, 2016, 7, 1836.	3.6	39
47	Pathogenâ€inducible <i>Ta</i> â€ <i>Lr34res</i> expression in heterologous barley confers disease resistance without negative pleiotropic effects. Plant Biotechnology Journal, 2018, 16, 245-253.	8.3	39
48	The elimination of a selectable marker gene in the doubled haploid progeny of co-transformed barley plants. Plant Molecular Biology, 2013, 81, 149-160.	3.9	37
49	The INDETERMINATE DOMAIN Protein BROAD LEAF1 Limits Barley Leaf Width by Restricting Lateral Proliferation. Current Biology, 2016, 26, 903-909.	3.9	37
50	Orthologous receptor kinases quantitatively affect the host status of barley to leaf rust fungi. Nature Plants, 2019, 5, 1129-1135.	9.3	37
51	HvPap-1 C1A Protease and HvCPI-2 Cystatin Contribute to Barley Grain Filling and Germination. Plant Physiology, 2016, 170, 2511-2524.	4.8	33
52	Acceleration of leaf senescence is slowed down in transgenic barley plants deficient in the DNA/RNA-binding protein WHIRLY1. Journal of Experimental Botany, 2017, 68, 983-996.	4.8	30
53	Vacuolar processing enzyme 4 contributes to maternal control of grain size in barley by executing programmed cell death in the pericarp. New Phytologist, 2018, 218, 1127-1142.	7.3	30
54	Prime Editing: Game Changer for Modifying Plant Genomes. Trends in Plant Science, 2020, 25, 722-724.	8.8	30

#	Article	IF	CITATIONS
55	RNA-Guided Cas9-Induced Mutagenesis in Tobacco Followed by Efficient Genetic Fixation in Doubled Haploid Plants. Frontiers in Plant Science, 2016, 7, 1995.	3.6	29
56	Barley (Hordeum vulgare L.) Transformation Using Immature Embryos. Methods in Molecular Biology, 2015, 1223, 71-83.	0.9	27
57	Repression of drought-induced cysteine-protease genes alters barley leaf structure and responses to abiotic and biotic stresses. Journal of Experimental Botany, 2019, 70, 2143-2155.	4.8	26
58	Golden SusPtrit: a genetically well transformable barley line for studies on the resistance to rust fungi. Theoretical and Applied Genetics, 2014, 127, 325-337.	3.6	25
59	Leaf primordium size specifies leaf width and vein number among rowâ€type classes in barley. Plant Journal, 2017, 91, 601-612.	5.7	25
60	The plastid-nucleus located DNA/RNA binding protein WHIRLY1 regulates microRNA-levels during stress in barley (<i>Hordeum vulgare</i> L.). RNA Biology, 2018, 15, 886-891.	3.1	25
61	HvPap-1 C1A protease actively participates in barley proteolysis mediated by abiotic stresses. Journal of Experimental Botany, 2016, 67, 4297-4310.	4.8	24
62	Genetic transformation technology in the Triticeae. Breeding Science, 2009, 59, 553-560.	1.9	22
63	Analysis of T-DNA integration and generative segregation in transgenic winter triticale (x) Tj ETQq $1\ 1\ 0.784314$	l rgBJ_{Over	rlock 10 Tf 50
64	Cellular dynamics during early barley pollen embryogenesis revealed by time-lapse imaging. Frontiers in Plant Science, 2014, 5, 675.	3.6	22
65	Overexpression of Hvlcy6 in Barley Enhances Resistance against Tetranychus urticae and Entails Partial Transcriptomic Reprogramming. International Journal of Molecular Sciences, 2018, 19, 697.	4.1	21
66	Targeted genome modifcation in protoplasts of a highly regenerable Siberian barley cultivar using RNA-guided Cas9 endonuclease. Vavilovskii Zhurnal Genetiki I Selektsii, 2019, 22, 1033-1039.	1.1	21
67	Silencing barley cystatins HvCPlâ€2 and HvCPlâ€4 specifically modifies leaf responses to drought stress. Plant, Cell and Environment, 2018, 41, 1776-1790.	5.7	20
68	Are PECTIN ESTERASE INHIBITOR Genes Involved in Mediating Resistance to Rhynchosporium commune in Barley?. PLoS ONE, 2016, 11, e0150485.	2.5	19
69	The nucleoid-associated protein WHIRLY1 is required for the coordinate assembly of plastid and nucleus-encoded proteins during chloroplast development. Planta, 2019, 249, 1337-1347.	3.2	18
70	Genetic transformation of Triticeae cereals – Summary of almost three-decade's development. Biotechnology Advances, 2020, 40, 107484.	11.7	18
71	Genome editing and beyond: what does it mean for the future of plant breeding?. Planta, 2022, 255, 130.	3.2	17
72	Expression of the tobacco gene CBP20 in response to developmental stage, wounding, salicylic acid and heavy metals. Plant Science, 1999, 148, 165-174.	3.6	16

#	Article	IF	CITATIONS
73	Grain filling in barley relies on developmentally controlled programmed cell death. Communications Biology, 2021, 4, 428.	4.4	15
74	OMICs, Epigenetics, and Genome Editing Techniques for Food and Nutritional Security. Plants, 2021, 10, 1423.	3.5	15
75	Time-lapse imaging of the initiation of pollen embryogenesis in barley (Hordeum vulgare L.). Journal of Experimental Botany, 2012, 63, 6017-6021.	4.8	14
76	Barley ADH-1 modulates susceptibility to Bgh and is involved in chitin-induced systemic resistance. Plant Physiology and Biochemistry, 2018, 123, 281-287.	5.8	14
77	Genetic Transformation of Barley (Hordeum Vulgare L.) by Co-Culture of Immature Embryos with Agrobacterium., 2004,, 35-44.		14
78	Barley cysteine protease PAP14 plays a role in degradation of chloroplast proteins. Journal of Experimental Botany, 2019, 70, 6057-6069.	4.8	13
79	Agrobacterium-Mediated Transformation of Wheat Using Immature Embryos. Methods in Molecular Biology, 2017, 1679, 129-139.	0.9	12
80	Genome Engineering Using TALENs. Methods in Molecular Biology, 2019, 1900, 195-215.	0.9	12
81	WHIRLIES Are Multifunctional DNA-Binding Proteins With Impact on Plant Development and Stress Resistance. Frontiers in Plant Science, 2022, 13, 880423.	3.6	12
82	The barley leaf rust resistance gene Rph3 encodes a predicted membrane protein and is induced upon infection by avirulent pathotypes of Puccinia hordei. Nature Communications, 2022, 13, 2386.	12.8	12
83	Targeted Base Editing Systems Are Available for Plants. Trends in Plant Science, 2018, 23, 955-957.	8.8	11
84	Increasing abscisic acid levels by immunomodulation in barley grains induces precocious maturation without changing grain composition. Journal of Experimental Botany, 2016, 67, 2675-2687.	4.8	10
85	Evolutionarily conserved partial gene duplication in the Triticeae tribe of grasses confers pathogen resistance. Genome Biology, 2018, 19, 116.	8.8	9
86	More precise, more universal and more specific – the next generation of RNAâ€guided endonucleases for genome editing. FEBS Journal, 2019, 286, 4657-4660.	4.7	9
87	Kmasker plants – a tool for assessing complex sequence space in plant species. Plant Journal, 2020, 102, 631-642.	5.7	8
88	Plastid-Targeted Cyanobacterial Flavodiiron Proteins Maintain Carbohydrate Turnover and Enhance Drought Stress Tolerance in Barley. Frontiers in Plant Science, 2020, 11, 613731.	3.6	7
89	Mutation of the ALBOSTRIANS Ohnologous Gene HvCMF3 Impairs Chloroplast Development and Thylakoid Architecture in Barley. Frontiers in Plant Science, 2021, 12, 732608.	3.6	7
90	The meiotic topoisomerase VI B subunit (MTOPVIB) is essential for meiotic DNA double-strand break formation in barley (Hordeum vulgare L.). Plant Reproduction, 0, , .	2.2	7

#	Article	IF	Citations
91	Barley HISTIDINE KINASE 1 (HvHK1) coordinates transfer cell specification in the young endosperm. Plant Journal, 2020, 103 , $1869-1884$.	5.7	6
92	The Arabidopsis AAC Proteins CIL and CIA2 Are Sub-functionalized Paralogs Involved in Chloroplast Development. Frontiers in Plant Science, 2021, 12, 681375.	3.6	6
93	The influence of 2,4-dichlorophenoxyacetic acid on localisation of the PR-proteins CBP20 and class I chitinase in tobacco suspension cell cultures. Plant Science, 2002, 163, 1099-1106.	3.6	5
94	Effect of <i>Thiobacillus</i> and Superabsorbent on Essential Oil Components in <i>Thyme</i> Species. Journal of Essential Oil-bearing Plants: JEOP, 2019, 22, 799-810.	1.9	5
95	Site-Directed Mutagenesis in Barley by Expression of TALE Nuclease in Embryogenic Pollen. , 2017, , 113-128.		4
96	Posttranslational modification of the RHO of plants protein RACB by phosphorylation and cross-kingdom conserved ubiquitination. PLoS ONE, 2022, 17, e0258924.	2.5	4
97	Enhancing cereal productivity by genetic modification of root architecture. Biotechnology Journal, 2022, 17, e2100505.	3.5	4
98	Transgenic barley in applied research and biotechnology. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit, 2007, 2, 104-104.	1.4	3
99	Triticeae Cereals. Biotechnology in Agriculture and Forestry, 2010, , 287-306.	0.2	3
100	Cloning of the wound-inducible protein CBP20 and expression in suspension cultures of tobacco. Plant Science, 1997, 128, 199-206.	3.6	2
101	Expression of influenza A (H5N1) vaccine in barley grains for oral bird immunization. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit, 2007, 2, 118-118.	1.4	2
102	Efficient Agrobacterium-Mediated Transformation of Various Barley (Hordeum vulgare L.) Genotypes. , 2007, , 143-145.		2
103	Genome editing of barley. , 2021, , 325-340.		1
104	Genetic Transformation of Triticeae Cereals for Molecular Farming. , 0, , .		1
105	Structural Changes During The Initiation Of Pollen Embryogenesis In Barley: Ultrastructure Analysis And Live Cell Imaging. Microscopy and Microanalysis, 2012, 18, 258-259.	0.4	0
106	Domestikation im Zeitraffer: Wie die Gerste zu mehr KĶrnern kam. Biologie in Unserer Zeit, 2014, 44, 11-12.	0.2	0
107	SYNTHETIC ENDONUCLEASES: NOVEL TOOLS FOR THE SITE-DIRECTED GENETIC MODIFICATION OF PLANTS. Acta Horticulturae, 2015, , 71-81.	0.2	0
108	Genome editing of barley., 2021,, 325-340.		0