
## **Charlotte A Cornil**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5046478/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Functional significance of the rapid regulation of brain estrogen action: Where do the estrogens come from?. Brain Research, 2006, 1126, 2-26.                                                                                    | 2.2 | 200       |
| 2  | Preoptic aromatase modulates male sexual behavior: slow and fast mechanisms of action. Physiology and Behavior, 2004, 83, 247-270.                                                                                                | 2.1 | 136       |
| 3  | Rapid effects of aromatase inhibition on male reproductive behaviors in Japanese quail. Hormones and<br>Behavior, 2006, 49, 45-67.                                                                                                | 2.1 | 98        |
| 4  | Rapid control of male typical behaviors by brain-derived estrogens. Frontiers in Neuroendocrinology, 2012, 33, 425-446.                                                                                                           | 5.2 | 98        |
| 5  | Dopamine Activates Noradrenergic Receptors in the Preoptic Area. Journal of Neuroscience, 2002, 22, 9320-9330.                                                                                                                    | 3.6 | 97        |
| 6  | Estradiol rapidly activates male sexual behavior and affects brain monoamine levels in the quail brain.<br>Behavioural Brain Research, 2006, 166, 110-123.                                                                        | 2.2 | 90        |
| 7  | Estradiol, a key endocrine signal in the sexual differentiation and activation of reproductive behavior<br>in quail. Journal of Experimental Zoology, 2009, 311A, 323-345.                                                        | 1.2 | 89        |
| 8  | Rapid Decreases in Preoptic Aromatase Activity and Brain Monoamine Concentrations after Engaging<br>in Male Sexual Behavior. Endocrinology, 2005, 146, 3809-3820.                                                                 | 2.8 | 88        |
| 9  | Actions of Steroids: New Neurotransmitters. Journal of Neuroscience, 2016, 36, 11449-11458.                                                                                                                                       | 3.6 | 79        |
| 10 | Rapid changes in production and behavioral action of estrogens. Neuroscience, 2006, 138, 783-791.                                                                                                                                 | 2.3 | 77        |
| 11 | Multiple mechanisms control brain aromatase activity at the genomic and non-genomic level. Journal of Steroid Biochemistry and Molecular Biology, 2003, 86, 367-379.                                                              | 2.5 | 76        |
| 12 | Sex differences in behavioral and neurochemical effects of gonadectomy and aromatase inhibition in rats. Psychoneuroendocrinology, 2018, 87, 93-107.                                                                              | 2.7 | 76        |
| 13 | Human and Quail Aromatase Activity Is Rapidly and Reversibly Inhibited by Phosphorylating Conditions.<br>Endocrinology, 2011, 152, 4199-4210.                                                                                     | 2.8 | 71        |
| 14 | Interplay among catecholamine systems: Dopamine binds to α <sub>2</sub> â€adrenergic receptors in birds<br>and mammals. Journal of Comparative Neurology, 2008, 511, 610-627.                                                     | 1.6 | 64        |
| 15 | Neuroanatomical specificity in the expression of the immediate early genec-fosfollowing expression of appetitive and consummatory male sexual behaviour in Japanese quail. European Journal of Neuroscience, 2006, 23, 1869-1887. | 2.6 | 62        |
| 16 | D1-like dopamine receptor density in nuclei involved in social behavior correlates with song in a context-dependent fashion in male European starlings. Neuroscience, 2009, 159, 962-973.                                         | 2.3 | 62        |
| 17 | Acute Stress Differentially Affects Aromatase Activity in Specific Brain Nuclei of Adult Male and<br>Female Quail. Endocrinology, 2011, 152, 4242-4251.                                                                           | 2.8 | 61        |
| 18 | Neuroestrogens Rapidly Regulate Sexual Motivation But Not Performance. Journal of Neuroscience, 2013, 33, 164-174.                                                                                                                | 3.6 | 58        |

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The dual action of estrogen hypothesis. Trends in Neurosciences, 2015, 38, 408-416.                                                                                                                                                          | 8.6 | 58        |
| 20 | Presence of aromatase and estrogen receptor alpha in the inner ear of zebra finches. Hearing<br>Research, 2009, 252, 49-55.                                                                                                                  | 2.0 | 56        |
| 21 | Rapid Behavioural Effects of Oestrogens and Fast Regulation of Their Local Synthesis by Brain<br>Aromatase. Journal of Neuroendocrinology, 2010, 22, 664-673.                                                                                | 2.6 | 55        |
| 22 | Estrogen Receptor $\hat{l}^2$ Activation Rapidly Modulates Male Sexual Motivation through the Transactivation of Metabotropic Glutamate Receptor 1a. Journal of Neuroscience, 2015, 35, 13110-13123.                                         | 3.6 | 51        |
| 23 | Dynamic changes in brain aromatase activity following sexual interactions in males: Where, when and why?. Psychoneuroendocrinology, 2013, 38, 789-799.                                                                                       | 2.7 | 47        |
| 24 | ls sexual motivational state linked to dopamine release in the medial preoptic area?. Behavioral<br>Neuroscience, 2010, 124, 300-304.                                                                                                        | 1.2 | 47        |
| 25 | Acute and Specific Modulation of Presynaptic Aromatization in the Vertebrate Brain. Endocrinology, 2012, 153, 2562-2567.                                                                                                                     | 2.8 | 46        |
| 26 | Aromatase inhibition rapidly affects in a reversible manner distinct features of birdsong. Scientific Reports, 2016, 6, 32344.                                                                                                               | 3.3 | 43        |
| 27 | Diversity of mechanisms involved in aromatase regulation and estrogen action in the brain.<br>Biochimica Et Biophysica Acta - General Subjects, 2010, 1800, 1094-1105.                                                                       | 2.4 | 41        |
| 28 | Local modulation of steroid action: rapid control of enzymatic activity. Frontiers in Neuroscience, 2015, 9, 83.                                                                                                                             | 2.8 | 39        |
| 29 | The neuroendocrinology of reproductive behavior in Japanese quail. Domestic Animal Endocrinology,<br>2003, 25, 69-82.                                                                                                                        | 1.6 | 38        |
| 30 | On the role of brain aromatase in females: why are estrogens produced locally when they are<br>available systemically?. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and<br>Behavioral Physiology, 2018, 204, 31-49. | 1.6 | 38        |
| 31 | Behavioral Effects of Brainâ€derived Estrogens in Birds. Annals of the New York Academy of Sciences, 2009, 1163, 31-48.                                                                                                                      | 3.8 | 37        |
| 32 | The regulation of birdsong by testosterone: Multiple time-scales and multiple sites of action.<br>Hormones and Behavior, 2018, 104, 32-40.                                                                                                   | 2.1 | 37        |
| 33 | Immunocytochemical localization of ionotropic glutamate receptors subunits in the adult quail forebrain. Journal of Comparative Neurology, 2000, 428, 577-608.                                                                               | 1.6 | 36        |
| 34 | Rapid Regulation of Brain Oestrogen Synthesis: The Behavioural Roles of Oestrogens and their Fates.<br>Journal of Neuroendocrinology, 2009, 21, 217-226.                                                                                     | 2.6 | 36        |
| 35 | Organizing Effects of Sex Steroids on Brain Aromatase Activity in Quail. PLoS ONE, 2011, 6, e19196.                                                                                                                                          | 2.5 | 36        |
| 36 | Aromatase inhibition blocks the expression of sexually-motivated cloacal gland movements in male quail. Behavioural Processes, 2004, 67, 461-469.                                                                                            | 1.1 | 34        |

| #  | Article                                                                                                                                                                                                         | IF                 | CITATIONS     |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|
| 37 | Relationships between rapid changes in local aromatase activity and estradiol concentrations in male and female quail brain. Hormones and Behavior, 2014, 65, 154-164.                                          | 2.1                | 32            |
| 38 | Sex Differences in Brain Aromatase Activity: Genomic and Non-Genomic Controls. Frontiers in Endocrinology, 2011, 2, 34.                                                                                         | 3.5                | 30            |
| 39 | Perineuronal nets and vocal plasticity in songbirds: A proposed mechanism to explain the difference<br>between closedâ€ended and openâ€ended learning. Developmental Neurobiology, 2017, 77, 975-994.           | 3.0                | 30            |
| 40 | Electrophysiological and neurochemical characterization of neurons of the medial preoptic area in<br>Japanese quail (Coturnix japonica). Brain Research, 2004, 1029, 224-240.                                   | 2.2                | 29            |
| 41 | Are rapid changes in gonadal testosterone release involved in the fast modulation of brain estrogen effects?. General and Comparative Endocrinology, 2009, 163, 298-305.                                        | 1.8                | 29            |
| 42 | Effects of social experience on subsequent sexual performance in naÃ <sup>-</sup> ve male Japanese quail (Coturnix) Tj ETQq0                                                                                    | ) 0.0 rgBT<br>2.1  | /Overlock 10  |
| 43 | Topography and Lateralized Effect of Acute Aromatase Inhibition on Auditory Processing in a Seasonal<br>Songbird. Journal of Neuroscience, 2017, 37, 4243-4254.                                                 | 3.6                | 27            |
| 44 | Differential effects of central injections of D1 and D2 receptor agonists and antagonists on male sexual behavior in Japanese quail. European Journal of Neuroscience, 2010, 32, 118-129.                       | 2.6                | 26            |
| 45 | Anatomically Discrete Sex Differences in Neuroplasticity in Zebra Finches as Reflected by Perineuronal Nets. PLoS ONE, 2015, 10, e0123199.                                                                      | 2.5                | 26            |
| 46 | Dopamine binds to α2-adrenergic receptors in the song control system of zebra finches (Taeniopygia) Tj ETQq0 (                                                                                                  | 0 0 rgBT /0<br>2.1 | Overlock 10 T |
| 47 | Timing of perineuronal net development in the zebra finch song control system correlates with<br>developmental song learning. Proceedings of the Royal Society B: Biological Sciences, 2018, 285,<br>20180849.  | 2.6                | 24            |
| 48 | Role for the membrane estrogen receptor alpha in the sexual differentiation of the brain. European<br>Journal of Neuroscience, 2020, 52, 2627-2645.                                                             | 2.6                | 23            |
| 49 | Dopamine modulates male sexual behavior in Japanese quail in part via actions on noradrenergic receptors. Behavioural Brain Research, 2005, 163, 42-57.                                                         | 2.2                | 22            |
| 50 | Brain Aromatase and Circulating Corticosterone are Rapidly Regulated by Combined Acute Stress and Sexual Interaction in a Sexâ€5pecific Manner. Journal of Neuroendocrinology, 2012, 24, 1322-1334.             | 2.6                | 22            |
| 51 | Studies of HVC Plasticity in Adult Canaries Reveal Social Effects and Sex Differences as Well as<br>Limitations of Multiple Markers Available to Assess Adult Neurogenesis. PLoS ONE, 2017, 12, e0170938.       | 2.5                | 22            |
| 52 | Seasonal changes of perineuronal nets and song learning in adult canaries (Serinus canaria).<br>Behavioural Brain Research, 2020, 380, 112437.                                                                  | 2.2                | 22            |
| 53 | Rapid Control of Reproductive Behaviour by Locally Synthesised Oestrogens: Focus on Aromatase.<br>Journal of Neuroendocrinology, 2013, 25, 1070-1078.                                                           | 2.6                | 21            |
| 54 | Testosteroneâ€induced neuroendocrine changes in the medial preoptic area precede song activation and plasticity in song control nuclei of female canaries. European Journal of Neuroscience, 2017, 45, 886-900. | 2.6                | 21            |

| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Testosterone stimulates perineuronal nets development around parvalbumin cells in the adult canary brain in parallel with song crystallization. Hormones and Behavior, 2020, 119, 104643.                                                         | 2.1 | 20        |
| 56 | Non-ovarian aromatization is required to activate female sexual motivation in testosterone-treated ovariectomized quail. Hormones and Behavior, 2016, 83, 45-59.                                                                                  | 2.1 | 19        |
| 57 | Neurochemical Control of Rapid Stressâ€Induced Changes in Brain Aromatase Activity. Journal of<br>Neuroendocrinology, 2013, 25, 329-339.                                                                                                          | 2.6 | 18        |
| 58 | Rapid Modulation of Aromatase Activity in the Vertebrate Brain. Journal of Experimental Neuroscience, 2013, 7, JEN.S11268.                                                                                                                        | 2.3 | 18        |
| 59 | Glutamate released in the preoptic area during sexual behavior controls local estrogen synthesis in male quail. Psychoneuroendocrinology, 2017, 79, 49-58.                                                                                        | 2.7 | 18        |
| 60 | Exploring sex differences in the adult zebra finch brain: In vivo diffusion tensor imaging and ex vivo super-resolution track density imaging. NeuroImage, 2017, 146, 789-803.                                                                    | 4.2 | 18        |
| 61 | Development of Perineuronal Nets during Ontogeny Correlates with Sensorimotor Vocal Learning in Canaries. ENeuro, 2020, 7, ENEURO.0361-19.2020.                                                                                                   | 1.9 | 18        |
| 62 | Species Differences in the Relative Densities of D1- and D2-Like Dopamine Receptor Subtypes in the<br>Japanese Quail and Rats: An in vitro Quantitative Receptor Autoradiography Study. Brain, Behavior and<br>Evolution, 2009, 73, 81-90.        | 1.7 | 16        |
| 63 | Differential control of appetitive and consummatory sexual behavior by neuroestrogens in male quail. Hormones and Behavior, 2018, 104, 15-31.                                                                                                     | 2.1 | 16        |
| 64 | The effects of aromatase inhibition on testosterone-dependent conditioned rhythmic cloacal sphincter movements in male Japanese quail. Physiology and Behavior, 2004, 83, 99-105.                                                                 | 2.1 | 16        |
| 65 | Androgen Mediation of Conditioned Rhythmic Cloacal Sphincter Movements in Japanese Quail<br>(Coturnix japonica) Journal of Comparative Psychology (Washington, D C: 1983), 2005, 119, 49-57.                                                      | 0.5 | 15        |
| 66 | Seasonal and individual variation in singing behavior correlates with alpha 2-noradrenergic receptor density in brain regions implicated in song, sexual, and social behavior. Neuroscience, 2011, 182, 133-143.                                  | 2.3 | 15        |
| 67 | Dual action of neuro-estrogens in the regulation of male sexual behavior. General and Comparative Endocrinology, 2018, 256, 57-62.                                                                                                                | 1.8 | 15        |
| 68 | Mechanism of the mediumâ€duration afterhyperpolarization in rat serotonergic neurons. European<br>Journal of Neuroscience, 2014, 39, 186-196.                                                                                                     | 2.6 | 14        |
| 69 | Do sex reversal procedures differentially affect agonistic behaviors and sex steroid levels depending on the sexual genotype in Nile tilapia?. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 2017, 327, 153-162. | 1.9 | 14        |
| 70 | Rapid testosterone-induced growth of the medial preoptic nucleus in male canaries. Physiology and<br>Behavior, 2019, 204, 20-26.                                                                                                                  | 2.1 | 14        |
| 71 | Steroid profiles in quail brain and serum: Sex and regional differences and effects of castration with steroid replacement. Journal of Neuroendocrinology, 2019, 31, e12681.                                                                      | 2.6 | 13        |
| 72 | Consequences of temperature-induced sex reversal on hormones and brain in Nile tilapia<br>(Oreochromis niloticus). Hormones and Behavior, 2020, 121, 104728.                                                                                      | 2.1 | 13        |

| #  | Article                                                                                                                                                                                                                          | IF              | CITATIONS  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------|
| 73 | Behavioral evidence for sex steroids hypersensitivity in castrated male canaries. Hormones and<br>Behavior, 2018, 103, 80-96.                                                                                                    | 2.1             | 12         |
| 74 | Key role of estrogen receptor $\hat{l}^2$ in the organization of brain and behavior of the Japanese quail.<br>Hormones and Behavior, 2020, 125, 104827.                                                                          | 2.1             | 12         |
| 75 | Rapid changes in brain estrogen concentration during male sexual behavior are site and stimulus specific. Scientific Reports, 2021, 11, 20130.                                                                                   | 3.3             | 12         |
| 76 | Differential <i>câ€fos</i> expression in the brain of male Japanese quail following exposure to stimuli that predict or do not predict the arrival of a female. European Journal of Neuroscience, 2007, 25, 2835-2846.           | 2.6             | 11         |
| 77 | Site-specific effects of aromatase inhibition on the activation of male sexual behavior in male Japanese quail (Coturnix japonica). Hormones and Behavior, 2019, 108, 42-49.                                                     | 2.1             | 11         |
| 78 | Testosterone or Estradiol When Implanted in the Medial Preoptic Nucleus Trigger Short<br>Low-Amplitude Songs in Female Canaries. ENeuro, 2019, 6, ENEURO.0502-18.2019.                                                           | 1.9             | 11         |
| 79 | A dynamic, sex-specific expression pattern of genes regulating thyroid hormone action in the<br>developing zebra finch song control system. General and Comparative Endocrinology, 2017, 240, 91-102.                            | 1.8             | 9          |
| 80 | Rapid changes in brain aromatase activity in the female quail brain following expression of sexual behaviour. Journal of Neuroendocrinology, 2017, 29, e12542.                                                                   | 2.6             | 8          |
| 81 | DNA Methylation Regulates Transcription Factor-Specific Neurodevelopmental but Not Sexually<br>Dimorphic Gene Expression Dynamics in Zebra Finch Telencephalon. Frontiers in Cell and<br>Developmental Biology, 2021, 9, 583555. | 3.7             | 8          |
| 82 | Perineuronal nets in HVC and plasticity in male canary song. PLoS ONE, 2021, 16, e0252560.                                                                                                                                       | 2.5             | 8          |
| 83 | Treatment with androgens plus estrogens cannot reverse sex differences in song and the song control nuclei in adult canaries. Hormones and Behavior, 2022, 143, 105197.                                                          | 2.1             | 8          |
| 84 | Distinct neuroendocrine mechanisms control neural activity underlying sex differences in sexual motivation and performance. European Journal of Neuroscience, 2013, 37, 735-742.                                                 | 2.6             | 7          |
| 85 | Personality and gonadal development as sources of individual variation in response to GnRH<br>challenge in female great tits. Proceedings of the Royal Society B: Biological Sciences, 2019, 286,<br>20190142.                   | 2.6             | 7          |
| 86 | Effects of central administration of naloxone during the extinction of appetitive sexual responses.<br>Behavioural Brain Research, 2004, 153, 567-572.                                                                           | 2.2             | 6          |
| 87 | Testosterone recruits new aromatase-imunoreactive cells in neonatal quail brain. NeuroReport, 2010, 21, 376-380.                                                                                                                 | 1.2             | 6          |
| 88 | Alternative Views on the Role of Sex Steroid Hormones on the Emergence of Phenotypic Diversity in Female Sexual Orientation. Archives of Sexual Behavior, 2019, 48, 1309-1313.                                                   | 1.9             | 5          |
| 89 | Estrogenâ€dependent sex difference in microglia in the developing brain of Japanese quail ( <i>Coturnix) Tj ETQq1</i>                                                                                                            | 1,0,7843<br>3.0 | 14 rgBT /O |
| 90 | Sexually differentiated and neuroanatomically specific coâ€expression of aromatase neurons and GAD67<br>in the male and female quail brain. European Journal of Neuroscience, 2020, 52, 2963-2981.                               | 2.6             | 4          |

| #   | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Effect of chronic intracerebroventricular administration of an aromatase inhibitor on the<br>expression of socio-sexual behaviors in male Japanese quail. Behavioural Brain Research, 2021, 410,<br>113315. | 2.2 | 4         |
| 92  | Neuroestrogens in the control of sexual behavior: Past, present, and future. Current Opinion in Endocrine and Metabolic Research, 2022, 24, 100334.                                                         | 1.4 | 4         |
| 93  | Comparing perineuronal nets and parvalbumin development between blackbird species with differences in early developmental song exposure. Journal of Experimental Biology, 2020, 223, .                      | 1.7 | 3         |
| 94  | Impact of temperature-induced sex reversal on behavior and sound production in Nile tilapia (Oreochromis niloticus). Hormones and Behavior, 2022, 142, 105173.                                              | 2.1 | 3         |
| 95  | Age-dependent and age-independent effects of testosterone in male quail. General and Comparative Endocrinology, 2014, 208, 64-72.                                                                           | 1.8 | 2         |
| 96  | Effects of a novel partner and sexual satiety on the expression of male sexual behavior and brain aromatase activity in quail. Behavioural Brain Research, 2019, 359, 502-515.                              | 2.2 | 1         |
| 97  | Effect of cyclo‑oxygenase inhibition on embryonic microglia and the sexual differentiation of the<br>brain and behavior of Japanese quail (Coturnix japonica). Hormones and Behavior, 2021, 134, 105024.    | 2.1 | 1         |
| 98  | Cellular Mechanisms Controlling Rapid Changes in Brain Aromatase Activity. , 2012, , 416-437.                                                                                                               |     | 1         |
| 99  | Rapid Modulation of Aromatase Activity by Social and Environmental Stimuli in Quail. , 2012, , 438-452.                                                                                                     |     | 1         |
| 100 | Perineuronal nets and song learning-related neuroplasticity in the songbird brain. Frontiers in Neuroscience, 0, 11, .                                                                                      | 2.8 | 1         |
| 101 | Role of aromatase in distinct brain nuclei of the social behaviour network in the expression of sexual behaviour in male Japanese quail. Journal of Neuroendocrinology, 2022, 34, .                         | 2.6 | 0         |
| 102 | Photoperiodic control of singing behavior and reproductive physiology in male Fife fancy canaries.<br>Hormones and Behavior, 2022, 143, 105194.                                                             | 2.1 | 0         |