Lynda F Bonewald

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5046585/publications.pdf

Version: 2024-02-01

		7096	7348
173	24,458	78	152
papers	citations	h-index	g-index
180	180	180	18456
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Musculoskeletal Knowledge Portal: improving access to multi-omics data. Nature Reviews Rheumatology, 2022, 18, 1-2.	8.0	8
2	Potential influences on optimizing long-term musculoskeletal health in children and adolescents with X-linked hypophosphatemia (XLH). Orphanet Journal of Rare Diseases, 2022, 17, 30.	2.7	6
3	Osteocytes. , 2021, , 135-163.		O
4	Sclerostin Directly Stimulates Osteocyte Synthesis of Fibroblast Growth Factor-23. Calcified Tissue International, 2021, 109, 66-76.	3.1	25
5	Role of myokines and osteokines in cancer cachexia. Experimental Biology and Medicine, 2021, 246, 2118-2127.	2.4	20
6	Podoplanin is dispensable for mineralized tissue formation and maintenance in the Swiss outbred mouse background. Genesis, 2021, 59, e23450.	1.6	0
7	Non-bone metastatic cancers promote osteocyte-induced bone destruction. Cancer Letters, 2021, 520, 80-90.	7.2	13
8	Isolation of Murine and Human Osteocytes. Methods in Molecular Biology, 2021, 2221, 3-13.	0.9	3
9	Osteocytes and Cancer. Current Osteoporosis Reports, 2021, 19, 616-625.	3.6	9
10	Computational fluid dynamic analysis of bioprinted selfâ€supporting perfused tissue models. Biotechnology and Bioengineering, 2020, 117, 798-815.	3.3	13
11	The Musculoskeletal Knowledge Portal: Making Omics Data Useful to the Broader Scientific Community. Journal of Bone and Mineral Research, 2020, 35, 1626-1633.	2.8	25
12	The Osteocyte: New Insights. Annual Review of Physiology, 2020, 82, 485-506.	13.1	286
13	The role of sphingosine-1-phosphate signaling pathway in cementocyte mechanotransduction. Biochemical and Biophysical Research Communications, 2020, 523, 595-601.	2.1	6
14	Quantification of aminobutyric acids and their clinical applications as biomarkers for osteoporosis. Communications Biology, 2020, 3, 39.	4.4	39
15	Osteocytes: More Than Just Mechanosensory Cells. , 2020, , 188-203.		O
16	RANKL Blockade Reduces Cachexia and Bone Loss Induced by Non-Metastatic Ovarian Cancer in Mice. Journal of Bone and Mineral Research, 2020, 37, 381-396.	2.8	13
17	Molecular Mechanisms Responsible for the Rescue Effects of Pamidronate on Muscle Atrophy in Pediatric Burn Patients. Frontiers in Endocrinology, 2019, 10, 543.	3.5	26
18	Multi-Staged Regulation of Lipid Signaling Mediators during Myogenesis by COX-1/2 Pathways. International Journal of Molecular Sciences, 2019, 20, 4326.	4.1	12

#	Article	lF	CITATIONS
19	A Novel Osteogenic Cell Line That Differentiates Into GFP-Tagged Osteocytes and Forms Mineral With a Bone-Like Lacunocanalicular Structure. Journal of Bone and Mineral Research, 2019, 34, 979-995.	2.8	38
20	Characterization of a novel murine Sost ERT2 Cre model targeting osteocytes. Bone Research, 2019, 7, 6.	11.4	20
21	Fibroblast growth factor 9 (FGF9) inhibits myogenic differentiation of C2C12 and human muscle cells. Cell Cycle, 2019, 18, 3562-3580.	2.6	24
22	Bisphosphonate Treatment Ameliorates Chemotherapy-Induced Bone and Muscle Abnormalities in Young Mice. Frontiers in Endocrinology, 2019, 10, 809.	3.5	36
23	Use it or lose it to age: A review of bone and muscle communication. Bone, 2019, 120, 212-218.	2.9	132
24	Effects of muscleâ€derived BAIBA on osteocytes with aging. FASEB Journal, 2019, 33, 15.3.	0.5	0
25	Lipidomic analysis of lipid mediators derived from cyclooxygenaseâ€1 and â€2 pathways reveals their new implications in skeletal muscle. FASEB Journal, 2019, 33, 539.7.	0.5	0
26	Live Imaging of Type I Collagen Assembly Dynamics in Osteoblasts Stably Expressing GFP and mCherry-Tagged Collagen Constructs. Journal of Bone and Mineral Research, 2018, 33, 1166-1182.	2.8	58
27	Mechanically induced Ca2+ oscillations in osteocytes release extracellular vesicles and enhance bone formation. Bone Research, 2018, 6, 6.	11.4	122
28	\hat{l}^2 -aminoisobutyric Acid, l-BAIBA, Is a Muscle-Derived Osteocyte Survival Factor. Cell Reports, 2018, 22, 1531-1544.	6.4	131
29	Irisin Mediates Effects on Bone and Fat via αV Integrin Receptors. Cell, 2018, 175, 1756-1768.e17.	28.9	372
30	Growth of ovarian cancer xenografts causes loss of muscle and bone mass: a new model for the study of cancer cachexia. Journal of Cachexia, Sarcopenia and Muscle, 2018, 9, 685-700.	7.3	74
31	Postnatal Skeletal Deletion of Dickkopf-1 Increases Bone Formation and Bone Volume in Male and Female Mice, Despite Increased Sclerostin Expression. Journal of Bone and Mineral Research, 2018, 33, 1698-1707.	2.8	38
32	Physiological and pathological osteocytic osteolysis. Journal of Musculoskeletal Neuronal Interactions, 2018, 18, 292-303.	0.1	61
33	Myostatin inhibits osteoblastic differentiation by suppressing osteocyte-derived exosomal microRNA-218: A novel mechanism in muscle-bone communication. Journal of Biological Chemistry, 2017, 292, 11021-11033.	3.4	207
34	Osteocytes Acidify Their Microenvironment in Response to PTHrP In Vitro and in Lactating Mice In Vivo. Journal of Bone and Mineral Research, 2017, 32, 1761-1772.	2.8	88
35	The Role of the Osteocyte in Bone and Nonbone Disease. Endocrinology and Metabolism Clinics of North America, 2017, 46, 1-18.	3.2	97
36	Crosstalk Between MLO‥4 Osteocytes and C2C12 Muscle Cells Is Mediated by the Wnt∫î²â€€atenin Pathway. JBMR Plus, 2017, 1, 86-100.	2.7	83

3

#	Article	IF	CITATIONS
37	Bivariate genome-wide association meta-analysis of pediatric musculoskeletal traits reveals pleiotropic effects at the SREBF1/TOM1L2 locus. Nature Communications, 2017, 8, 121.	12.8	82
38	ACVR2B/Fc counteracts chemotherapy-induced loss of muscle and bone mass. Scientific Reports, 2017, 7, 14470.	3.3	44
39	Gaussian and linear deconvolution of LC-MS/MS chromatograms of the eight aminobutyric acid isomers. Analytical Biochemistry, 2017, 516, 75-85.	2.4	24
40	Degeneration of the osteocyte network in the C57BL/6 mouse model of aging. Aging, 2017, 9, 2190-2208.	3.1	104
41	Skeletal Muscle, but not Cardiovascular Function, Is Altered in a Mouse Model of Autosomal Recessive Hypophosphatemic Rickets. Frontiers in Physiology, 2016, 7, 173.	2.8	24
42	Identification of Senescent Cells in the Bone Microenvironment. Journal of Bone and Mineral Research, 2016, 31, 1920-1929.	2.8	352
43	Hypoxia mediates osteocyte ORP150 expression and cell death in vitro. Molecular Medicine Reports, 2016, 14, 4248-4254.	2.4	15
44	Isolation and Functional Analysis of an Immortalized Murine Cementocyte Cell Line, IDG-CM6. Journal of Bone and Mineral Research, 2016, 31, 430-442.	2.8	39
45	Long-term bone regeneration, mineralization and angiogenesis in rat calvarial defects implanted with strong porous bioactive glass (13 \hat{a} e"93) scaffolds. Journal of Non-Crystalline Solids, 2016, 432, 120-129.	3.1	19
46	Posttranslational processing of FGF23 in osteocytes during the osteoblast to osteocyte transition. Bone, 2016, 84, 120-130.	2.9	44
47	Deletion of Mbtps1 (Pcsk8, S1p, Ski-1) Gene in Osteocytes Stimulates Soleus Muscle Regeneration and Increased Size and Contractile Force with Age. Journal of Biological Chemistry, 2016, 291, 4308-4322.	3.4	42
48	Beta-Catenin Haplo Insufficient Male Mice Do Not Lose Bone in Response to Hindlimb Unloading. PLoS ONE, 2016, 11, e0158381.	2.5	29
49	Does Defective Bone Lead to Defective Muscle?. Journal of Bone and Mineral Research, 2015, 30, 593-595.	2.8	3
50	Prostaglandin E ₂ promotes proliferation of skeletal muscle myoblasts via EP4 receptor activation. Cell Cycle, 2015, 14, 1507-1516.	2.6	86
51	Muscle-Bone Crosstalk in Amyotrophic Lateral Sclerosis. Current Osteoporosis Reports, 2015, 13, 274-279.	3.6	11
52	Bone and muscle: Interactions beyond mechanical. Bone, 2015, 80, 109-114.	2.9	232
53	Connexin 43 Channels Are Essential for Normal Bone Structure and Osteocyte Viability. Journal of Bone and Mineral Research, 2015, 30, 436-448.	2.8	85
54	The parathyroid hormone-regulated transcriptome in osteocytes: Parallel actions with 1,25-dihydroxyvitamin D3 to oppose gene expression changes during differentiation and to promote mature cell function. Bone, 2015, 72, 81-91.	2.9	35

#	Article	IF	CITATIONS
55	Endochondral Ossification for Enhancing Bone Regeneration: Converging Native Extracellular Matrix Biomaterials and Developmental Engineering <i>In Vivo</i> . Tissue Engineering - Part B: Reviews, 2015, 21, 247-266.	4.8	68
56	Regulation of FGF23 expression in IDG-SW3 osteocytes and human bone by pro-inflammatory stimuli. Molecular and Cellular Endocrinology, 2015, 399, 208-218.	3.2	148
57	FGF23 Is Endogenously Phosphorylated in Bone Cells. Journal of Bone and Mineral Research, 2015, 30, 449-454.	2.8	30
58	Parathyroid Hormone Induces Bone Cell Motility and Loss of Mature Osteocyte Phenotype through L-Calcium Channel Dependent and Independent Mechanisms. PLoS ONE, 2015, 10, e0125731.	2.5	26
59	Osteocytes, not Osteoblasts or Lining Cells, are the Main Source of the RANKL Required for Osteoclast Formation in Remodeling Bone. PLoS ONE, 2015, 10, e0138189.	2.5	236
60	Crosstalk between Bone and Muscle: Deletion of Mbtps1 in Bone Leads to Ageâ€Dependent Increase in Muscle Size and Contractile Function. FASEB Journal, 2015, 29, 495.2.	0.5	0
61	Wnt3a and Wnt1 Enhance Myogenesis of C2C12 Myoblasts – Potential Mechanisms of Osteocyte to Muscle Cell Signaling. FASEB Journal, 2015, 29, 947.13.	0.5	0
62	Cyclooxygenase-2, prostaglandin E ₂ , and prostanoid receptor EP2 in fluid flow shear stress-mediated injury in the solitary kidney. American Journal of Physiology - Renal Physiology, 2014, 307, F1323-F1333.	2.7	27
63	Dysapoptosis of Osteoblasts and Osteocytes Increases Cancellous Bone Formation But Exaggerates Cortical Porosity With Age. Journal of Bone and Mineral Research, 2014, 29, 103-117.	2.8	65
64	<i>METTL21C</i> Is a Potential Pleiotropic Gene for Osteoporosis and Sarcopenia Acting Through the Modulation of the NF-PB Signaling Pathway. Journal of Bone and Mineral Research, 2014, 29, 1531-1540.	2.8	80
65	Healing of critical-size segmental defects in rat femora using strong porous bioactive glass scaffolds. Materials Science and Engineering C, 2014, 42, 816-824.	7.3	30
66	Preliminary evidence of early bone resorption in a sheep model of acute burn injury: an observational study. Journal of Bone and Mineral Metabolism, 2014, 32, 136-141.	2.7	32
67	Deletion of a Single \hat{l}^2 -Catenin Allele in Osteocytes Abolishes the Bone Anabolic Response to Loading. Journal of Bone and Mineral Research, 2014, 29, 705-715.	2.8	104
68	Estrogen receptor \hat{l}_{\pm} in osteocytes regulates trabecular bone formation in female mice. Bone, 2014, 60, 68-77.	2.9	92
69	The Osteoblast to Osteocyte Transition: Epigenetic Changes and Response to the Vitamin D ₃ Hormone. Molecular Endocrinology, 2014, 28, 1150-1165.	3.7	113
70	Wnt3a potentiates myogenesis in C2C12 myoblasts through the modulation of intracellular calcium and activation of the $\hat{I}^2\hat{a}$ eatenin signaling pathway (1102.23). FASEB Journal, 2014, 28, 1102.23.	0.5	0
71	FGF23 production by osteocytes. Pediatric Nephrology, 2013, 28, 563-568.	1.7	91
72	The Osteocyte: An Endocrine Cell … and More. Endocrine Reviews, 2013, 34, 658-690.	20.1	812

#	Article	IF	CITATIONS
73	Effect of bioactive borate glass microstructure on bone regeneration, angiogenesis, and hydroxyapatite conversion in a rat calvarial defect model. Acta Biomaterialia, 2013, 9, 8015-8026.	8.3	113
74	Extracellular phosphate modulates the effect of $1\hat{l}_{\pm}$,25-dihydroxy vitamin D3 (1,25D) on osteocyte like cells. Journal of Steroid Biochemistry and Molecular Biology, 2013, 136, 183-186.	2.5	51
75	Forum on bone and skeletal muscle interactions: Summary of the proceedings of an ASBMR workshop. Journal of Bone and Mineral Research, 2013, 28, 1857-1865.	2.8	104
76	Myelopoiesis is regulated by osteocytes through Gsl±-dependent signaling. Blood, 2013, 121, 930-939.	1.4	146
77	Exendin-4 increases bone mineral density in type 2 diabetic OLETF rats potentially through the down-regulation of SOST/sclerostin in osteocytes. Life Sciences, 2013, 92, 533-540.	4.3	101
78	Enhanced bone regeneration in rat calvarial defects implanted with surface-modified and BMP-loaded bioactive glass (13-93) scaffolds. Acta Biomaterialia, 2013, 9, 7506-7517.	8.3	54
79	Sclerostin Regulates Release of Bone Mineral by Osteocytes by Induction of Carbonic Anhydrase 2. Journal of Bone and Mineral Research, 2013, 28, 2436-2448.	2.8	130
80	Disruption of the insulin-like growth factor-1 gene in osteocytes impairs developmental bone growth in mice. Bone, 2013, 52, 133-144.	2.9	89
81	FGF23 is a novel regulator of intracellular calcium and cardiac contractility in addition to cardiac hypertrophy. American Journal of Physiology - Endocrinology and Metabolism, 2013, 304, E863-E873.	3.5	162
82	DELETION OF MBTPS1 IN BONE LEADS TO ENHANCEMENT OF MUSCLE MASS AND FUNCTION IN MATURE MICE. FASEB Journal, 2013, 27, .	0.5	0
83	Isolation and culture of primary osteocytes from the long bones of skeletally mature and aged mice. BioTechniques, 2012, 52, 361-373.	1.8	168
84	Mechanical stress-activated integrin $\hat{1}\pm 5\hat{1}^21$ induces opening of connexin 43 hemichannels. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3359-3364.	7.1	206
85	Evaluation of bone regeneration, angiogenesis, and hydroxyapatite conversion in criticalâ€sized rat calvarial defects implanted with bioactive glass scaffolds. Journal of Biomedical Materials Research - Part A, 2012, 100A, 3267-3275.	4.0	105
86	DNA methylation contributes to the regulation of sclerostin expression in human osteocytes. Journal of Bone and Mineral Research, 2012, 27, 926-937.	2.8	116
87	Demonstration of osteocytic perilacunar/canalicular remodeling in mice during lactation. Journal of Bone and Mineral Research, 2012, 27, 1018-1029.	2.8	410
88	Normocalcemia is maintained in mice under conditions of calcium malabsorption by vitamin D–induced inhibition of bone mineralization. Journal of Clinical Investigation, 2012, 122, 1803-1815.	8.2	306
89	Prostaglandin E2: From Clinical Applications to Its Potential Role in Bone- Muscle Crosstalk and Myogenic Differentiation. Recent Patents on Biotechnology, 2012, 6, 223-229.	0.8	109
90	Direct hypertrophic effects of fibroblast growth factor 23 on cardiomyocytes. FASEB Journal, 2012, 26, 1143.4.	0.5	0

#	Article	IF	Citations
91	Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nature Medicine, 2011, 17, 1231-1234.	30.7	1,593
92	Glucocorticoid dose determines osteocyte cell fate. FASEB Journal, 2011, 25, 3366-3376.	0.5	133
93	Sclerostin Stimulates Osteocyte Support of Osteoclast Activity by a RANKL-Dependent Pathway. PLoS ONE, 2011, 6, e25900.	2.5	419
94	The biological function of DMP-1 in osteocyte maturation is mediated by its 57-kDa c-terminal fragment. Journal of Bone and Mineral Research, 2011, 26, 331-340.	2.8	120
95	Unique roles of phosphorus in endochondral bone formation and osteocyte maturation. Journal of Bone and Mineral Research, 2011, 26, 1047-1056.	2.8	106
96	The amazing osteocyte. Journal of Bone and Mineral Research, 2011, 26, 229-238.	2.8	1,772
97	Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1. Journal of Bone and Mineral Research, 2011, 26, 1953-1963.	2.8	257
98	Cell line IDG-SW3 replicates osteoblast-to-late-osteocyte differentiation in vitro and accelerates bone formation in vivo. Journal of Bone and Mineral Research, 2011, 26, 2634-2646.	2.8	203
99	Bioactive glass in tissue engineering. Acta Biomaterialia, 2011, 7, 2355-2373.	8.3	1,421
100	Conditional deletion of <i>Pkd1</i> in osteocytes disrupts skeletal mechanosensing in mice. FASEB Journal, 2011, 25, 2418-2432.	0.5	110
101	The holy grail of high bone mass. Nature Medicine, 2011, 17, 657-658.	30.7	12
102	Mutually beneficial crosstalk between muscle cells and osteocytes. FASEB Journal, 2011, 25, 1059.17.	0.5	0
103	Osteocytes Support Hematopoiesis by Altering the Bone Marrow Microenvironment Through Gsl± Signaling. Blood, 2011, 118, 219-219.	1.4	4
104	Prostaglandin E2 is crucial in the response of podocytes to fluid flow shear stress. Journal of Cell Communication and Signaling, 2010, 4, 79-90.	3.4	30
105	Glucocorticoid-induced autophagy in osteocytes. Journal of Bone and Mineral Research, 2010, 25, 2479-2488.	2.8	172
106	Mechanical induction of PGE2 in osteocytes blocks glucocorticoid-induced apoptosis through both the \hat{l}^2 -catenin and PKA pathways. Journal of Bone and Mineral Research, 2010, 25, 2657-2668.	2.8	179
107	Correlation of cell strain in single osteocytes with intracellular calcium, but not intracellular nitric oxide, in response to fluid flow. Journal of Biomechanics, 2010, 43, 1560-1564.	2.1	43
108	Identification of osteocyteâ€selective proteins. Proteomics, 2010, 10, 3688-3698.	2.2	49

#	Article	IF	CITATIONS
109	Dynamics of the transition from osteoblast to osteocyte. Annals of the New York Academy of Sciences, 2010, 1192, 437-443.	3.8	255
110	Osteocyte Wnt/ \hat{l}^2 -Catenin Signaling Is Required for Normal Bone Homeostasis. Molecular and Cellular Biology, 2010, 30, 3071-3085.	2.3	501
111	Prostaglandin Promotion of Osteocyte Gap Junction Function through Transcriptional Regulation of Connexin 43 by Glycogen Synthase Kinase $3\hat{l}^2$ -Catenin Signaling. Molecular and Cellular Biology, 2010, 30, 206-219.	2.3	126
112	Osteogenic Differentiation of Human Umbilical Cord Mesenchymal Stromal Cells in Polyglycolic Acid Scaffolds. Tissue Engineering - Part A, 2010, 16, 1937-1948.	3.1	69
113	Unraveling osteocyte signaling networks: Meeting report from the 31st Annual Meeting of the American Society for Bone and Mineral Research. IBMS BoneKEy, 2010, 7, 88-92.	0.0	2
114	The Osteocyte Network as a Source and Reservoir of Signaling Factors. Endocrinology and Metabolism, 2010, 25, 161.	3.0	3
115	Evidence for pathophysiological crosstalk between bones, cardiac, skeletal and smooth muscles. FASEB Journal, 2010, 24, 1046.8.	0.5	2
116	Blocking of Proteolytic Processing and Deletion of Glycosaminoglycan Side Chain of Mouse DMP1 by Substituting Critical Amino Acid Residues. Cells Tissues Organs, 2009, 189, 192-197.	2.3	17
117	Introduction. Cells Tissues Organs, 2009, 189, 5-5.	2.3	1
118	Time Lapse Imaging Techniques for Comparison of Mineralization Dynamics in Primary Murine Osteoblasts and the Late Osteoblast/Early Osteocyte-Like Cell Line MLO-A5. Cells Tissues Organs, 2009, 189, 6-11.	2.3	33
119	Advancing our understanding of osteocyte cell biology. Therapeutic Advances in Musculoskeletal Disease, 2009, 1, 87-96.	2.7	20
120	Quantitative Mechanical/Chemical Imaging of Bone from Dmp1 Null Mice. Materials Research Society Symposia Proceedings, 2009, 1187, 162.	0.1	0
121	A novel osteoclast precursor cell line, 4B12, recapitulates the features of primary osteoclast differentiation and function: Enhanced transfection efficiency before and after differentiation. Journal of Cellular Physiology, 2009, 221, 40-53.	4.1	11
122	Signalling strategies for osteogenic differentiation of human umbilical cord mesenchymal stromal cells for 3D bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2009, 3, 398-404.	2.7	64
123	Gene expression signatures of a fibroblastoid preosteoblast and cuboidal osteoblast cell model compared to the MLO-Y4 osteocyte cell model. Bone, 2009, 44, 32-45.	2.9	43
124	Molecular analysis of DMP1 mutants causing autosomal recessive hypophosphatemic rickets. Bone, 2009, 44, 287-294.	2.9	66
125	Use of rapidly mineralising osteoblasts and short periods of mechanical loading to accelerate matrix maturation in 3D scaffolds. Bone, 2009, 44, 822-829.	2.9	87
126	Local communication on and within bone controls bone remodeling. Bone, 2009, 44, 1026-1033.	2.9	230

#	Article	IF	Citations
127	Distinct Compartmentalization of Dentin Matrix Protein 1 Fragments in Mineralized Tissues and Cells. Cells Tissues Organs, 2009, 189, 186-191.	2.3	31
128	Studies of the DMP1 57-kDa Functional Domain both in vivo and in vitro. Cells Tissues Organs, 2009, 189, 175-185.	2.3	53
129	Osteocyte Remodeling of the Perilacunar and Pericanalicular Matrix. International Journal of Oral Science, 2009, $1,59$ -65.	8.6	127
130	Identification of Full-Length Dentin Matrix Protein 1 in Dentin and Bone. Calcified Tissue International, 2008, 82, 401-410.	3.1	47
131	Osteocytes, mechanosensing and Wnt signaling. Bone, 2008, 42, 606-615.	2.9	904
132	Adaptation of Connexin 43-Hemichannel Prostaglandin Release to Mechanical Loading. Journal of Biological Chemistry, 2008, 283, 26374-26382.	3.4	150
133	Osteocytes play to standing room only: Meeting report from the 30th Annual Meeting of the American Society for Bone and Mineral Research. IBMS BoneKEy, 2008, 5, 441-445.	0.0	3
134	Osteocyte Messages from a Bony Tomb. Cell Metabolism, 2007, 5, 410-411.	16.2	39
135	Erk pathways negatively regulate matrix mineralization. Bone, 2007, 40, 68-74.	2.9	61
136	Tissue strain amplification at the osteocyte lacuna: A microstructural finite element analysis. Journal of Biomechanics, 2007, 40, 2199-2206.	2.1	145
137	Osteocytes as Dynamic Multifunctional Cells. Annals of the New York Academy of Sciences, 2007, 1116, 281-290.	3.8	329
138	Glucocorticoid-Treated Mice Have Localized Changes in Trabecular Bone Material Properties and Osteocyte Lacunar Size That Are Not Observed in Placebo-Treated or Estrogen-Deficient Mice. Journal of Bone and Mineral Research, 2006, 21, 466-476.	2.8	302
139	Mechanosensation and transduction in osteocytes. BoneKEy Osteovision, 2006, 3, 7-15.	0.6	229
140	Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nature Genetics, 2006, 38, 1310-1315.	21.4	1,063
141	Osteocyte lacunae tissue strain in cortical bone. Journal of Biomechanics, 2006, 39, 1735-1743.	2.1	222
142	E11/gp38 Selective Expression in Osteocytes: Regulation by Mechanical Strain and Role in Dendrite Elongation. Molecular and Cellular Biology, 2006, 26, 4539-4552.	2.3	240
143	Cilia-like Structures and Polycystin-1 in Osteoblasts/Osteocytes and Associated Abnormalities in Skeletogenesis and Runx2 Expression. Journal of Biological Chemistry, 2006, 281, 30884-30895.	3.4	220
144	Measurement of microstructural strain in cortical bone. European Journal of Morphology, 2005, 42, 23-29.	0.8	56

#	Article	IF	CITATIONS
145	Mechanical Strain Opens Connexin 43 Hemichannels in Osteocytes: A Novel Mechanism for the Release of Prostaglandin. Molecular Biology of the Cell, 2005, 16, 3100-3106.	2.1	430
146	Dmp1-deficient Mice Display Severe Defects in Cartilage Formation Responsible for a Chondrodysplasia-like Phenotype. Journal of Biological Chemistry, 2005, 280, 6197-6203.	3.4	191
147	Dentin Matrix Protein 1 Gene Cis-regulation. Journal of Biological Chemistry, 2005, 280, 20680-20690.	3.4	103
148	Mechanical Loading Stimulates Dentin Matrix Protein 1 (DMP1) Expression in Osteocytes In Vivo. Journal of Bone and Mineral Research, 2003, 18, 807-817.	2.8	163
149	Effects of Mechanical Strain on the Function of Gap Junctions in Osteocytes Are Mediated through the Prostaglandin EP2 Receptor. Journal of Biological Chemistry, 2003, 278, 43146-43156.	3.4	182
150	Proteolysis of Latent Transforming Growth Factor- \hat{I}^2 (TGF- \hat{I}^2)-binding Protein-1 by Osteoclasts. Journal of Biological Chemistry, 2002, 277, 21352-21360.	3.4	361
151	Expression of Functional Gap Junctions and Regulation by Fluid Flow in Osteocyte-Like MLO-Y4 Cells. Journal of Bone and Mineral Research, 2001, 16, 249-259.	2.8	189
152	PGE2 Is Essential for Gap Junction-Mediated Intercellular Communication between Osteocyte-Like MLO-Y4 Cells in Response to Mechanical Strain. Endocrinology, 2001, 142, 3464-3473.	2.8	164
153	Role of the Latent Transforming Growth Factor β–Binding Protein 1 in Fibrillin-Containing Microfibrils in Bone Cells In Vitro and In Vivo. Journal of Bone and Mineral Research, 2000, 15, 68-81.	2.8	147
154	Research Technologies: Fulfilling the Promise ¹ . FASEB Journal, 1999, 13, 595-601.	0.5	16
155	Identification and Characterization of a Novel Protein, Periostin, with Restricted Expression to Periosteum and Periodontal Ligament and Increased Expression by Transforming Growth Factor \hat{I}^2 . Journal of Bone and Mineral Research, 1999, 14, 1239-1249.	2.8	851
156	Establishment and characterization of an osteocyte-like cell line, MLO-Y4. Journal of Bone and Mineral Metabolism, 1999, 17, 61-65.	2.7	127
157	Regulation and Regulatory Activities of Transforming Growth Factor \hat{I}^2 . Critical Reviews in Eukaryotic Gene Expression, 1999, 9, 33-44.	0.9	108
158	[32] Six-year study of peptide synthesis. Methods in Enzymology, 1997, 289, 697-717.	1.0	17
159	Oral bone loss is increased in ovariectomized rats. Journal of Endodontics, 1997, 23, 419-422.	3.1	30
160	Establishment of an Osteocyte-like Cell Line, MLO-Y4. Journal of Bone and Mineral Research, 1997, 12, 2014-2023.	2.8	470
161	Formation of a disulfide bond in an octreotide-like peptide: A multicenter study. Techniques in Protein Chemistry, 1996, 7, 261-274.	0.3	18
162	Characterization and regulation of the latent transforming growth factor- \hat{l}^2 complex secreted by vascular pericytes. Journal of Cellular Physiology, 1996, 166, 537-546.	4.1	30

#	Article	IF	CITATIONS
163	Leukotriene B ₄ stimulates osteoclastic bone resorption both in vitro and in vivo. Journal of Bone and Mineral Research, 1996, 11, 1619-1627.	2.8	118
164	Correlation of cleavage techniques with side-reactions following solid-phase peptide synthesis. Techniques in Protein Chemistry, 1995, 6, 539-546.	0.3	7
165	Evidence that interleukin-1 mediates its effects on bone resorption via the 80 kilodalton interleukin-1 receptor. Calcified Tissue International, 1993, 52, 438-441.	3.1	8
166	Interleukin-1 receptor antagonist inhibits the hypercalcemia mediated by interleukin-1. Journal of Bone and Mineral Research, 1993, 8, 583-587.	2.8	30
167	Latent Forms of Transforming Growth Factor- \hat{l}^2 (TGF \hat{l}^2) Derived from Bone Cultures: Identification of a Naturally Occurring 100-kDa Complex with Similarity to Recombinant Latent TGF \hat{l}^2 . Molecular Endocrinology, 1991, 5, 741-751.	3.7	121
168	Characterization of the latent transforming growth factor ß complex in Bone. Journal of Bone and Mineral Research, 1990, 5, 49-58.	2.8	96
169	Role of TGF? in Bone Remodeling. Annals of the New York Academy of Sciences, 1990, 593, 91-97.	3.8	52
170	Activation of the bone-derived latent TGF beta complex by isolated osteoclasts. Biochemical and Biophysical Research Communications, 1989, 158, 817-823.	2.1	276
171	Evidence for the biclonal nature of a Waldenstrom's macroglobulinemia. Clinica Chimica Acta, 1985, 146, 53-63.	1.1	9
172	Restriction of Cl hemolytic function by human proline-rich salivary proteins. Molecular Immunology, 1984, 21, 415-420.	2.2	7
173	Molecular comparison of mouse Thy-1 and its human homologue. Molecular Immunology, 1982, 19, 497-501.	2.2	8