
Cécile Segonzac

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5046942/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Plant Immune Receptor Detects Pathogen Effectors that Target WRKY Transcription Factors. Cell, 2015, 161, 1089-1100.	28.9	454
2	Cell Wall Damage-Induced Lignin Biosynthesis Is Regulated by a Reactive Oxygen Species- and Jasmonic Acid-Dependent Process in Arabidopsis Â. Plant Physiology, 2011, 156, 1364-1374.	4.8	382
3	Brassinosteroids inhibit pathogen-associated molecular pattern–triggered immune signaling independent of the receptor kinase BAK1. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 303-308.	7.1	303
4	Structural Basis for Assembly and Function of a Heterodimeric Plant Immune Receptor. Science, 2014, 344, 299-303.	12.6	300
5	Activation of plant pattern-recognition receptors by bacteria. Current Opinion in Microbiology, 2011, 14, 54-61.	5.1	264
6	Direct transcriptional control of the <i>Arabidopsis</i> immune receptor FLS2 by the ethylene-dependent transcription factors EIN3 and EIL1. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14502-14507.	7.1	218
7	The Calcium-Dependent Protein Kinase CPK28 Buffers Plant Immunity and Regulates BIK1 Turnover. Cell Host and Microbe, 2014, 16, 605-615.	11.0	208
8	The transcriptional regulator BZR1 mediates trade-off between plant innate immunity and growth. ELife, 2013, 2, e00983.	6.0	208
9	Plant immune and growth receptors share common signalling components but localise to distinct plasma membrane nanodomains. ELife, 2017, 6, .	6.0	206
10	Nitrate Efflux at the Root Plasma Membrane: Identification of an <i>Arabidopsis</i> Excretion Transporter. Plant Cell, 2007, 19, 3760-3777.	6.6	188
11	The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses. PLoS Genetics, 2017, 13, e1006832.	3.5	187
12	Hierarchy and Roles of Pathogen-Associated Molecular Pattern-Induced Responses in <i>Nicotiana benthamiana</i> Â Â. Plant Physiology, 2011, 156, 687-699.	4.8	185
13	A Bacterial Tyrosine Phosphatase Inhibits Plant Pattern Recognition Receptor Activation. Science, 2014, 343, 1509-1512.	12.6	152
14	Negative control of <scp>BAK</scp> 1 by protein phosphatase 2A during plant innate immunity. EMBO Journal, 2014, 33, 2069-2079.	7.8	138
15	The Nuclear Immune Receptor RPS4 Is Required for RRS1SLH1-Dependent Constitutive Defense Activation in Arabidopsis thaliana. PLoS Genetics, 2014, 10, e1004655.	3.5	121
16	A bacterial acetyltransferase triggers immunity in Arabidopsis thaliana independent of hypersensitive response. Scientific Reports, 2017, 7, 3557.	3.3	69
17	Cautionary Notes on the Use of C-Terminal BAK1 Fusion Proteins for Functional Studies. Plant Cell, 2011, 23, 3871-3878.	6.6	60
18	Modulation of plant innate immune signaling by small peptides. Current Opinion in Plant Biology, 2019, 51, 22-28.	7.1	48

CéCILE SEGONZAC

#	Article	IF	CITATIONS
19	An immune receptor complex evolved in soybean to perceive a polymorphic bacterial flagellin. Nature Communications, 2020, 11, 3763.	12.8	48
20	Pseudomonas syringae pv. actinidiae Type III Effectors Localized at Multiple Cellular Compartments Activate or Suppress Innate Immune Responses in Nicotiana benthamiana. Frontiers in Plant Science, 2017, 8, 2157.	3.6	42
21	EXPRSS: an Illumina based high-throughput expression-profiling method to reveal transcriptional dynamics. BMC Genomics, 2014, 15, 341.	2.8	36
22	The Shoot Apical Meristem Regulatory Peptide CLV3 Does Not Activate Innate Immunity. Plant Cell, 2012, 24, 3186-3192.	6.6	35
23	Ralstonia solanacearum Type III Effectors with Predicted Nuclear Localization Signal Localize to Various Cell Compartments and Modulate Immune Responses in Nicotiana spp Plant Pathology Journal, 2020, 36, 43-53.	1.7	28
24	Differential Suppression of Nicotiana benthamiana Innate Immune Responses by Transiently Expressed Pseudomonas syringae Type III Effectors. Frontiers in Plant Science, 2018, 9, 688.	3.6	21
25	A Conserved EAR Motif Is Required for Avirulence and Stability of the Ralstonia solanacearum Effector PopP2 In Planta. Frontiers in Plant Science, 2017, 8, 1330.	3.6	17
26	Identification of RipAZ1 as an avirulence determinant of <i>Ralstonia solanacearum</i> in <i>Solanum americanum</i> . Molecular Plant Pathology, 2021, 22, 317-333.	4.2	15
27	Host adaptation and microbial competition drive Ralstonia solanacearum phylotype I evolution in the Republic of Korea. Microbial Genomics, 2020, 6, .	2.0	14
28	Effector-assisted breeding for bacterial wilt resistance in horticultural crops. Horticulture Environment and Biotechnology, 2016, 57, 415-423.	2.1	11
29	High Contiguity Whole Genome Sequence and Gene Annotation Resource for Two Venturia nashicola Isolates. Molecular Plant-Microbe Interactions, 2019, 32, 1091-1094.	2.6	10
30	Autoimmunity and effector recognition in <i>Arabidopsis thaliana</i> can be uncoupled by mutations in the RRS1â€R immune receptor. New Phytologist, 2019, 222, 954-965.	7.3	10
31	<i>Ralstonia solanacearum</i> Type III Effector RipJ Triggers Bacterial Wilt Resistance in <i>Solanum pimpinellifolium</i> . Molecular Plant-Microbe Interactions, 2021, 34, 962-972.	2.6	7
32	Perception of unrelated microbe-associated molecular patterns triggers conserved yet variable physiological and transcriptional changes in Brassica rapa ssp. pekinensis. Horticulture Research, 2020, 7, 186.	6.3	6
33	The Danger-Associated Peptide PEP1 Directs Cellular Reprogramming in the Arabidopsis Root Vascular System. Molecules and Cells, 2021, 44, 830-842.	2.6	6
34	Whole Genome Enabled Phylogenetic and Secretome Analyses of Two Venturia nashicola Isolates. Plant Pathology Journal, 2020, 36, 98-105.	1.7	5
35	Tackling multiple bacterial diseases of Solanaceae with a handful of immune receptors. Horticulture Environment and Biotechnology, 2022, 63, 149-160.	2.1	3