
Richard A Griffiths

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5044752/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamic occupancy modelling to determine the status of a Critically Endangered lizard. Oryx, 2023, 57, 23-29.	1.0	1
2	Reliability of environmental DNA surveys to detect pond occupancy by newts at a national scale. Scientific Reports, 2022, 12, 1295.	3.3	5
3	Survival of climate warming through niche shifts: Evidence from frogs on tropical islands. Global Change Biology, 2022, 28, 1268-1286.	9.5	3
4	Diverse aging rates in ectothermic tetrapods provide insights for the evolution of aging and longevity. Science, 2022, 376, 1459-1466.	12.6	34
5	Estimating population parameters for the Critically Endangered Bermuda skink using robust design capture–mark–recapture modelling. Oryx, 2021, 55, 81-88.	1.0	3
6	Trade of legal and illegal marine wildlife products in markets: integrating shopping list and survival analysis approaches. Animal Conservation, 2021, 24, 700-708.	2.9	2
7	Optimising sampling and analysis protocols in environmental DNA studies. Scientific Reports, 2021, 11, 11637.	3.3	27
8	Evidence shortfalls in the recommendations and guidance underpinning ecological mitigation for infrastructure developments. Ecological Solutions and Evidence, 2021, 2, e12089.	2.0	11
9	Daily activity profile of the golden mantella in the "Froggotronâ€â€"A replicated behavioral monitoring system for amphibians. Zoo Biology, 2021, , .	1.2	2
10	An RShiny app for modelling environmental DNA data: accounting for false positive and false negative observation error. Ecography, 2021, 44, 1838-1844.	4.5	12
11	Zoos and amphibian conservation: Evaluating the impact of "The Year of The Frog―Campaign. Zoo Biology, 2021, , .	1.2	0
12	Modelling Environmental DNA Data; Bayesian Variable Selection Accounting for False Positive and False Negative Errors. Journal of the Royal Statistical Society Series C: Applied Statistics, 2020, 69, 377-392.	1.0	39
13	Using GPS-enabled decoy turtle eggs to track illegal trade. Current Biology, 2020, 30, R1066-R1068.	3.9	7
14	Differentiating captive and wild African lion (Panthera leo) populations in South Africa, using stable carbon and nitrogen isotope analysis. Biodiversity and Conservation, 2020, 29, 2255-2273.	2.6	9
15	Drivers of amphibian population dynamics and asynchrony at local and regional scales. Journal of Animal Ecology, 2020, 89, 1350-1364.	2.8	21
16	Conservation decisions under pressure: Lessons from an exercise in rapid response to wildlife disease. Conservation Science and Practice, 2020, 2, e141.	2.0	11
17	The ecological outcomes of biodiversity offsets under "no net loss―policies: A global review. Conservation Letters, 2019, 12, e12664.	5.7	108
18	A comparison of understanding of the amphibian crisis by 200 visitors across three countries. Zoo Biology, 2019, 38, 471-480.	1.2	1

#	Article	IF	CITATIONS
19	Estimation of Population Size When Capture Probability Depends on Individual States. Journal of Agricultural, Biological, and Environmental Statistics, 2019, 24, 154-172.	1.4	7
20	Endemic, endangered and evolutionarily significant: cryptic lineages in Seychelles' frogs (Anura:) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
21	Sexâ€biased disease dynamics increase extinction risk by impairing population recovery. Animal Conservation, 2019, 22, 579-588.	2.9	6
22	Prospects and challenges of environmental DNA (eDNA) monitoring in freshwater ponds. Hydrobiologia, 2019, 826, 25-41.	2.0	151
23	Removal Models Accounting for Temporary Emigration. Biometrics, 2019, 75, 24-35.	1.4	14
24	Reservoir frogs: seasonality of Batrachochytrium dendrobatidis infection in robber frogs in Dominica and Montserrat. PeerJ, 2019, 7, e7021.	2.0	14
25	The biorhythm of human skeletal growth. Journal of Anatomy, 2018, 232, 26-38.	1.5	20
26	Practitioner and scientist perceptions of successful amphibian conservation. Conservation Biology, 2018, 32, 366-375.	4.7	7

27	Predictors of Abundance of a Rare Bromeliad-Dwelling Frog (Crossodactylodes itambe) in the Espinhaço Mountain Range of Brazil. Journal of Herpetology, 2018, 52, 321-326.	0.5	6
28	Wildlife supply chains in Madagascar from local collection to global export. Biological Conservation, 2018, 226, 144-152.	4.1	16
29	Seasonal variation in environmental DNA detection in sediment and water samples. PLoS ONE, 2018, 13, e0191737.	2.5	77
30	Species identification by conservation practitioners using online images: accuracy and agreement between experts. PeerJ, 2018, 6, e4157.	2.0	27
31	Impact of asynchronous emergence of two lethal pathogens on amphibian assemblages. Scientific Reports, 2017, 7, 43260.	3.3	46
32	Seasonal variation in environmental DNA in relation to population size and environmental factors. Scientific Reports, 2017, 7, 46294.	3.3	122
33	Which amphibians should qualify for the ark?. Animal Conservation, 2017, 20, 120-121.	2.9	3
34	Future of keeping pet reptiles and amphibians: towards integrating animal welfare, human health and environmental sustainability. Veterinary Record, 2017, 181, 450-450.	0.3	53
35	The power of monitoring: optimizing survey designs to detect occupancy changes in a rare amphibian population. Scientific Reports, 2017, 7, 16491.	3.3	42

36Optimising monitoring efforts for secretive snakes: a comparison of occupancy and N-mixture models
for assessment of population status. Scientific Reports, 2017, 7, 18074.3.329

RICHARD A GRIFFITHS

#	Article	IF	CITATIONS
37	Is the detection of aquatic environmental DNA influenced by substrate type?. PLoS ONE, 2017, 12, e0183371.	2.5	63
38	Assessing the extent and nature of wildlife trade on the dark web. Conservation Biology, 2016, 30, 900-904.	4.7	77
39	Developments in amphibian captive breeding and reintroduction programs. Conservation Biology, 2016, 30, 340-349.	4.7	101
40	Dynamics and genetics of a disease-driven species decline to near extinction: lessons for conservation. Scientific Reports, 2016, 6, 30772.	3.3	33
41	Species identification by experts and non-experts: comparing images from field guides. Scientific Reports, 2016, 6, 33634.	3.3	83
42	Assessing the global zoo response to the amphibian crisis through 20â€year trends in captive collections. Conservation Biology, 2016, 30, 82-91.	4.7	40
43	Open models for removal data. Annals of Applied Statistics, 2016, 10, .	1.1	12
44	Detection of Batrachochytrium dendrobatidis in Amphibians Imported into the UK for the Pet Trade. EcoHealth, 2016, 13, 456-466.	2.0	17
45	In-situ itraconazole treatment improves survival rate during an amphibian chytridiomycosis epidemic. Biological Conservation, 2016, 195, 37-45.	4.1	48
46	Science, statistics and surveys: a herpetological perspective. Journal of Applied Ecology, 2015, 52, 1413-1417.	4.0	23
47	Captive Reptile Mortality Rates in the Home and Implications for the Wildlife Trade. PLoS ONE, 2015, 10, e0141460.	2.5	39
48	Influence of riparian habitats on the distribution of rainforest chameleons in Parc National de Ranomafana, Madagascar. African Journal of Herpetology, 2015, 64, 148-159.	0.9	2
49	Dynamics of the global trade in live reptiles: Shifting trends in production and consequences for sustainability. Biological Conservation, 2015, 184, 42-50.	4.1	89
50	Mitigationâ€driven translocations: are we moving wildlife in the right direction?. Frontiers in Ecology and the Environment, 2015, 13, 100-105.	4.0	116
51	Using eDNA to develop a national citizen science-based monitoring programme for the great crested newt (Triturus cristatus). Biological Conservation, 2015, 183, 19-28.	4.1	373
52	A review of the international trade in amphibians: the types, levels and dynamics of trade in CITES-listed species. Oryx, 2014, 48, 565-574.	1.0	42
53	Extinction Risks and the Conservation of Madagascar's Reptiles. PLoS ONE, 2014, 9, e100173.	2.5	47
54	Trends in conservation biology: Progress or procrastination in a new millennium?. Biological Conservation, 2012, 153, 153-158.	4.1	55

RICHARD A GRIFFITHS

#	Article	IF	CITATIONS
55	When Is a Species Declining? Optimizing Survey Effort to Detect Population Changes in Reptiles. PLoS ONE, 2012, 7, e43387.	2.5	56
56	Evidence for evolutionary distinctiveness of a newly discovered population of sooglossid frogs on Praslin Island, Seychelles. Conservation Genetics, 2012, 13, 557-566.	1.5	9
57	Engineering a future for amphibians under climate change. Journal of Applied Ecology, 2011, 48, 487-492.	4.0	112
58	Viability analysis of a threatened amphibian population: modelling the past, present and future. Ecography, 2011, 34, 162-169.	4.5	31
59	Dynamics of a declining amphibian metapopulation: Survival, dispersal and the impact of climate. Biological Conservation, 2010, 143, 485-491.	4.1	95
60	Optimising biodiversity assessments by volunteers: The application of occupancy modelling to large-scale amphibian surveys. Biological Conservation, 2010, 143, 2102-2110.	4.1	59
61	Can a Single Amphibian Species Be a Good Biodiversity Indicator?. Diversity, 2009, 1, 102-117.	1.7	18
62	Flying an amphibian flagship: conservation of the Axolotl <i>Ambystoma mexicanum</i> through nature tourism at Lake Xochimilco, Mexico. International Zoo Yearbook, 2008, 42, 116-124.	0.9	21
63	Captive Breeding, Reintroduction, and the Conservation of Amphibians. Conservation Biology, 2008, 22, 852-861.	4.7	200
64	Death feigning by grass snakes (Natrix natrix) in response to handling by human "predators.". Journal of Comparative Psychology (Washington, D C: 1983), 2007, 121, 123-129.	0.5	25
65	Confronting Amphibian Declines and Extinctions. Science, 2006, 313, 48-48.	12.6	234
66	Captive breeding and the fitness of reintroduced species: a test of the responses to predators in a threatened amphibian. Journal of Applied Ecology, 2006, 43, 360-365.	4.0	71
67	Introduced Alien or Persecuted Native? Resolving the Origin of the Viperine Snake (Natrix Maura) on Mallorca. Biodiversity and Conservation, 2006, 15, 3045-3054.	2.6	26
68	Low gene flow but high genetic diversity in the threatened Mallorcan midwife toad Alytes muletensis. Molecular Ecology, 2005, 14, 3307-3315.	3.9	66
69	Sampling Rare or Elusive Species. Concepts, Designs and Techniques for Estimating Population ParametersEDITED BY WILLIAM L. THOMPSON xv + 429 pp., 22.5 Å— 15 Å— 2 cm, ISBN 1 55963 451 0 paperbacl US\$35.00, Washington, DC, USA: Island Press 2004. Environmental Conservation, 2005, 32, 374-374.	2,1.3	1
70	Evaluation of translocation as a tool for mitigating development threats to great crested newts (Triturus cristatus) in England, 1990â \in "2001. Biological Conservation, 2005, 122, 45-52.	4.1	39
71	The amphibian decline crisis: A watershed for conservation biology?. Biological Conservation, 2005, 125, 271-285.	4.1	574
72	Induced defences in an endangered amphibian in response to an introduced snake predator. Oecologia, 2004. 141. 139-147.	2.0	44

RICHARD A GRIFFITHS

#	Article	IF	CITATIONS
73	Distribution of the Mallorcan midwife toad (Alytes muletensis) in relation to landscape topography and introduced predators. Biological Conservation, 2004, 116, 327-332.	4.1	21
74	Microsatellite markers for the Mallorcan midwife toad Alytes muletensis. Molecular Ecology Notes, 2003, 3, 152-154.	1.7	7
75	Forest disturbance and river proximity influence chameleon abundance in Madagascar. Biological Conservation, 2003, 109, 407-415.	4.1	24
76	Developmental responses to pond desiccation in tadpoles of the British anuran amphibians (Bufo) Tj ETQq0 0 0	rgBT_/Ove 1.7	rlock 10 Tf 50
77	Developmental responses to pond desiccation in tadpoles of the British anuran amphibians (Bufo) Tj ETQq1 1 0.	784314 rj 1.7	gBT ₁ /Overlock
78	Translocation of slow-worms (Anguis fragilis) as a mitigation strategy: a case study from south-east England. Biological Conservation, 1999, 90, 125-132.	4.1	28
79	Behavioural responses of Mallorcan midwife toad tadpoles to natural and unnatural snake predators. Animal Behaviour, 1998, 55, 207-214.	1.9	62
80	The effect of social interactions on tadpole activity and growth in the British anuran amphibians (Bufo bufo, B. calamita, and Rana temporaria). Journal of Zoology, 1998, 245, 431-437.	1.7	41
81	Activity patterns and microhabitat selection of Mallorcan midwife toad (Alytes muletensis) tadpoles in natural torrent pools. Amphibia - Reptilia, 1998, 19, 143-151.	0.5	6
82	Midwife Toads (Alytes muletensis) Avoid Chemical Cues from Snakes (Natrix maura). Journal of Herpetology, 1998, 32, 572.	0.5	10
83	Temporary ponds as amphibian habitats. Aquatic Conservation: Marine and Freshwater Ecosystems, 1997, 7, 119-126.	2.0	94
84	Temporary ponds as amphibian habitats. Aquatic Conservation: Marine and Freshwater Ecosystems, 1997, 7, 119-126.	2.0	4
85	Effects of pH and aluminium on the growth and feeding behaviour of smooth and palmate newt larvae. Ecotoxicology, 1995, 4, 299-306.	2.4	8
86	Factors affecting the distribution and abundance of an unpigmented heterotrophic alga Prototheca richardsi. Freshwater Biology, 1994, 32, 33-38.	2.4	13
87	Predation and competition within an assemblage of larval newts (Triturus). Ecography, 1994, 17, 176-181.	4.5	20
88	The effect of pH on feeding behaviour in newt larvae (Triturus: Amphibia). Journal of Zoology, 1993, 231, 285-290.	1.7	12
89	The effect of pH on embryonic and larval development in smooth and palmate newts,Triturus vulgarisandT. helveticus. Journal of Zoology, 1993, 230, 401-409.	1.7	18
90	Observations on the Development of the Secondary Sexual Characters of Male Newts, Triturus vulgaris and T. helveticus. Journal of Herpetology, 1988, 22, 476.	0.5	20

#	Article	lF	CITATIONS
91	Microhabitat selection and feeding relations of smooth and warty newts, Triturus vulgaris and T. cristatus, at an upland pond in mid-Wales. Ecography, 1987, 10, 1-7.	4.5	27
92	A natural hybrid newt, <i>Triturus helveticus</i> × <i>T. vulgaris</i> , from a pond in midâ€Wales. Journal of Zoology, 1987, 213, 133-140.	1.7	19
93	Natural Environmental Cues and Orcadian Rhythms of Behaviour—A Perspective. Chronobiology International, 1986, 3, 247-253.	2.0	5