Daniel J Murphy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5047316/publications.pdf

Version: 2024-02-01

39 papers 3,671 citations

279798 23 h-index 315739 38 g-index

47 all docs

47 docs citations

47 times ranked

7057 citing authors

#	Article	IF	CITATIONS
1	Modelling Myc inhibition as a cancer therapy. Nature, 2008, 455, 679-683.	27.8	706
2	Distinct Thresholds Govern Myc's Biological Output In Vivo. Cancer Cell, 2008, 14, 447-457.	16.8	390
3	Limited Mitochondrial Permeabilization Causes DNA Damage and Genomic Instability in the Absence of Cell Death. Molecular Cell, 2015, 57, 860-872.	9.7	341
4	Deregulated MYC expression induces dependence upon AMPK-related kinase 5. Nature, 2012, 483, 608-612.	27.8	220
5	Developmental Regulation of Mitochondrial Apoptosis by c-Myc Governs Age- and Tissue-Specific Sensitivity to Cancer Therapeutics. Cancer Cell, 2017, 31, 142-156.	16.8	190
6	Oncogenic Myc Induces Expression of Glutamine Synthetase through Promoter Demethylation. Cell Metabolism, 2015, 22, 1068-1077.	16.2	189
7	MYC-Dependent Regulation and Prognostic Role of CIP2A in Gastric Cancer. Journal of the National Cancer Institute, 2009, 101, 793-805.	6.3	186
8	Interleukin-6- and Cyclic AMP-Mediated Signaling Potentiates Neuroendocrine Differentiation of LNCaP Prostate Tumor Cells. Molecular and Cellular Biology, 2001, 21, 8471-8482.	2.3	177
9	Human SWI-SNF Component BRG1 Represses Transcription of the c- <i>fos</i> Gene. Molecular and Cellular Biology, 1999, 19, 2724-2733.	2.3	131
10	Glutamine Anabolism Plays a Critical Role in Pancreatic Cancer by Coupling Carbon and Nitrogen Metabolism. Cell Reports, 2019, 29, 1287-1298.e6.	6.4	105
11	Repression of the Type I Interferon Pathway Underlies MYC- and KRAS-Dependent Evasion of NK and B Cells in Pancreatic Ductal Adenocarcinoma. Cancer Discovery, 2020, 10, 872-887.	9.4	102
12	MYC regulates ductal-neuroendocrine lineage plasticity in pancreatic ductal adenocarcinoma associated with poor outcome and chemoresistance. Nature Communications, 2017, 8, 1728.	12.8	83
13	The ERBB network facilitates KRAS-driven lung tumorigenesis. Science Translational Medicine, 2018, 10,	12.4	82
14	Evidence of cancerâ€promoting roles for <scp>AMPK</scp> and related kinases. FEBS Journal, 2015, 282, 4658-4671.	4.7	72
15	CRISPR/Cas9-derived models of ovarian high grade serous carcinoma targeting Brca1, Pten and Nf1, and correlation with platinum sensitivity. Scientific Reports, 2017, 7, 16827.	3.3	68
16	A Neuronal Relay Mediates a Nutrient Responsive Gut/Fat Body Axis Regulating Energy Homeostasis in Adult Drosophila. Cell Metabolism, 2019, 29, 269-284.e10.	16.2	68
17	In vitro evidence for senescent multinucleated melanocytes as a source for tumor-initiating cells. Cell Death and Disease, 2015, 6, e1711-e1711.	6.3	67
18	BIM Is the Primary Mediator of MYC-Induced Apoptosis in Multiple Solid Tissues. Cell Reports, 2014, 8, 1347-1353.	6.4	64

#	Article	IF	CITATIONS
19	Defining the temporal requirements for Myc in the progression and maintenance of skin neoplasia. Oncogene, 2004, 23, 5923-5930.	5.9	59
20	Colorectal Tumors Require NUAK1 for Protection from Oxidative Stress. Cancer Discovery, 2018, 8, 632-647.	9.4	57
21	The feed-forward loop between YB-1 and MYC is essential for multiple myeloma cell survival. Leukemia, 2013, 27, 441-450.	7.2	45
22	The Spy1/RINGO Family Represents a Novel Mechanism Regulating Mammary Growth and Tumorigenesis. Cancer Research, 2008, 68, 3591-3600.	0.9	43
23	Inhibition of cyclin D1 gene transcription by Brg-1. Cell Cycle, 2008, 7, 647-655.	2.6	25
24	Progress and challenges in Mesothelioma: From bench to bedside. Respiratory Medicine, 2018, 134, 31-41.	2.9	25
25	Calcium signalling links MYC to NUAK1. Oncogene, 2018, 37, 982-992.	5.9	23
26	TFEB Links MYC Signaling to Epigenetic Control of Myeloid Differentiation and Acute Myeloid Leukemia. Blood Cancer Discovery, 2021, 2, 162-185.	5.0	22
27	ld2 Is Dispensable for Myc-Induced Epidermal Neoplasia. Molecular and Cellular Biology, 2004, 24, 2083-2090.	2.3	21
28	The pathogenesis of mesothelioma is driven by a dysregulated translatome. Nature Communications, 2021, 12, 4920.	12.8	20
29	Development of an inducible mouse model of iRFP713 to track recombinase activity and tumour development in vivo. Scientific Reports, 2017, 7, 1837.	3.3	19
30	Oncogene-dependent Tumor Suppression: Using the Dark Side of the Force for Cancer Therapy. Cold Spring Harbor Symposia on Quantitative Biology, 2005, 70, 263-273.	1.1	17
31	THEM6â€mediated reprogramming of lipid metabolism supports treatment resistance in prostate cancer. EMBO Molecular Medicine, 2022, 14, e14764.	6.9	12
32	Mesothelioma: Identical Routes to Malignancy fromÂAsbestos and Carbon Nanotubes. Current Biology, 2017, 27, R1173-R1176.	3.9	11
33	Predicting lung cancer recurrence from circulating tumour DNA. Commentary on 'Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution'. Cell Death and Differentiation, 2017, 24, 1473-1474.	11.2	9
34	Identification of a Clinically Relevant Signature for Early Progression in KRAS-Driven Lung Adenocarcinoma. Cancers, 2019, 11, 600.	3.7	5
35	The 2014 Beatson International Cancer Conference: Powering the Cancer Machine. Cancer & Metabolism, 2014, 2, .	5.0	2
36	Is oxidative stress MYC's Achilles heel?. Cell Death and Differentiation, 2018, 25, 1189-1190.	11.2	2

#	Article	IF	CITATIONS
37	BIM's up first. Molecular and Cellular Oncology, 2015, 2, e975083.	0.7	1
38	IKK \hat{I}^2 Kinase Promotes Stemness, Migration, and Invasion in KRAS-Driven Lung Adenocarcinoma Cells. International Journal of Molecular Sciences, 2020, 21, 5806.	4.1	1
39	Studying lung cancer progression: insights from genetically engineered mouse models of cancer. Lung Cancer Management, 2015, 4, 155-157.	1.5	0